Что изучает квантовая механика. Основные принципы квантовой механики

Под квантовой механикой понимают физическую теорию динамического поведения форм излучения и вещества. Это на которой построена современная теория физических тел, молекул и элементарных частиц. Вообще, квантовая механика была создана учеными, которые стремились понять строение атома. В течении многих годов легендарные физики изучали особенности и направления химии и следовали историческому времени развития событий.

Такое понятие, как квантовая механика, зарождалось в течение долгих лет. В 1911 году ученые Н. Бор и предложили ядерную модель атома, которая напоминала модель Коперника с его солнечной системой. Ведь солнечная система имела в своем центре ядро, вокруг которого вращались элементы. На основе этой теории начались расчеты физических и химических свойств некоторых веществ, которые были построены из простых атомов.

Одним из важных вопросов в такой теории, как квантовая механика - это природа сил, которая связывала атом. Благодаря закону Кулона, Э. Резерфорд показал, что данный закон справедлив в огромных масштабах. Затем необходимо было определить, каким образом электроны движутся по своей орбите. В этом пункте помог

На самом деле, квантовая механика нередко противоречит таким понятиям, как здравый смысл. Наряду с тем, что наш здравый смысл действует и показывает только такие вещи, которые можно взять из повседневного опыта. А, в свою очередь, повседневный опыт имеет дело только с явлениями макромира и крупными объектами, в то время как материальные частицы на субатомном и атомарном уровне ведут себя совсем по-другому. Например, в макромире мы с легкостью способны определить нахождение любого объекта при помощи измерительных приборов и методов. А если мы будем измерять координаты микрочастицы электрона, то пренебречь взаимодействием объекта измерения и измерительного прибора просто недопустимо.

Другими словами можно сказать, что квантовая механика представляет собой физическую теорию, которая устанавливает законы движения различных микрочастиц. От классической механики, которая описывает движение микрочастиц, квантовая механика отличается двумя показателями:

Вероятный характер некоторых физических величин, например, скорость и положение микрочастицы определить точно невозможно, можно рассчитать только вероятность их значений;

Дискретное изменение например, энергия какой-либо микрочастицы имеет только определенные некоторые значения.

Квантовая механика еще сопряжена с таким понятием, как квантовая криптография , которая представляет собой быстроразвивающуюся технологию, способную изменить мир. Квантовая криптография направлена на то, чтобы защитить коммуникации и секретность информации. Основана эта криптография на определенных явлениях и рассматривает такие случаи, когда информация может переноситься при помощи объектом квантовой механики. Именно здесь с помощью электронов, фотонов и других физических средств определяется процесс приема и отправки информации. Благодаря квантовой криптографии можно создать и спроектировать систему связи, которая может обнаружить подслушивание.

На сегодняшний момент достаточно много материалов, где предлагается изучение такого понятия, как квантовая механика основы и направления, а также деятельности квантовой криптографии. Чтобы обрести знания в этой непростой теории, необходимо досконально изучать и вникать в эту область. Ведь квантовая механика - это далеко не легкое понятие, которое изучалось и доказывалось величайшими учеными многими годами.

ОСНОВНЫЕ ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ.

Наименование параметра Значение
Тема статьи: ОСНОВНЫЕ ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ.
Рубрика (тематическая категория) Механика

В 1900 ᴦ. немецкий физик Макс Планк предположил, что излучение и поглощение света веществом происходит конечными порциями – квантами, причем энергия каждого кванта пропорциональна частоте испускаемого излучения:

где - частота испускаемого (или поглощаемого) излучения, а h – универсальная постоянная, называемая постоянной Планка. По современным данным

h = (6,62618 0,00004)∙ 10 -34 Дж∙с.

Гипотеза Планка явилась отправным пунктом возникновения квантовых представлений, положенных в основу принципиально новой физики – физики микромира, называемой квантовой физикой. Огромную роль в ее становлении сыграли глубокие идеи датского физика Нильса Бора и его школы. В корне квантовой механики лежит непротиворечивый синтез корпускулярных и волновых свойств материи. Волна – весьма протяженный в пространстве процесс (вспомните волны на воде), а частица - ϶ᴛᴏ намного более локальный, чем волна, объект. Свет при определœенных условиях ведет себя не как волна, а как поток частиц. В то же время элементарные частицы обнаруживают подчас волновые свойства. В рамках классической теории невозможно объединить волновые и корпускулярные свойства. По этой причине создание новой теории, описывающей закономерности микромира, привело к отказу от обычных представлений, справедливых для макроскопических объектов.

С квантовой точки зрения и свет, и частицы представляют из себясложные объекты, обнаруживающие как волновые, так и корпускулярные свойства (так называемый корпускулярно-волновой дуализм). Создание квантовой физики было стимулировано попытками осмыслить строение атома и закономерности спектров излучения атомов.

В конце 19 века было обнаружено, что при падении света на поверхность металла, из последней испускаются электроны. Это явление назвали фотоэффектом.

В 1905 ᴦ. Эйнштейн объяснил фотоэффект на базе квантовой теории. Он ввел предположение о том, что энергия в пучке монохроматического света состоит из порций, величина которых равна h . Физическая размерность величины h равна время∙энергия=длина∙импульс=момент количества движения. Такой размерностью обладает величина, называемая действием, и в связи с этим h называют элементарным квантом действия. Согласно Эйнштейну, электрон в металле, поглотив такую порцию энергии, совершает работу выхода из металла и приобретает кинœетическую энергию

Е к =h − А вых.

Это уравнение Эйнштейна для фотоэффекта.

Дискретные порции света позже (в 1927 ᴦ.) были названы фотонами .

В науке при определœении математического аппарата всœегда следует исходить из характера наблюдаемых экспериментальных явлений. Немецкий физик Шредингер добился грандиозных достижений, попробовав другую стратегию научного поиска: сначала математика, а затем понимание ее физического смысла и в результате интерпретация природы квантовых явлений.

Было ясно, что уравнения квантовой механики должны быть волновыми (ведь квантовые объекты обладают волновыми свойствами). Эти уравнения должны иметь дискретные решения (квантовым явлениям присущи элементы дискретности). Такого рода уравнения были известны в математике. Ориентируясь на них, Шредингер предложил использовать понятие волновой функции ʼʼψʼʼ. Для частицы, свободно движущейся вдоль оси Х, волновая функция ψ=е - i|h(Et-px) , где р - импульс, х - координата͵ Е-энергия, h-постоянная Планка. Функция ʼʼψʼʼ принято называть волновой потому, что для ее описания используется экспоненциальная функция.

Состояние частицы в квантовой механике описывается волновой функцией, позволяющей определить лишь вероятность нахождения частицы в данной точке пространства. Волновая функция описывает не сам объект и даже не его потенциальные возможности. Операции с волновой функцией позволяют вычислить вероятности квантово-механических событий.

Основополагающими принципами квантовой физики являются принципы суперпозиции, неопределœенности, дополнительности и тождественности.

Принцип суперпозиции в классической физике позволяет получить результирующий эффект от наложения (суперпозиции) нескольких независимых воздействий как сумму эффектов, вызываемых каждым воздействие в отдельности. Он справедлив для систем или полей, описываемых линœейными уравнениями. Этот принцип очень важен в механике, теории колебаний и волновой теории физических полей. В квантовой механике принцип суперпозиции относится к волновым функциям: если физическая система может находиться в состояниях, описываемых двумя или несколькими волновыми функциями ψ 1, ψ 2 ,…ψ ń , то она может находиться в состоянии, описываемом любой линœейной комбинацией этих функций:

Ψ=c 1 ψ 1 +c 2 ψ 2 +….+с n ψ n ,

где с 1 , с 2 ,…с n – произвольные комплексные числа.

Принцип суперпозиции является уточнением соответствующих представлений классической физики. Согласно последней, в среде, не меняющей свои свойства под действием возмущений, волны распространяются независимо друг от друга. Следовательно, результирующее возмущение в какой-либо точке среды при распространении в ней нескольких волн равно сумме возмущений, соответствующих каждой из этих волн:

S = S 1 +S 2 +….+S n ,

где S 1 , S 2,….. S n – возмущения, вызываемые волной. В случае негармонической волны ее можно представить как сумму гармонических волн.

Принцип неопределœенности состоит в том, что невозможно одновременно определить две характеристики микрочастицы, к примеру, скорости и координаты. Он отражает двойственную корпускулярно-волновую природу элементарных частиц. Погрешности, неточности, ошибки при одновременном определœении в эксперименте дополнительных величин связаны соотношением неопределœенностей, установленным в 1925ᴦ. Вернером Гейзенбергом. Соотношение неопределœенностей состоит в том, что произведение неточностей любых пар дополнительных величин (к примеру, координаты и проекции импульса на нее, энергии и времени) определяется постоянной Планка h. Соотношения неопределœенностей свидетельствуют о том, что чем определœеннее значение одного из параметров, входящих в соотношения, тем неопределœеннее значение другого параметра и наоборот. Имеется в виду, что параметры измеряются одновременно.

Классическая физика приучила к тому, что всœе параметры объектов и происходящих с ними процессов бывают измерены одновременно с какой угодно точностью. Это положение опровергается квантовой механикой.

Датский физик Нильс Бор пришел к выводу, что квантовые объекты относительны к средствам наблюдения. О параметрах квантовых явлений можно судить лишь после их взаимодействия со средствами наблюдения, ᴛ.ᴇ. с приборами. Поведение атомных объектов невозможно резко отграничить от их взаимодействия с измерительными приборами, фиксирующими условия, при которых происходят эти явления. При этом приходится учитывать, что приборы, которые используются для измерения параметров, разнотипны. Данные, полученные при разных условиях опыта͵ должны рассматриваться как дополнительные в том смысле, что только совокупность разных измерений может дать полное представление о свойствах объекта. В этом и состоит содержание принципа дополнительности.

В классической физике измерение считалось не возмущающим объект исследования. Измерение оставляет объект неизменным. Согласно квантовой механике, каждое отдельно проведенное измерение разрушает микрообъект. Чтобы провести новое измерение, приходится заново готовить микрообъект. Это усложняет процесс синтеза измерений. В этой связи Бор утверждает взаимодополнительность квантовых измерений. Данные классических измерений не взаимодополнительны, они имеют самостоятельный смысл независимо друг от друга. Взаимодополнение имеет место там, где исследуемые объекты неотличимы друг от друга и взаимосвязаны между собой.

Бор соотносил принцип дополнительности не только с физическими науками: ʼʼцельность живых организмов и характеристики людей, обладающих сознанием, а также и человеческих культур представляют черты целостности, отображение которых требует типично дополнительного способа описанияʼʼ. По мысли Бора, возможности живых существ столь многообразны и так тесно взаимосвязаны, что при их изучении вновь приходится обращаться к процедуре взаимодополнения данных наблюдений. При этом, эта мысль Бора не получила должного развития.

Особенности и специфика взаимодействий между компонентами сложных микро- и макросистем. а также внешних взаимодействий между ними приводит к громадному их многообразию. Для микро- и макросистем характерна индивидуальность, каждая система описывается присущей только ей совокупностью всœевозможных свойств. Можно назвать различия между ядром водорода и урана, хотя оба относятся к микросистемам. Не меньше различий между Землей и Марсом, хотя эти планеты принадлежат одной и той же Солнечной системы.

При этом можно говорить о тождественности элементарных частиц. Тождественные частицы обладают одинаковыми физическими свойствами: массой, электрическим зарядом и другими внутренними характеристиками. К примеру, всœе электроны Вселœенной считаются тождественными. Тождественные частицы подчиняются принципу тождественности – фундаментальному принципу квантовой механики, согласно которому: состояния системы частиц, получающихся друг из друга перестановкой тождественных частиц местами, нельзя различить ни в каком эксперименте.

Этот принцип – основное различие между классической и квантовой механикой. В квантовой механике тождественные частицы лишены индивидуальности.

СТРОЕНИЕ АТОМА И АТОМНОГО ЯДРА. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ.

Первые представления о строении вещества возникли в Древней Греции в 6-4 в.в. до н.э. Аристотель считал вещество непрерывным, ᴛ.ᴇ. его можно дробить на сколько угодно малые части, но так и не дойти до мельчайшей частицы, которая дальше не делилась бы. Демокрит считал, что всœе в мире состоит из атомов и пустоты. Атомы – мельчайшие частицы вещества, значит ʼʼнеделимыеʼʼ, и в представлении Демокрита атомы это сферы с зубчатой поверхностью.

Такое мировоззрение существовало вплоть до конца 19 века. В 1897ᴦ. Джозеф Джон Томсон (1856-1940ᴦ.ᴦ.), родной сын У.Томсона, дважды лауреат Нобелœевской премии открыл элементарную частицу, которая была названа электроном. Было установлено, что электрон вылетает из атомов и имеет отрицательный электрический заряд. Величина заряда электрона е =1,6.10 -19 Кл (Кулон), масса электрона m =9,11.10 -31 кᴦ.

После открытия электрона Томсон в 1903 году выдвинул гипотезу о том, что атом представляет собой сферу, по которой размазан положительный заряд, и в виде изюминок вкраплены электроны с отрицательными зарядами. Положительный заряд равен отрицательному, в целом атом электрически нейтрален (суммарный заряд равен 0).

В 1911 году проводя опыт, Эрнст Резерфорд установил, что положительный заряд не размазан по объёму атома, а занимает лишь небольшую его часть. После этого им была выдвинута модель атома, которая впоследствии получила название планетарной. Согласно этой модели атом действительно представляет собой сферу, в центре которой расположен положительный заряд, занимая малую часть этой сферы – порядка 10 -13 см. Отрицательный заряд находится на внешней, так называемой электронной оболочке.

Более совершенную квантовую модель атома предложил датский физик Н.Бор в 1913 году, работавший в лаборатории Резерфорда. Он взял за основу модель атома Резерфорда и дополнил ее новыми гипотезами, которые противоречат классическим представлениям. Эти гипотезы известны как постулаты Бора. Οʜᴎ сводятся к следующему.

1. Каждый электрон в атоме может совершать устойчивое орбитальное движение по определœенной орбите, с определœенным значением энергии, не испуская и не поглощая электромагнитного излучения. В этих состояниях атомные системы обладают энергиями, образующими дискретный ряд: Е 1 , Е 2 ,…Е n . Всякое изменение энергии в результате испускания или поглощения электромагнитного излучения может происходить скачком из одного состояния в другое.

2. При переходе электрона с одной стационарной орбиты на другую, происходит испускание или поглощение энергии. В случае если при переходе электрона с одной орбиты на другую энергия атома изменяется от Е m до Е n , то hv = Е m - Е n , где v – частота излучения.

Эти постулаты Бор использовал для расчета простейшего атома водорода,

Область, в которой сосредоточен положительный заряд, принято называть ядром. Было предположение, что ядро состоит из положительных элементарных частиц. Эти частицы, названные протонами (в переводе с греческого протон означает первый), были обнаружены Резерфордом в 1919 году. Их заряд по модулю равен заряду электрона (но положительный), масса протона равна 1,6724.10 -27 кᴦ. Существование протона было подтверждено в результате проведения искусственной ядерной реакции превращения азота в кислород. Атомы азота облучались ядрами гелия. В результате получался кислород и протон. Протон это стабильная частица.

В 1932 году Джеймсом Чадвиком была открыта частица, которая не имела электрического заряда и обладала массой, почти равной массе протона. Эта частица была названа нейтроном. Масса нейтрона равна 1,675.10 -27 кᴦ. Нейтрон был открыт в результате облучения α-частицами пластинки из бериллия. Нейтрон является нестабильной частицей. Отсутствие заряда объясняет его легкую способность проникать в ядра атомов.

Открытие протона и нейтрона привело к созданию протонно-нейтронной модели атома. Она была предложена в 1932 году советскими физиками Иваненко, Гапоном и немецким физиком Гейзенбергом. Согласно этой модели ядро атома состоит из протонов и нейтронов, за исключением ядра водорода, ĸᴏᴛᴏᴩᴏᴇ состоит из одного протона.

Заряд ядра определяется количеством в нем протонов и обозначается символом Z . Вся масса атома заключена в массе его ядра и определяется массой входящих в него протонов и нейтронов, поскольку масса электрона ничтожно мала по сравнению с массами протона и нейтрона. Порядковый номер в периодической таблице Менделœеева соответствует заряду ядра данного химического элемента. Массовое число атома А равно массе нейтронов и протонов: А=Z+N , где Z – количество протонов, N – количество нейтронов. Условно любой элемент обозначается символом: А Х z .

Существуют ядра, которые содержат одинаковое число протонов, но разное число нейтронов, ᴛ.ᴇ. отличающиеся массовым числом. Такие ядра называются изотопами. К примеру, 1 Н 1 - обычный водород, 2 Н 1 - дейтерий, 3 Н 1 - тритий. Наибольшей устойчивостью обладают ядра, в которых число протонов равно числу нейтронов или тех и других одновременно = 2, 8, 20, 28, 50, 82, 126 – магические числа.

Размеры атома приблизительно 10 -8 см. Атом состоит из ядра размером в 10-13 см. Между ядром атома и границей атома находится огромное пространство по масштабам в микромире. Плотность в ядре атома огромна, приблизительно 1,5·108 т/см 3 . Химические элементы с массой А<50 называются легкими, а с А>50 – тяжелыми. В ядрах тяжелых элементов тесновато, ᴛ.ᴇ. создается энергетическая предпосылка для их радиоактивного распада.

Энергия, необходимая для расщепления ядра на составляющие его нуклоны, называют энергией связи. (Нуклоны – обобщенное название протонов и нейтронов и в переводе на русский язык означает ʼʼядерные частицыʼʼ):

Е св = Δm∙с 2 ,

где Δm – дефект массы ядра (разница между массами нуклонов, образующих ядро, и массой ядра).

В 1928ᴦ. физиком-теоретиком Дираком была предложена теория электрона. Элементарные частицы могут вести себя подобно волне – они обладают корпускулярно-волновым дуализмом. Теория Дирака дала возможность определить, когда электрон ведет себя как волна, а когда – как частица. Он заключил, что должна существовать элементарная частица, обладающая такими же свойствами, как и электрон, но с положительным зарядом. Такая частица позже была обнаружена в 1932 году и названа позитроном. Американский физик Андерсен на фотографии космических лучей обнаружил след частицы, аналогичный электрону, но с положительным зарядом.

Из теории следовало, что электрон и позитрон, взаимодействуя между собой (реакция аннигиляции), образуют пару фотонов, ᴛ.ᴇ. квантов электромагнитного излучения. Возможен и обратный процесс, когда фотон, взаимодействуя с ядром, превращается в пару электрон – позитрон. Каждой частице сопоставляется волновая функция, квадрат амплитуды которой равен вероятности обнаружить частицу в определœенном объёме.

В 50-х годах ХХ века было доказано существование антипротона и антинœейтрона.

Еще 30 лет назад полагали, что нейтроны и протоны – элементарные частицы, но эксперименты по взаимодействию движущихся с большими скоростями протонов и электронов показали, что протоны состоят из еще более мелких частиц. Эти частицы впервые исследовал Гелл Манн и назвал их кварками. Известно несколько разновидностей кварков. Предполагают, что существует 6 ароматов: U – кварк (up), d-кварк (down), странный кварк(strange), очарованный кварк (charm), b - кварк (beauty) , t-кварк (truth)..

Кварк каждого аромата имеет один из трех цветов: красный, зелœеный, синий. Это просто обозначение, т.к. размер кварков намного меньше длины волны видимого света и в связи с этим цвета у них нет.

Рассмотрим некоторые характеристики элементарных частиц. В квантовой механике каждой частице приписывают особый собственный механический момент, который не связан ни с перемещением ее в пространстве, ни с ее вращением. Этот собственный механический момент наз. спином . Так, в случае если повернуть электрон на 360 о, то следовало бы ожидать, что он вернется в исходное состояние. При этом исходное состояние будет достигнуто только при еще одном повороте на 360 о. Т.е., чтобы вернуть электрон в исходное состояние, его нужно повернуть на 720 о, по сравнению со спином мы воспринимаем мир лишь наполовину. Пример, на двойной проволочной петле бусинка вернется в исходное положение при повороте на 720 о. Такие частицы обладают полуцелым спином ½. Спин дает нам сведения, как выглядит частица, в случае если смотреть на нее с разных сторон. К примеру, частица со спином ʼʼ0ʼʼ похожа на точку: она выглядит одинаково со всœех сторон. Частицу со спином ʼʼ1ʼʼ можно сравнить со стрелой: с разных сторон она выглядит по-разному и принимает прежний вид при повороте на 360 о. Частицу со спином ʼʼ2ʼʼ можно сравнить со стрелой, заточенной с обеих сторон: любое ее положение повторяется с полуоборота (180 о). Частицы с более высоким спином возвращаются в исходное состояние при повороте на еще меньшую часть полного оборота.

Частицы с полуцелым спином называются фермионами, а частицы с целым спином – бозонами. До недавнего времени считалось, что бозоны и фермионы есть единственно возможные виды неразличимых частиц. На самом делœе существует ряд промежуточных возможностей, а фермионы и бозоны - лишь два предельных случая. Такой класс частиц называют энионами.

Частицы вещества подчиняются принципу запрета Паули, открытому в 1923 году австрийским физиком Вольфганом Паули. Принцип Паули гласит: в системе двух одинаковых частиц с полуцелыми спинами в одном и том же квантовом состоянии не может находиться более одной частицы. Для частиц с целым спином ограничений нет. Это значит, что две одинаковые частицы не могут иметь координаты и скорости, одинаковые с той точностью, которая задается принципом неопределœенности. В случае если частицы вещества имеют очень близкие значения координат, то их скорости должны быть разными, и, следовательно, они не могут находиться долго в точках с этими координатами.

В квантовой механике предполагается, что всœе силы и взаимодействия между частицами переносятся частицами с целочисленным спином, равным 0,1,2. Это происходит следующим образом: к примеру, частица вещества испускает частицу, которая является переносчиком взаимодействия (к примеру, фотон). В результате отдачи скорость частицы меняется. Далее частица-переносчик ʼʼналетаетʼʼ на другую частицу вещества и поглощается ею. Это соударение изменяет скорость второй частицы, как-будто между этими двумя частицами вещества действует сила. Частицы–переносчики, которыми обмениваются частицы вещества, называются виртуальными, потому что, в отличие от реальных, их нельзя зарегистрировать при помощи детектора частиц. При этом они существуют, потому что они создают эффект, поддающийся измерению.

Частицы-переносчики можно классифицировать на 4 типа исходя из величины переносимого ими взаимодействия и от того, с какими частицами они взаимодействуют и от того, с какими частицами они взаимодействуют:

1) Гравитационная сила. Всякая частица находится под действием гравитационной силы, величина которой зависит от массы и энергии частицы. Это слабая сила. Гравитационные действуют на больших расстояниях и всœегда являются силами притяжения. Так, к примеру, гравитационное взаимодействие удерживает планеты на их орбитах и нас на Земле.

В квантовомеханическом подходе к гравитационному полю считается, что сила, действующая между частицами материи, переносится частицей со спином ʼʼ2ʼʼ, которая принято называть гравитоном. Гравитон не обладает собственной массой и в связи с этим переносимая им сила, является дальнодействующей. Гравитационное взаимодействие между Солнцем и Землей объясняется тем, что частицы, из которых состоят Солнце и Земля обмениваются гравитонами. Эффект от обмена этими виртуальными частицами поддается измерению, потому что данный эффект – вращение Земли вокруг Солнца.

2) Следующий вид взаимодействия создается электромагнитными силами , которые действуют между электрически заряженными частицами. Электромагнитное взаимодействие намного сильнее гравитационного: электромагнитная сила, действующая между двумя электронами, примерно в 10 40 раз больше гравитационной силы. Электромагнитное взаимодействие обуславливает существование стабильных атомов и молекул (взаимодействие между электронами и протонами). Переносчиком электромагнитного взаимодействия выступает фотон.

3) Слабое взаимодействие . Оно отвечает за радиоактивность и существует между всœеми частицами вещества со спином ½ . Слабое взаимодействие обеспечивает долгое и ровное горение нашего Солнца, дающего энергию для протекания всœех биологических процессов на Земле. Переносчиками слабого взаимодействия являются три частицы - W ± и Z 0 -бозоны. Οʜᴎ были открыты лишь в 1983ᴦ. Радиус слабого взаимодействия чрезвычайно мал, в связи с этим его переносчики должны обладать большими массами. В соответствии с принципом неопределœенности время жизни частиц с такой большой массой должно быть чрезвычайно коротким-10 -26 с.

4) Сильное взаимодействие представляет собой взаимодействие, ĸᴏᴛᴏᴩᴏᴇ удерживает кварки внутри протонов и нейтронов, а протоны и нейтроны внутри атомного ядра. Переносчиком сильного взаимодействия считается частица со спином ʼʼ1ʼʼ, которая принято называть глюоном. Глюоны взаимодействуют только с кварками и с другими глюонами. Кварки, благодаря глюонам, связываются парами или тройками. Сильное взаимодействие при высоких энергиях ослабевает и кварки и глюоны начинают вести себя как свободные частицы. Это свойство называют асимптотической свободой. В результате экспериментов на мощных ускорителях получены фотографии треков (следов) свободных кварков, родившихся в результате столкновения протонов и антипротонов высокой энергии. Сильное взаимодействие обеспечивает относительную стабильность и существование ядер атомов. Сильное и слабое взаимодействие характерно для процессов микромира, ведущих к взаимопревращениям частиц.

Сильные и слабые взаимодействия стали известны человеку только в первой трети 20 века в связи с изучением радиоактивности и осмыслением результатов бомбардировок атомов различных элементов α-частицами. α-частицы выбивают и протоны, и нейтроны. Цель рассуждений привела физиков к убеждению, что протоны и нейтроны сидят в ядрах атомов, будучи крепко связанными друг с другом. Налицо сильные взаимодействия. С другой стороны, радиоактивные вещества испускают α-, β- и γ-лучи. Когда в 1934 году Ферми создал первую достаточно адекватную экспериментальным данным теорию, то ему пришлось предположить наличие в ядрах атомов незначительных по своим интенсивностям взаимодействий, которые и стали называть слабыми.

Сейчас принимаются попытки объединœения электромагнитного, слабого и сильного взаимодействия, чтобы в результате получилась так называемая ТЕОРИЯ ВЕЛИКОГО ОБЪЕДИНЕНИЯ . Эта теория проливает свет на само наше существование. Не исключено, что наше существование есть следствие образования протонов. Такая картина начала Вселœенной представляется наиболее естественной. Земное вещество в основном состоит из протонов, но в нем нет ни антипротонов, ни антинœейтронов. Эксперименты с космическими лучами показали, что то же самое справедливо и для всœего вещества в нашей Галактике.

Характеристики сильного, слабого, электромагнитного и гравитационного взаимодействий приведена в таблице.

Порядок интенсивности каждого взаимодействия, указанный в таблице, определœен по отношению к интенсивности сильного взаимодействия, принятого за 1.

Приведем классификацию наиболее известных в настоящее время элементарных частиц.

ФОТОН. Масса покоя и электрический заряд его равны 0. Фотон имеет целочисленный спин и является бозоном.

ЛЕПТОНЫ. Этот класс частиц не участвует в сильном взаимодействии, но обладает электромагнитными, слабыми и гравитационными взаимодействиями. Лептоны имеют полуцелый спин и относятся к фермионам. Элементарным частицам, входящим в эту группу, приписывается некоторая характеристика, называемая лептонным зарядом. Лептонный заряд, в отличие от электрического, не является источником какого-либо взаимодействия, его роль пока полностью не выяснена. Значение лептонного заряда у лептонов L=1, у антилептонов L= -1, всœех остальных элементарных частиц L=0.

МЕЗОНЫ. Это нестабильные частицы, которым присуще сильное взаимодействие. Название ʼʼмезоныʼʼ означает ʼʼпромежуточныйʼʼ и обусловлено тем, что первоначально открытые мезоны имели массу большую, чем у электрона, но меньшую, чем у протона. Сегодня известны мезоны, массы которых больше массы протонов. Все мезоны имеют целый спин и, следовательно являются бозонами.

БАРИОНЫ. В данный класс входит группа тяжелых элементарных частиц с полуцелым спином (фермионы) и массой, не меньшей массы протона. Единственным стабильным барионом является протон, нейтрон стабилен лишь внутри ядра. Для барионов характерны 4 вида взаимодействия. В любых ядерных реакциях и взаимодействиях их общее число остается неизменным.

ОСНОВНЫЕ ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ. - понятие и виды. Классификация и особенности категории "ОСНОВНЫЕ ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ." 2017, 2018.

Формирование квантовой механики как последовательной теории с конкретными физическими основами во многом связано с работой В.Гейзенберга, в которой было сформулировано соотношение (принцип) неопределенностей . Это фундаментальное положение квантовой механики раскрывает физический смысл ее уравнений, а также определяет ее связь с классической механикой.

Принцип неопределенности постулирует:объект микромира не может находиться в состояниях, в которых координаты его центра инерции и импульс одновременно принимают вполне определенные, точные значения .

Количественно этот принцип формулируется следующим образом. Если ∆x – неопределенность значения координатыx , а∆p - неопределенность импульса, то произведение этих неопределенностей по порядку величины не может быть меньше постоянной Планка:

x p h.

Из принципа неопределенности следует, что, чем точнее определена одна из входящих в неравенство величин, тем с меньшей точностью определено значение другой. Никаким экспериментом невозможно одновременно точно измерить эти динамические переменные, причем это связано не с воздействием измерительных приборов или их несовершенством. Соотношение неопределенностей отражает объективные свойства микромира, проистекая из его корпускулярно-волнового дуализма.

То обстоятельство, что один и тот же объект проявляет себя и как частица, и как волна разрушает традиционные представления, лишает описание процессов привычной наглядности. Понятие частицы подразумевает объект, заключенный в малую область пространства, волна же распространяется в его протяженных областях. Представить себе объект, обладающий одновременно этими качествами невозможно, да и не следует пытаться. Невозможно построить наглядную для человеческого мышления модель, которая была бы адекватна микромиру. Уравнения квантовой механики, впрочем, и не ставят такой цели. Их смысл состоит в математически адекватном описании свойств объектов микромира и происходящих с ними процессов.

Если говорить о связи квантовой механики с механикой классической, то соотношение неопределенностей является квантовым ограничением применимости классической механики к объектам микромира . Строго говоря, соотношение неопределенностей распространяется на любую физическую систему, однако, поскольку волновая природа макрообъектов практически не проявляется, координаты и импульс таких объектов можно одновременно измерить с достаточно высокой точностью. Это означает, что для описания их движения вполне достаточно использовать законы классической механики. Вспомним, что аналогичным образом обстоит дело в релятивистской механике (специальной теории относительности): при скоростях движения, значительно меньших скорости света, релятивистские поправки становятся несущественными и преобразования Лоренца переходят в преобразования Галилея.

Итак, соотношение неопределенностей для координат и импульса отражает корпускулярно-волновой дуализм микромира и не связано с воздействием измерительных приборов . Несколько другой смысл имеет аналогичное соотношение неопределенностей дляэнергии Е ивремени t :

E t h.

Из него следует, что энергию системы можно измерить лишь с точностью, не превышающей h /∆ t, где t – длительность измерения.Причина такой неопределенности состоит уже в самом процессе взаимодей ствия системы (микрообъекта) с измерительным прибором . Для стационарной ситуации приведенное неравенство означает, что энергия взаимодействия между измерительным прибором и системой может быть учтена только с точностью доh /∆t . В предельном же случае мгновенного измерения происходящий обмен энергией оказывается полностью неопределенным.

Если под Е понимается неопределенность значения энергии нестационарного состояния, то тогдаt есть характерное время, в течение которого значения физических величин в системе изменяются существенным образом. Отсюда, в частности, следует важный вывод относительно возбужденных состояний атомов и других микросистем: энергия возбужденного уровня не может быть строго определена, что говорит о наличииестественной ширины этого уровня.

Объективные свойства квантовых систем отражает еще одно принципиальное положение квантовой механики – принцип дополнительности Бора , согласно которомуполучение любым экспериментальным путем информации об одних физических величинах, описывающих микрообъект, неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым .

Взаимно дополнительными являются, в частности, координата частицы и ее импульс (см. выше – принцип неопределенности), кинетическая и потенциальная энергия, напряженность электрического поля и количество фотонов.

Рассмотренные фундаментальные принципы квантовой механики свидетельствуют о том, что, в силу корпускулярно-волнового дуализма изучаемого ею микромира, ей чужд детерминизм классической физики. Полный уход от наглядного моделирования процессов придает особый интерес вопросу о том, какова же физическая природа волн де Бройля. В ответе на этот вопрос принято «отталкиваться» от поведения фотонов. Известно, что при пропускании светового пучка через полупрозрачную пластину S часть света проходит сквозь нее, а часть отражается (рис. 4).

Рис. 4

Что же при этом происходит с отдельными фотонами? Эксперименты со световыми пучками очень малой интенсивности с использованием современной техники (А – детектор фотонов), позволяющей следить за поведением каждого фотона (так называемый режим счета фотонов), показывают, что о расщеплении отдельного фотона не может быть и речи (иначе свет изменял бы свою частоту). Достоверно установлено, что некоторые фотоны проходят сквозь пластину, а некоторые отражаются от нее. Это означает, чтоодинаковые частицы в одинаковых условиях могут вести себя по-разному ,т. е. поведение отдельного фотона при встрече с поверхностью пластины не может быть предсказано однозначно .

Отражение фотона от пластины или прохождение сквозь нее суть случайные события. А количественные закономерности таких событий описываются с помощью теории вероятностей. Фотон может с вероятностью w 1 пройти сквозь пластину и с вероятностьюw 2 отразиться от нее. Вероятность того, что с фотоном произойдет одно из этих двух альтернативных событий, равна сумме вероятностей:w 1 + w 2 = 1.

Аналогичные эксперименты с пучком электронов или других микрочастиц также показывают вероятностный характер поведения отдельных частиц. Таким образом, задачу квантовой механики можно сформулировать как предсказание вероятности процессов в микромире , в отличие от задачи классической механики– предсказывать достоверность событий в макромире .

Известно, однако, что вероятностное описание применяется и в классической статистической физике. Так в чем же принципиальная разница? Для ответа на этот вопрос усложним опыт по отражению света. С помощью зеркала S 2 развернем отраженный пучок, поместив детекторA , регистрирующий фотоны в зоне его пресечения с прошедшим пучком, т. е. обеспечим условия интерференционного эксперимента (рис. 5).

Рис. 5

В результате интерференции интенсивность света в зависимости от расположения зеркала и детектора будет периодически меняться по поперечному сечению области перекрытия пучков в широких пределах (в том числе обращаться в ноль). Как же ведут себя отдельные фотоны в этом опыте? Оказывается, что в этом случае два оптических пути к детектору уже не являются альтернативными (взаимоисключающими) и поэтому нельзя сказать, каким путем прошел фотон от источника к детектору. Приходится допускать, что он мог попасть в детектор одновременно двумя путями, образуя в итоге интерференционную картину. Опыт с другими микрочастицами дает аналогичный результат: последовательно проходящие частицы создают такую же картину, как и поток фотонов.

Вот это уже кардинальное отличие от классических представлений: ведь невозможно представить себе движение частицы одновременно по двум разным путям. Впрочем, такой задачи квантовая механика и не ставит. Она предсказывает результат, состоящий в том, что светлым полосам соответствует высокая вероятность появления фотона.

Волновая оптика легко объясняет результат интерференционного опыта с помощью принципа суперпозиции, в соответствии с которым световые волны складываются с учетом соотношения их фаз. Иными словами, волны вначале складываются по амплитуде с учетом разности фаз, образуется периодическое распределение амплитуды, а затем уже детектор регистрирует соответствующую интенсивность (что соответствует математической операции возведения в квадрат по модулю, т. е. происходит потеря информации о распределении фазы). При этом распределение интенсивности носит периодический характер:

I = I 1 + I 2 + 2 A 1 A 2 cos (φ 1 – φ 2 ),

где А , φ , I = | A | 2 амплитуда ,фаза иинтенсивность волн соответственно, а индексы 1, 2 указывают на их принадлежность к первой или второй из этих волн. Ясно, что приА 1 = А 2 иcos (φ 1 φ 2 ) = – 1 значение интенсивностиI = 0 , что соответствует взаимному гашению световых волн (при их суперпозиции и взаимодействии по амплитуде).

Для интерпретации волновых явлений с корпускулярной точки зрения принцип суперпозиции переносится в квантовую механику, т. е. вводится понятие амплитуды вероятности – по аналогии с оптическими волнами:Ψ = А exp ( ). При этом имеется в виду, что вероятность есть квадрат этой величины (по модулю) т. е.W = |Ψ| 2 .Амплитуда вероятности называется в квантовой механикеволновой функцией . Это понятие ввел в 1926 г. немецкий физик М. Борн, дав тем самымвероятностную интерпретацию волн де Бройля. Удовлетворение принципу суперпозиции означает, что еслиΨ 1 и Ψ 2 – амплитуды вероятности прохождения частицы первым и вторым путями, то амплитуда вероятности при прохождении обоих путей должна быть:Ψ = Ψ 1 + Ψ 2 . Тогда формально утверждение о том, что «частица прошла двумя путями», приобретает волновой смысл, а вероятностьW = |Ψ 1 + Ψ 2 | 2 проявляет свойствоинтерференционного распределения .

Таким образом, величиной, описывающей состояние физической системы в квантовой механике, является волновая функция системы в предположении о справедливости принципа суперпозиции . Относительно волновой функции и записано основное уравнение волновой механики – уравнение Шрёдингера. Поэтому одна из основных задач квантовой механики состоит в нахождении волновой функции, отвечающей данному состоянию исследуемой системы.

Существенно, что описание состояния частицы с помощью волновой функции носит вероятностный характер, поскольку квадрат модуля волновой функции определяет вероятность нахождения частицы в данный момент времени в определенном ограниченном объеме . Этим квантовая теория фундаментально отличается от классической физики с ее детерминизмом.

В свое время именно высокой точности предсказания поведения макрообъектов была обязана своим триумфальным шествием классическая механика. Естественно, в среде ученых долгое время бытовало мнение, что прогресс физики и науки вообще будет неотъемлемо связан с возрастанием точности и достоверности такого рода предсказаний. Принцип неопределенности и вероятностный характер описания микросистем в квантовой механике коренным образом изменили эту точку зрения.

Тогда стали появляться другие крайности. Поскольку из принципа неопределенности следует невозможность одновременного определения координаты и импульса , можно сделать вывод о том, что состояние системы в начальный момент времени точно не определено и, следовательно, не могут быть предсказаны последующие состояния, т. е. нарушаетсяпринцип причинности .

Однако подобное утверждение возможно только при классическом взгляде на неклассическую реальность. В квантовой механике состояние частицы полностью определяется волновой функцией. Ее значение, заданное для определенного момента времени, определяет последующие ее значения. Поскольку причинность выступает как одно из проявлений детерминизма, целесообразно в случае квантовой механики говорить о вероятностном детерминизме, опирающемся на статистические законы, т. е. обеспечивающем тем более высокую точность, чем больше зафиксировано однотипных событий. Поэтому современная концепция детерминизма предполагает органическое сочетание, диалектическое единство необходимости ислучайности .

Развитие квантовой механики оказало, таким образом, заметное влияние на прогресс философской мысли. С гносеологической точки зрения особый интерес представляет уже упоминавшийся принцип соответствия , сформулированный Н. Бором в 1923 г., согласно которомувсякая новая, более общая теория, являющаяся развитием классической, не отвергает ее полностью, а включает в себя классическую теорию, указывая границы ее применимости и переходя в нее в определенных предельных случаях .

Нетрудно убедиться, что принцип соответствия прекрасно иллюстрирует взаимоотношение классической механики и электродинамики с теорией относительности и квантовой механикой.

“Если бы мы должны были характеризовать основные идеи квантовой теории в одном предложении, мы могли бы сказать: следует предположить, что некоторые физические величины до тех пор считавшиеся непрерывными , состоят из элементарных квантов ”. (А.Эйнштейн)

В конце 19 века Дж.Томсон открыл электрон как элементарный квант (частицу) отрицательного электричества. Таким образом, и атомная, и электрическая теории ввели в науку физические величины, которые могут меняться только скачками . Томсон показал, что электрон есть также один из составных элементов атома, один из элементарных кирпичиков, из которых построено вещество. Томсон создал первую модель атома, согласно которой атом представляет собой аморфную сферу, набитую электронами, подобно “булке с изюмом”. Извлечь электроны из атома сравнительно легко. Это можно сделать нагреванием или бомбардировкой атома другими электронами.

Однако, гораздо большая часть массы атома представлена не электронами, а остающимися частицами, значительно более тяжелыми – ядром атома . Это открытие было сделано Э.Резерфордом, который бомбардировал золотую фольгу альфа частицами и обнаружил, что есть места, где частицы отскакивают как будто бы от чего-то массивного, а есть места, где частицы свободно пролетают насквозь. Резерфорд создает на основе этого открытия свою планетарную модель атома. Согласно этой модели, в центре атома расположено ядро, которое сосредотачивает в себе основную массу атома, а вокруг ядра по круговым орбитам вращаются электроны.

Фотоэлектрический эффект

В 1888-1890 годах фотоэлектрический эффект был исследован русским физиком А.П.Столетовым. Теорию фотоэффекта разрабатывал в 1905 году А.Эйнштейн. Пусть свет выбивает из металла электроны. Электроны вырываются из металла и устремляются вперед с определенной скоростью. Мы в состоянии подсчитать число этих электронов, определить их скорость и энергию. Если бы мы снова осветили металл светом той же длины волны, но более мощного источника, то следовало бы ожидать, что энергия испускаемых электронов будет больше . Однако, ни скорость, ни энергия электронов не изменяется при возрастании интенсивности света. Это оставалось проблемой до открытия кванта энергии М.Планком.

Открытие кванта энергии М. Планком

В конце ХIХ века в физике возникла трудность, которая получила название “ультрафиолетовой катастрофы”. Экспериментальное исследование спектра теплового излучения абсолютно черного тела давало определенную зависимость интенсивности излучения от его частоты. С другой стороны, расчеты произведенные в рамках классической электродинамики, давали совсем иную зависимость. Получалось так, что в ультрафиолетовом конце спектра интенсивность излучения должна неограниченно возрастать, что явно противоречит опыту.

Пытаясь решить эту проблему, Макс Планк был вынужден допустить, что противоречие возникает из-за неправильного понимания классической физикой механизма излучения.

В 1900 г. он выдвинул гипотезу о том, что излучение и поглощение энергии происходит не непрерывно, а дискретно – порциями (квантами) с величиной Е= h × n , где Е – интенсивность излучения, n – частота излучения, h – новая фундаментальная постоянная (постоянная Планка, равная 6,6×10 -34 Дж×сек). На этой основе “ультрафиолетовая катастрофа” была преодолена.

М. Планк предположил, что видимый нами белый свет состоит из небольших порций энергии, несущихся в пустом пространстве со скоростью света. Планк назвал эти порции энергии квантами, или фотонами .

Сразу стало понятно, что квантовая теория света дает объяснение фотоэлектрическому эффекту. Итак, поток фотонов, падает на металлическую пластинку. Фотон ударяется об атом и выбивает из него электрон. Вырванный электрон будет в каждом случае иметь одинаковую энергию. Тогда понятно, что увеличение интенсивности света означает увеличение числа падающих фотонов . В этом случае из металлической пластинки было бы вырвано большее число электронов, но энергия каждого отдельного электрона не изменилась бы .

Энергия световых квантов различна для лучей разных цветов, волн разной частоты . Так, энергия фотонов красного света вдвое меньше энергии фотонов фиолетового света. Рентгеновские же лучи состоят из фотонов гораздо большей энергии, чем фотоны белого света, то есть длина волны рентгеновских лучей гораздо меньше.

Испускание светового кванта связано с переходом атома от одного энергетического уровня к другому. Энергетические уровни атома, как правило дискретны, то есть в невозбужденном состоянии атом не излучает, он стабилен. На основе этого положения Н.Бор создает свою модель атома в 1913 году . Согласно этой модели, в центре атома расположено массивное ядро, вокруг которого по стационарным орбитам вращаются электроны. Атом излучает энергию не постоянно, а порциями (квантами) и только в возбужденном состоянии. В этом случае мы наблюдаем переход электронов с внешней орбиты на внутреннюю. В случае же поглощения атомом энергии имеет место переход электронов с внутренней орбиты на внешнюю.

Основы квантовой теории

Вышеперечисленные открытия, да и многие другие нельзя было понять и объяснить с точки зрения классической механики. Нужна была новая теория, которая и была создана в 1925-1927 годах название квантовой механики .

После того, как физики установили, что атом не является последним кирпичиком мироздания, а сам состоит из более простых частиц, начался поиск элементарной частицы. Элементарной частицей называют такую частицу, которая меньше атомного ядра (начиная с протона, электрона, нейтрона). На сегодняшний день известно более 400 элементарных частиц.

Как мы уже знаем, первой открытой в 1891 году элементарной частицей был электрон. В 1919 году Э.Резерфорд открывает протон, положительно заряженную тяжелую частицу, входящую в состав атомного ядра. В 1932 году английский физик Джон Чэдвик обнаруживает нейтрон , тяжелую частицу не имеющую электрического заряда и тоже входящую в состав атомного ядра. В 1932 году Полем Дираком была предсказана первая античастица позитрон , по массе равная электрону, но обладающая противоположным (положительным) электрическим зарядом.

С 50-х годов хх века основным средством открытия и исследования элементарных частиц стали сверхмощные ускорители – синхрофазотроны. В России первый такой ускоритель был создан в 1957 году в городе Дубне. С помощью ускорителей были открыты античастицы: позитрон, а в последствии антипротон и антинейтрон (античастица, не имеющая электрического заряда, но имеющая барионный заряд, противоположный барионному заряду нейтрона). С этого времени стали выдвигаться гипотезы о возможном существовании антивещества, антиматерии, а возможно даже и антимиров. Однако экспериментального подтверждения этой гипотезы пока не получено.

Одна из существенных особенностей элементарных частиц состоит в том, что они имеют крайне незначительные массы и размеры . Масса большинства из них составляет 1,6×10 –24 грамма, а размер порядка 10 –16 см в диаметре.

Другое свойство элементарных частиц – это способность рождаться и уничтожаться, то есть испускаться и поглощаться при взаимодействии с другими частицами . Например, при взаимодействии (аннигиляции) двух противоположных частиц электрона и позитрона выделяется два фотона (кванта энергии): е - +е + =2g

Следующим важным свойством является трансмутация, то есть слияние частиц друг с другом при взаимодействии, причем с увеличением массы получившейся частицы. Новая масса частицы больше суммы двух соединившихся частиц, так как часть энергии, выделившейся при слиянии, переходит в массу.

Частицы различаются по 1.видам взаимодействия; 2. типам взаимодействия; 3. массе; 4. времени жизни; 5. спину; 6. заряду.

Виды и типы взаимодействия

Виды взаимодействия

Сильное взаимодействие обусловливает связь между протонами и нейтронами в атомных ядрах.

Электромагнитное взаимодействие – менее интенсивно, чем сильное, определяет связь между электронами и ядром в атоме, а также связь между атомами в молекуле.

Слабое взаимодействие вызывает медленно текущие процессы, в частности процесс распада частиц.

Гравитационное взаимодействие – это взаимодействие между отдельными частицами; сила этого взаимодействия в квантовой механике крайне мала вследствие малости масс, но его сила значительно возрастает при взаимодействии больших масс.

Типы взаимодействия

В квантовой механике все элементарные частицы могут взаимодействовать только по двум типам: адронному и лептонному .

Масса .

По массе частицы подразделяют на тяжелые (протон, нейтрон, гравитон и др.), промежуточные и легкие (электрон, фотон, нейтрино и др.)

Время жизни.

По времени своего существования частицы подразделяются на стабильные, с достаточно длительным сроком существования (например, протоны, нейтроны, электроны, фотоны, нейтрино и др.), квазистабильные , то есть имеющие достаточно короткое время жизни (например, античастицы) и нестабильные , имеющие предельно короткое время существования (например, мезоны, пионы, барионы и др.)

Спин

Спин (от английского - вертеться, вращаться) характеризует собственный момент количества движения элементарной частицы, имеющий квантовую природу и не связанный с перемещением частицы как целого. Он измеряется целым или полуцелым числом, кратным постоянной Планка (6,6×10 –34 Дж × сек). Для большинства элементарных частиц показатель спина составляет 1/2;,(для электрона, протона, нейтрино) 1 (для фотона), 0 (для П-мезонов, К-мезонов).

Концепция спина была введена в физику в 1925 году американскими учеными Дж.Уленбеком и С.Гаудсмитом, предположившими, что электрон можно рассматривать как “вращающийся волчок”.

Электрический заряд

Для элементарных частиц характерно наличие положительного или отрицательного электрического заряда, либо отсутствие электрического заряда вообще. Кроме электрического заряда у элементарных частиц группы барионов присутствует барионный заряд.

В 50–е годы ХХ века физики М.Гелл-Ман и Г.Цвейг предположили, что внутри адронов должны быть еще более элементарные частицы. Цвейг назвал их тузами, а Гелл-Ман – кварками. Слово «кварк» взято из романа Дж. Джойса «Поминки по Финнегану». В дальнейшем прижилось название кварк.

Согласно гипотезе Гелл-Мана имеются кварки трех типов (ароматов): u d s . Каждый из них имеет спин = 1/2; и заряд = 1/3 или 2/3 заряда электрона. Все барионы состоят из трех кварков. Например, протон – из uud, а нейтрон – из ddu. Каждый из трех ароматов кварков подразделяется на три цвета. Это не обычный цвет, а аналог заряда. Так, протон можно рассматривать как мешок, содержащий два u - и один d - кварк. Каждый из кварков в мешке окружен своим собственным облаком. Протон-протонное взаимодействие можно представить как сближение двух мешков с кварками, которые на достаточно малом расстоянии начинают обмениваться глюонами. Глюон – частица-переносчик (от английского слова glue, что означает клей). Глюоны склеивают протоны и нейтроны в ядре атома и не дают им распасться. Проведем некоторую аналогию.

Квантовая электродинамика: электрон, заряд, фотон. В квантовой хромодинамике им соответствуют: кварк, цвет, глюон. Кварки – это теоретические объекты, необходимые для объяснения ряда процессов и взаимодействий между элементарными частицами группы адронов. С точки зрения философского подхода к проблеме можно сказать, что кварки – это один из способов объяснения микромира в понятиях макромира.

Физический вакуум и виртуальные частицы

В первой половине ХХ века Поль Дирак составил уравнение, которое описывало движение электронов с учетом законов квантовой механики и теории относительности. Он получил неожиданный результат. Формула для энергии электрона давала 2 решения: одно решение соответствовало уже знакомому нам электрону – частице с положительной энергией, другое – частице, у которой энергия была отрицательной. В квантовой механике состояние частицы с отрицательной энергией интерпретируется как античастица . Дирак обратил внимание, что античастицы возникают из частиц.

Ученый пришел к выводу, что существует физический вакуум”, который заполнен электронами с отрицательной энергией. Физический вакуум стали часто называть “морем Дирака”. Мы не наблюдаем электронов с отрицательной энергией именно потому, что они образуют сплошной невидимый фон (“море”), на котором происходят все мировые события. Однако, это “море” не наблюдаемо только до тех пор, пока на него не подействуют определенным образом. Когда же в “море Дирака” попадает, скажем, фотон, то он заставляет “море” (вакуум) выдать себя, выбивая из него один из многочисленных электронов с отрицательной энергией. И при этом, как утверждает теория, родятся сразу 2 частицы: электрон с положительной энергией и отрицательным электрическим зарядом и антиэлектрон тоже с положительной энергией, но еще и с положительным зарядом.

В 1932 году американский физик К.Д.Андерсон экспериментально обнаружил антиэлектрон в космических лучах и назвал его позитроном.

Сегодня уже точно установлено, что для каждой элементарной частицы в нашем мире существует античастица (для электрона – позитрон, для протона – антипротон, для фотона – антифотон и даже для нейтрона – антинейтрон).

Прежнее понимание вакуума как чистого “ничто” обратилось в соответствии с теорией П.Дирака во множество порождающихся пар: частица-античастица.

Одной из особенностей физического вакуума является наличие в нем полей с энергией, равной “0” и без реальных частиц. Но раз имеется поле, то оно должно колебаться. Такие колебания в вакууме называют нулевыми, так как там нет частиц. Удивительная вещь: колебания поля невозможны без движения частиц, но в данном случае колебания есть, а частиц нет! И тогда физика смогла найти такой компромисс: частицы рождаются при нулевых колебаниях поля, живут очень недолго и исчезают. Однако, получается, что частицы рождаясь из “ничего” и приобретая при этом массу и энергию, нарушают тем самым закон сохранения массы и энергии. Тут вся суть в “сроке жизни” частицы: он настолько краток, что нарушение законов можно вычислить лишь теоретически, но экспериментально это наблюдать нельзя. Родилась частица из “ничего” и тут же умерла. Например, время жизни мгновенного электрона составляет 10 –21 секунды, а мгновенного нейтрона -10 –24 секунды. Обычный же свободный нейтрон живет минуты, а в составе атомного ядра неопределенно долго. Частицы, живущие так мало назвали в отличае от обычных, реальных - виртуальными (в пер. с латыни – возможными).

Если отдельную виртуальную частицу физика обнаружить не может, то суммарное их воздействие на обычные частицы отлично фиксируется. Например, две пластины, помещенные в физический вакуум и приближенные друг к другу под ударами виртуальных частиц начинают притягиваться. Этот факт был обнаружен в 1965 году голландским физиком-экспериментатором Гендриком Казимиром.

По сути дела, все взаимодействия между элементарными частицами происходят при непременном участии вакуумного виртуального фона, на который элементарные частицы в свою очередь тоже влияют.

Позднее было показано, что виртуальные частицы возникают не только в вакууме; их могут порождать и обычные частицы. Электроны, к примеру, постоянно испускают и тут же поглащают виртуальные фотоны.

В заключении лекции отметим, что атомистическая концепция, как и прежде, опирается на представление, согласно которому свойства физического тела можно, в конечном счете, свести к свойствам составляющих его частиц , которые в данный исторический момент считаются неделимыми . Исторически такими частицами считались атомы, затем – элементарные частицы, на сегодняшний день – кварки. С философской же точки зрения наиболее перспективными представляются новые подходы , основанные не на поиске неделимых фундаментальных частиц, а на выявлении их внутренних связей для объяснения целостных свойств материальных образований . Такая точка зрения высказывалась еще В.Гейзенбергом , но пока, к сожалению, не получила развития.

Основные принципы квантовой механики

Как показывает история естествознания, свойства элементарных частиц, с которыми столкнулись физики, изучая микромир, не укладываются в рамки традиционных физических теорий. Попытки объяснить микромир с помощью понятий и принципов классической физики потерпели неудачу. Поиски новых понятий и объяснений привели к возникновению новой физической теории – квантовой механики, у истоков которой стояли такие выдающиеся физики, как В.Гейзенберг, Н.Бор, М.Планк, Э.Шредингер и др.

Изучение специфических свойств микрообъектов началось с экспериментов, в ходе которых было установлено, что микрообъекты в одних опытах обнаруживают себя как частицы (корпускулы), а в других как волны . Однако вспомним историю изучения природы света, а точнее непримиримые разногласия между Ньютоном и Гюйгенсом. Ньютон рассматривал свет как поток корпускул, а Гюйгенс – как волнообразное движение, возникающее в особой среде – эфире.

В 1900 году М.Планк, обнаруживший дискретные порции энергии (кванты), дополнил представление о свете как о потоке квантов или фотонов . Однако наряду с квантовым представлением о свете продолжала развиваться и волновая механика света в работах Луи де Бройля и Э.Шредингера. Луи де Бройлем было открыто подобие между колебанием струны и атомом, испускающим излучение. Атом каждого элемента состоит из элементарных частиц: тяжелого ядра и легких электронов. Эта система частиц ведет себя подобно акустическому инструменту, производящему стоячие волны. Луи де Бройль сделал смелое предположение, что движущийся равномерно и прямолинейно электрон – это волна определенной длины. До этого мы уже привыкли, что свет в некоторых случаях выступает как частица, а в некоторых как волна. В отношении электрона мы признавали его частицей (были определены его масса и заряд). И, действительно, электрон ведет себя подобно частице, когда он движется в электрическом или магнитном поле. Он же ведет себя и подобно волне, когда дифрагирует, проходя сквозь кристалл или дифракционную решетку.

Опыт с дифракционной решеткой

Чтобы выявить сущность данного явления, обычно проводят мысленный эксперимент с двумя щелями. В этом эксперименте пучок электронов, излучаемых источником S , проходит через пластинку с двумя отверстиями, а затем попадает на экран.

Если бы электроны были классическими частицами, вроде дробинок, количество попаданий в экран электронов, проходящих через первую щель, изображалось бы кривой В , а через вторую щель – кривой С . Общее же число попаданий выражалось бы суммарной кривой D .

На самом же деле происходит совсем иное. Кривые В и С мы получим лишь в тех случаях, когда одно из отверстий будет закрыто. Если же одновременно открыты оба отверстия, на экране появится система максимумов и минимумов, подобная той, какая имеет место для световых волн (кривая А ).

Особенности возникшей гносеологической ситуации можно определить следующим образом. С одной стороны выяснилось, что физическая реальность едина, то есть нет пропасти между полем и веществом: поле подобно веществу, обладает корпускулярными свойствами, а частицы вещества, подобно полю, - волновыми. С другой стороны, оказалось, что единая физическая реальность двойственна. Естественно, возникла проблема: как разрешить антиномию корпускулярно-волновых свойств микрообъектов. Одному и тому же микрообъекту приписываются не просто различные, а противоположные характеристики.

В 1925 году Луи де Бройль (1875-1960) выдвинул принцип , согласно которому каждой материальной частице независимо от ее природы следует поставить в соответствие волну, длина которой обратно пропорциональна импульсу частицы: l = h / p , где l – длина волны, h – постоянная Планка, равная 6,63×10 –34 Дж × сек, р – импульс частицы, равный произведению массы частицы на ее скорость (р = m × v ). Таким образом, было установлено, что не только фотоны (частицы света), но и другие материальные частицы, такие как электрон, протон, нейтрон и др. обладают двойственными свойствами . Это явление получило название дуализма волны и частицы . Так, в одних экспериментах элементарная частица может себя вести как корпускула, а в других - как волна. Отсюда следует, что любое наблюдение микрообъектов невозможно без учета влияния приборов и измерительных средств. В нашем макромире мы не замечаем влияния прибора наблюдения и измерения на макротела, которые изучаем, так как это влияние чрезвычайно мало и им можно пренебречь. Макроприборы вносят возмущения в микромир и не могут не вносить изменения в микрообъекты.

Как следствие противоречивости корпускулярных и волновых свойств частиц датский физик Н.Бор (1885-1962) выдвинул в 1925 году принцип дополнительности . Суть этого принципа состояла в следующем: чрезвычайно характерную черту атомной физики представляет новое отношение между явлениями, наблюдаемыми в разных экспериментальных условиях. Получаемые при таких условиях опытные данные надо рассматривать как дополнительные, так как они представляют одинаково существенные сведения об атомных объектах и, взятые вместе, исчерпывают их. Взаимодействие между измерительными приборами и исследуемыми физическими объектами составляет неотъемлемую часть квантовых явлений . Мы приходим к выводу, что принцип дополнительности дает нам фундаментальную характеристику рассмотрения объектов микромира.

Следующим наиболее фундаментальным принципом квантовой механики является принцип неопределенности , сформулированный в 1927 году Вернером Гейзенбергом (1901 – 1976). Суть его состоит в следующем. Невозможно одновременно и с одинаковой точностью определить координату микрочастицы и ее импульс . Точность измерения координаты зависит от точности измерения импульса и наоборот; невозможно обе эти величины измерить с какой угодно точностью; чем больше точность измерения координаты (х ), тем неопределеннее импульс (р ), и наоборот. Произведение неопределенности в измерении координаты и неопределенности в измерении импульса должно быть “больше или равно” постоянной Планка (h ), .

Границы, определяемые этим принципом, не могут быть принципиально преодолены никаким совершенствованием средств измерения и измерительных процедур. Принцип неопределенности показал, что предсказания квантовой механики носят лишь вероятностный характер и не обеспечивают точных предсказаний, к каким мы привыкли в классической механике. Именно неопределенность предсказаний квантовой механики вызывала и вызывает споры среди ученых. Речь даже шла о полном отсутствии определенности в квантовой механике, то есть о ее индетерминизме. Представители классической физики были убеждены, что по мере совершенствования науки и измерительной техники законы квантовой механики станут точными и достоверными. Эти ученые верили, что никакого предела для точности измерений и предсказаний не существует.

Принцип детерминизма и индетерминизма

Классический детерминизм начался с заявления Лапласа (18 в.): “Дайте мне начальные данные частиц всего мира, и я предскажу вам будущее всего мира”. Эта крайняя форма определенности и предопределенности всего существующего получила название лапласовского детерминизма.

Человечество издавна верило в предопределение Божие, позднее в причинную “железную” связь. Однако не стоит игнорировать и его Величество случай, который подстраивает нам вещи неожиданные и маловероятные. В атомной физике случайность проявляется особенно ярко. Нам следовало бы свыкнуться с мыслью, что мир не устроен прямолинейным образом и не так прост, как нам хотелось бы.

Принцип детерминизма особенно наглядно проявляется в классической механике. Так, последняя учит, что по начальным данным можно определить полностью состояние механической системы в любом сколь угодно далеком будущем . На самом же деле это лишь кажущаяся простота. Так, начальные данные даже в классической механике не могут быть определены бесконечно точно . Во-первых, истинное значение начальных данных известно нам лишь с некоторой степенью вероятности . В процессе движения на механическую систему будут действовать случайные силы, которые мы не в состоянии предвидеть . Во-вторых, даже если эти силы будут достаточно малы, их эффект может оказаться очень значительным для большого промежутка времени. А также у нас нет гарантии того, что за время, в течение которого мы намерены предсказывать будущее системы, эта система будет оставаться изолированной . В-третьих, эти-то три обстоятельства обычно и игнорируются в классической механике. Влияние случайности не стоит игнорировать, так как с течением времени неопределенность начальных условий возрастает и предсказание становится совершенно бессодержательным .

Как показывает опыт, в системах, где действуют случайные факторы, при многократном повторении наблюдения можно обнаружить определенные закономерности, обычно называемые статистическими (вероятностными ) . В случае если система имеет много случайных воздействий, то сама детерминистическая (динамическая) закономерность становится слугой случая; а сам случай порождает новый тип закономерности статистическую . Невозможно вывести статистическую закономерность из закономерности динамической. В системах, где случай начинает играть существенную роль, приходится делать предположения статистического (вероятностного) характера. Итак, нам приходится принять “де факто”, что случай способен создать закономерность не хуже детерминизма.

Квантовая механика по своему существу является теорией, основанной на статистических закономерностях . Так, судьба отдельной микрочастицы, ее история может быть прослежена только в весьма общих чертах. Частицу можно только с определенной степенью вероятности локализовать в пространстве, и эта локализация будет ухудшаться с течением времени тем скорее, чем точнее была первоначальная локализация – таково прямое следствие соотношения неопределенностей. Это, однако, нисколько не снижает ценности квантовой механики. Не следует рассматривать статистический характер законов квантовой механики как ее неполноценность или необходимость искать детерминистическую теорию – таковой, скорее всего, не существует.

Статистический характер квантовой механики не означает, что в ней отсутствует причинность . Причинность в квантовой механике определяется как определенная форма упорядочения событий в пространстве и во времени и эта упорядоченность накладывает свои ограничения даже на самые, казалось бы, хаотические события .

В статистических теориях причинность выражается двояким образом:

  • сами статистические закономерности строго упорядочены;
  • индивидуальные элементарные частицы (события) упорядочены таким образом, что одна из них может повлиять на другую только в том случае, если их взаимное расположение в пространстве и во времени позволяет сделать это без нарушения причинности, то есть правила, упорядочивающего частицы.

Причинность в квантовой теории выражается знаменитым уравнением Э.Шредингера . Это уравнение описывает движение атома водорода (квантового ансамбля) и причем так, что предыдущее во времени состояние определяет его последующие состояния (состояние электрона в атоме водорода – его координату и импульс).

(пси) – волновая функция; t – время; – приращение функции за время , h – постоянная Планка (h =6,63×10 -34 Дж×сек); i – произвольное действительное число.

В обыденной жизни мы называем причиной то явление, которое порождает другое явление. Последнее представляет собой результат действия причины, то есть следствие . Такие определения возникли из непосредственной практической деятельности людей по преобразованию окружающего мира и подчеркивали причинно-следственный характер их деятельности. В современной науке преобладает тенденция определения причинной зависимости через законы. Например, известный методолог и философ науки и Р.Карнап считал, что “было бы более плодотворным заменить дискуссию о значении понятия причинности исследованием различных типов законов, которые встречаются в науке”.

Что же касается детерминизма и индетерминизма, то современная наука органически сочетает необходимость и случайность. Поэтому мир и события в нем не оказываются ни предопределенными однозначно, ни чисто случайными, ничем не обусловленными. Классический детерминизм лапласовского толка чрезмерно подчеркивал роль необходимости за счет отрицания случайности в природе и потому давал искаженное представление о мире. Ряд же современных ученых, распространив принцип неопределенности в квантовой механике на другие области, провозгласил господство случайности, отрицая необходимость. Однако наиболее адекватной позицией было бы считать необходимость и случайность взаимосвязанными и дополняющими друг друга аспектами действительности.

Вопросы для самоконтроля

  1. Что такое фундаментальные концепции описания природы?
  2. Назовите физические принципы описания природы.
  3. Что такое физическая картина мира? Дайте её общее понятие и назовите её основные исторические типы.
  4. В чём универсальность физических законов?
  5. В чём различие между квантовой и классической механикой?
  6. О чём говорят главные выводы специальной и общей теории относительности?
  7. Назовите основные принципы современной физики, и кратко раскройте их.

  1. Андреев Э.П. Пространство микромира. М., Наука, 1969.
  2. Гарднер М. Теория относительности для миллионов. М., Атомиздат, 1967.
  3. Гейзенберг В. Физические принципы квантовой теории. Л.-М., 1932.
  4. Джеммер М. Эволюция понятий квантовой механики. М., Мир, 1985.
  5. Дирак П. Принципы квантовой механики. М., 1960.
  6. Дубнищева Т.Я. Концепции современного естествознания. Новосибирск, 1997.Название практикума Аннотация

    Презентации

    Название презентации Аннотация

    Тьюторы

    Название тьютора Аннотация

Наверняка Вы много раз слышали о необъяснимых тайнах квантовой физики и квантовой механики . Её законы завораживают мистикой, и даже сами физики признаются, что до конца не понимают их. С одной стороны, любопытно понять эти законы, но с другой стороны, нет времени читать многотомные и сложные книги по физике. Я очень понимаю Вас, потому что тоже люблю познание и поиск истины, но времени на все книги катастрофически не хватает. Вы не одиноки, очень многие любознательные люди набирают в поисковой строке: «квантовая физика для чайников, квантовая механика для чайников, квантовая физика для начинающих, квантовая механика для начинающих, основы квантовой физики, основы квантовой механики, квантовая физика для детей, что такое квантовая механика». Именно для Вас эта публикация .

Вам станут понятны основные понятия и парадоксы квантовой физики. Из статьи Вы узнаете:

  • Что такое квантовая физика и квантовая механика?
  • Что такое интерференция?
  • Что такое квантовая запутанность (или Квантовая телепортация для чайников)? (см. статью )
  • Что такое мысленный эксперимент «Кот Шредингера»? (см. статью )

Квантовая механика — это часть квантовой физики.

Почему же так сложно понять эти науки? Ответ прост: квантовая физика и квантовая механика (часть квантовой физики) изучают законы микромира. И законы эти абсолютно отличаются от законов нашего макромира. Поэтому нам трудно представить то, что происходит с электронами и фотонами в микромире.

Пример отличия законов макро- и микромиров : в нашем макромире, если Вы положите шар в одну из 2-х коробок, то в одной из них будет пусто, а в другой - шар. Но в микромире (если вместо шара - атом), атом может находиться одновременно в двух коробках. Это многократно подтверждено экспериментально. Не правда ли, трудно это вместить в голове? Но с фактами не поспоришь.

Ещё один пример. Вы сфотографировали быстро мчащуюся красную спортивную машину и на фото увидели размытую горизонтальную полосу, как будто-машина в момент фото находилась с нескольких точках пространства. Несмотря на то, что Вы видите на фото, Вы всё равно уверены, что машина в ту секунду, когда Вы ёё фотографировали находилась в одном конкретном месте в пространстве . В микро же мире всё не так. Электрон, который вращается вокруг ядра атома, на самом деле не вращается, а находится одновременно во всех точках сферы вокруг ядра атома. Наподобие намотанного неплотно клубка пушистой шерсти. Это понятие в физике называется «электронным облаком» .

Небольшой экскурс в историю. Впервые о квантовом мире учёные задумались, когда в 1900 году немецкий физик Макс Планк попытался выяснить, почему при нагревании металлы меняют цвет. Именно он ввёл понятие кванта. До этого учёные думали, что свет распространяется непрерывно. Первым, кто серьёзно воспринял открытие Планка, был никому тогда неизвестный Альберт Энштейн. Он понял, что свет – это не только волна. Иногда он ведёт себя, как частица. Энштейн получил Нобелевскую премию за своё открытие, что свет излучается порциями, квантами. Квант света называется фотоном (фотон, Википедия ) .

Для того, чтобы легче было понять законы квантовой физики и механики (Википедия) , надо в некотором смысле абстрагироваться от привычных нам законов классической физики. И представить, что Вы занырнули, как Алиса, в кроличью нору, в Страну чудес.

А вот и мультик для детей и взрослых. Рассказывает о фундаментальном эксперименте квантовой механики с 2-мя щелями и наблюдателем. Длится всего 5 минут. Посмотрите его перед тем, как мы углубимся в основные вопросы и понятия квантовой физики.

Квантовая физика для чайников видео . В мультике обратите внимание на «глаз» наблюдателя. Он стал серьёзной загадкой для учёных-физиков.

Что такое интерференция?

В начале мультика было показано на примере жидкости, как ведут себя волны – на экране за пластиной со щелями появляются чередующиеся тёмные и светлые вертикальные полосы. А в случае, когда в пластину «стреляют» дискретными частицами (например, камушками), то они пролетают сквозь 2 щели и попадают на экран прямо напротив щелей. И «рисуют» на экране только 2 вертикальные полосы.

Интерференция света – это «волновое» поведение света, когда на экране отображается много чередующихся ярких и тёмных вертикальных полос. Еще эти вертикальные полосы называются интерференционной картиной .

В нашем макромире мы часто наблюдаем, что свет ведёт себя, как волна. Если поставить руку напротив свечи, то на стене будет не чёткая тень от руки, а с расплывающимися контурами.

Итак, не так уж всё и сложно! Нам сейчас вполне понятно, что свет имеет волновую природу и если 2 щели освещать светом, то на экране за ними мы увидим интерференционную картину. Теперь рассмотрим 2-й эксперимент. Это знаменитый эксперимент Штерна-Герлаха (который провели в 20-х годах прошлого века).

В установку, описанную в мультике, не светом светили, а «стреляли» электронами (как отдельными частицами). Тогда, в начале прошлого века, физики всего мира считали, что электроны – это элементарные частицы материи и должны иметь не волновую природу, а такую же, как камушки. Ведь электроны – это элементарные частицы материи, правильно? То есть, если ими «бросать» в 2 щели, как камушками, то на экране за прорезями мы должны увидеть 2 вертикальные полоски.

Но… Результат был ошеломляющий. Учёные увидели интерференционную картину – много вертикальных полосок. То есть электроны, как и свет тоже могут иметь волновую природу, могут интерферировать. А с другой стороны стало понятно, что свет не только волна, но немного и частица — фотон (из исторической справки в начале статьи мы узнали, что за это открытие Энштейн получил Нобелевскую премию).

Может помните, в школе нам рассказывали на физике про «корпускулярно-волновой дуализм» ? Он означает, что когда речь идет об очень маленьких частицах (атомах, электронах) микромира, то они одновременно и волны, и частицы

Это сегодня мы с Вами такие умные и понимаем, что 2 выше описанных эксперимента – стрельба электронами и освещение щелей светом – суть одно и тоже. Потому что мы стреляем по прорезям квантовыми частицами. Сейчас мы знаем, что и свет, и электроны имеют квантовую природу, являются и волнами, и частицами одновременно. А в начале 20-го века результаты этого эксперимента были сенсацией.

Внимание! Теперь перейдём к более тонкому вопросу.

Мы светим на наши щели потоком фотонов (электронов) – и видим за щелями на экране интерференционную картину (вертикальные полоски). Это ясно. Но нам интересно увидеть, как пролетает каждый из электронов в прорези.

Предположительно, один электрон летит в левую прорезь, другой – в правую. Но тогда должны на экране появиться 2 вертикальные полоски прямо напротив прорезей. Почему же получается интерференционная картина? Может электроны как-то взаимодействуют между собой уже на экране после пролёта через щели. И в результате получается такая волновая картина. Как нам за этим проследить?

Будем бросать электроны не пучком, а по одному. Бросим, подождём, бросим следующий. Теперь, когда электрон летит один, он уже не сможет взаимодействовать на экране с другими электронами. Будем регистрировать на экране каждый электрон после броска. Один-два конечно не «нарисуют» нам понятной картины. Но когда по одному отправим в прорези их много, то заметим…о ужас – они опять «нарисовали» интерференционную волновую картину!

Начинаем медленно сходить с ума. Ведь мы ожидали, что будет 2 вертикальные полоски напротив щелей! Получается, что когда мы бросали фотоны по одному, каждый из них проходил, как бы через 2 щели одновременно и интерферировал сам с собой. Фантастика! Вернёмся к пояснению этого феномена в следующем разделе.

Что такое спин и суперпозиция?

Мы теперь знаем, что такое интерференция. Это волновое поведение микро частиц – фотонов, электронов, других микро частиц (давайте для простоты с этого момента называть их фотонами).

В результате эксперимента, когда мы бросали в 2 щели по 1 фотону, мы поняли, что он пролетает как будто через две щели одновременно. Иначе как объяснить интерференционную картину на экране?

Но как представить картину, что фотон пролетает сквозь две щели одновременно? Есть 2 варианта.

  • 1-й вариант: фотон, как волна (как вода) «проплывает» сквозь 2 щели одновременно
  • 2-й вариант: фотон, как частица, летит одновременно по 2-м траекториям (даже не по двум, а по всем сразу)

В принципе, эти утверждения равносильны. Мы пришли к «интегралу по траекториям». Это формулировка квантовой механики от Ричарда Фейнмана.

Кстати, именно Ричарду Фейнману принадлежит известное выражение, что уверенно можно утверждать, что квантовую механику не понимает никто

Но это его выражение работало в начале века. Но мы то теперь умные и знаем, что фотон может вести себя и как частица, и как волна. Что он может каким-то непонятным для нас способом пролетать одновременно через 2 щели. Поэтому нам легко будет понять следующее важное утверждение квантовой механики:

Строго говоря, квантовая механика говорит нам, что такое поведение фотона – правило, а не исключение. Любая квантовая частица находится, как правило, в нескольких состояниях или в нескольких точках пространства одновременно .

Объекты макромира могут находится только в одном определенном месте и в одном определенном состоянии. Но квантовая частица существует по своим законам. И ей и дела нет до того, что мы их не понимаем. На этом — точка.

Нам остаётся просто признать, как аксиому, что «суперпозиция» квантового объекта означает то, что он может находится на 2-х или более траекториях одновременно, в 2-х или более точках одновременно

То же относится и к другому параметру фотона – спину (его собственному угловому моменту). Спин — это вектор. Квантовый объект можно представить как микроскопический магнитик. Мы привыкли, что вектор магнита (спин) либо направлен вверх, либо вниз. Но электрон или фотон опять говорят нам: «Ребята, нам плевать, к чему Вы привыкли, мы можем быть в обоих состояниях спина сразу (вектор вверх, вектор вниз), точно так же, как мы можем находиться на 2-х траекториях одновременно или в 2-х точках одновременно!».

Что такое «измерение» или «коллапс волновой функции»?

Нам осталось немного — понять ещё, что такое «измерение» и что такое «коллапс волновой функции».

Волновая функция — это описание состояния квантового объекта (нашего фотона или электрона).

Предположим, у нас есть электрон, он летит себе в неопределённом состоянии, спин его направлен и вверх, и вниз одновременно . Нам надо измерить его состояние.

Измерим при помощи магнитного поля: электроны, у которых спин был направлен по направлению поля, отклонятся в одну сторону, а электроны, у которых спин направлен против поля — в другую. Ещё фотоны можно направлять в поляризационный фильтр. Если спин (поляризация) фотона +1 – он проходит через фильтр, а если -1, то нет.

Стоп! Вот тут у Вас неизбежно возникнет вопрос: до измерения ведь у электрона не было какого-то конкретного направления спина, так? Он ведь был во всех состояниях одновременно?

В этом-то и заключается фишка и сенсация квантовой механики . Пока Вы не измеряете состояние квантового объекта, он может вращаться в любую сторону (иметь любое направление вектора собственного углового момента – спина). Но в момент, когда Вы измерили его состояние, он как будто принимает решение, какой вектор спина ему принять.

Вот такой крутой этот квантовый объект – сам принимает решение о своём состоянии. И мы не можем заранее предсказать, какое решение он примет, когда влетит в магнитное поле, в котором мы его измеряем. Вероятность того, что он решит иметь вектор спина «вверх» или «вниз» – 50 на 50%. Но как только он решил – он находится в определённом состоянии с конкретным направлением спина. Причиной его решения является наше «измерение»!

Это и называется «коллапсом волновой функции» . Волновая функция до измерения была неопределённой, т.е. вектор спина электрона находился одновременно во всех направлениях, после измерения электрон зафиксировал определённое направление вектора своего спина.

Внимание! Отличный для понимания пример-ассоциация из нашего макромира:

Раскрутите на столе монетку, как юлу. Пока монетка крутиться, у нёё нет конкретного значения — орёл или решка. Но как только Вы решите «измерить» это значение и прихлопните монету рукой, вот тут-то и получите конкретное состояние монеты – орёл или решка. А теперь представьте, что это монета принимает решение, какое значение Вам «показать» – орёл или решка. Примерно также ведёт себя и электрон.

А теперь вспомните эксперимент, показанный в конце мультика. Когда фотоны пропускали через щели, они вели себя, как волна и показывали на экране интерференционную картину. А когда учёные захотели зафиксировать (измерить) момент пролёта фотонов через щель и поставили за экраном «наблюдателя», фотоны стали вести себя, не как волны, а как частицы. И «нарисовали» на экране 2 вертикальные полосы. Т.е. в момент измерения или наблюдения квантовые объекты сами выбирают, в каком состоянии им быть.

Фантастика! Не правда ли?

Но это ещё не всё. Наконец-то мы добрались до самого интересного.

Но… мне кажется, что получится перегруз информации, поэтому 2 эти понятия мы рассмотрим в отдельных постах:

  • Что такое ?
  • Что такое мысленный эксперимент .

А сейчас, хотите, чтобы информация разложилась по полочкам? Посмотрите документальный фильм, подготовленный Канадским институтом теоретической физики. В нём за 20 минут очень кратко и в хронологическом порядке Вам поведают о всех открытиях квантовой физики, начиная с открытия Планка в 1900 году. А затем расскажут, какие практические разработки выполняются сейчас на базе знаний по квантовой физике: от точнейших атомных часов до суперскоростных вычислений квантового компьютера. Очень рекомендую посмотреть этот фильм.

До встречи!

Желаю всем вдохновения для всех задуманных планов и проектов!

P.S.2 Пишите Ваши вопросы и мысли в комментариях. Пишите, какие ещё вопросы по квантовой физике Вам интересны?

P.S.3 Подписывайтесь на блог - форма для подписки под статьёй.