Диофантово уравнение: методы решения с примерами. Диофантовы уравнения

Алгебраические неравенства или их системы с рациональными коэффициентами, решения которых ищутся в интегральных или целых числах. Как правило, количество неизвестных в диофантовых уравнениях больше. Таким образом, они также известны как неопределенные неравенства. В современной математике указанное выше понятие применяется к алгебраическим уравнениям, решения которых ищутся в алгебраических целых числах некоторого расширения поля Q-рациональных переменных, поля p-адических и т. д.

Истоки данных неравенств

Исследования уравнений Диофанта находится на границе между теорией чисел и алгебраической геометрией. Поиск решений в целых переменных является одной из старейших математических задач. Уже в начале второго тысячелетия до н.э. древним вавилонянам удалось решить системы уравнений с двумя неизвестными. Эта отрасль математики в наибольшей степени процветала в Древней Греции. Арифметика Диофанта (примерно, 3-го века н.э.) является значимым и главным источником, который содержит различные типы и системы уравнений.

В этой книге Диофант предвидел ряд методов изучения неравенств второй и третьей степеней, которые были полностью развиты в XIX веке. Создание теории рациональных чисел этим исследователем Древней Греции привело к анализу логических решений неопределенных систем, которые систематически сопровождаются в его книге. Несмотря на то, что в его работе содержатся решения конкретных диофантовых уравнений, есть основания полагать, что он также был знаком с несколькими общими методами.

Изучение этих неравенств обычно связано с серьезными трудностями. Ввиду того, что в них присутствуют многочлены с целыми коэффициентами F (x,y1,…, y n). На основе этого, были созданы выводы, что нет единого алгоритма, с помощью которого можно было бы для любого заданного определить x, выполняется ли уравнение F (x, y 1 ,…., y n). Ситуация разрешима для y 1 , …, y n . Примеры таких многочленов могут быть записаны.

Простейшее неравенство

ax + by = 1, где a и b - относительно целые и простые числа, для него имеется огромное количество выполнений (если x 0, y 0 сформирован результат, то пара переменных x = x 0 + b n и y = y 0 -an , где n - произвольное, также будет рассматриваться как выполнение неравенства). Другим примером диофантовых уравнений служит x 2 + y 2 = z 2 . Положительные интегральные решения этого неравенства представляют собой длину малых сторон x, y и прямоугольных треугольников, а также гипотенузы z с целыми боковыми размерами. Эти числа известны как пифагорейские числа. Все триплеты относительно простых указанных выше переменных даются формулами x=m 2 - n 2 , y = 2mn, z = m 2 + n 2 , где m и n- целые и простые числа (m>n>0).

Диофант в своей «Арифметике» занимается поиском рациональных (не обязательно интегральных) решений специальных типов своих неравенств. Общая теория решения диофантовых уравнений первой степени была разработана К. Г. Башетом в 17 веке. Другие ученые в начале XIX века в основном изучали подобные неравенства типа ax 2 +bxy + cy 2 + dx +ey +f = 0, где a, b, c, d, e, и f общие, неоднородные, с двумя неизвестными второй степени. Лагранж использовал непрерывные дроби в своем исследовании. Гаусс для квадратичных форм разработал общую теорию, лежащую в основе решения некоторых типов.

В исследованиях этих неравенств второй степени значительные успехи были достигнуты только в XX веке. У А. Туэ было установлено, что диофантово уравнение a 0 x n + a 1 x n-1 y +…+a n y n =c, где n≥3, a 0 ,…,a n ,c - целые числа, а a 0 t n + … + a n не может иметь бесконечное количество целочисленных решений. Однако метод Туэ не получил должного развития. А. Бейкер создал эффективные теоремы, дающие оценки на выполнении некоторых уравнений такого рода. Б. Н. Делоне предложил другой метод исследования, применимый к более узкому классу этих неравенств. В частности, вид ax 3 + y 3 = 1 полностью разрешим этим способом.

Диофантовы уравнения: методы решения

Теория Диофанта имеет много направлений. Таким образом, хорошо известной проблемой в этой системе является гипотеза, согласно которой не существует нетривиальное решение диофантовых уравнений x n + y n = z n если n ≥ 3 (вопрос Ферма). Изучение целочисленных выполнений неравенства является естественным обобщением проблемы пифагорейских триплетов. Эйлер получил положительное решение задачи Ферма для n = 4. В силу этого результата она относится к доказательству отсутствующих целочисленных, ненулевых исследований уравнения, если n - это нечетное простое число.

Исследование, касающееся решения, не было завершено. Трудности с его выполнением связаны с тем, что простая факторизация в кольце алгебраических целых чисел не единственна. Теория дивизоров в этой системе для многих классов простых показателей n позволяет подтвердить справедливость теоремы Ферма. Таким образом, существующими методами и способами выполняется линейное диофантово уравнение с двумя неизвестными.

Виды и типы описываемых задач

Арифметика колец алгебраических целых чисел также используется во многих других задачах и решениях диофантовых уравнений. Например, такие методы были применены при выполнении неравенств вида N(a 1 x 1 +…+ a n x n) = m, где N(a) - норма a, и x 1 , …, x n найдены интегральные рациональные переменные. Этот класс включает уравнение Пелля x 2- dy 2 =1.

Значения a 1, …, a n которые появляются, эти уравнения подразделяют на два типа. Первый тип - так называемые полные формы - включают в себя уравнения, в которых среди a есть m линейно независимые числа над полем рациональных переменных Q, где m = , в которых присутствует степень алгебраических показателей Q (a1,…, a n) над Q. Неполными видами являются те, в которых максимальное количество a i меньше, чем m.

Полные формы проще, их исследование завершено, и можно описать все решения. Второй тип - неполные виды - сложнее, а разработка подобной теории еще не завершена. Такие уравнения изучаются с помощью диофантовых приближений, которые включают неравенство F(x,y)=C, где F (x,y) - многочлен степени n≥3 является неприводимым, однородным. Таким образом, можно предположить, что y i → ∞. Соответственно, если y i достаточно велико, то неравенство будет противоречить теореме Туэ, Зигеля и Рота, из которой выходит, что F(x,y)=C, где F- форма третьей степени или выше, неприводимая не может иметь бесконечное количество решений.

Данный пример составляет довольно узкий класс среди всех. Например, несмотря на их простоту, x 3 + y 3 + z 3 = N, а также x 2 +y 2 +z 2 +u 2 = N не входят в этот класс. Изучение решений является достаточно тщательно исследованной ветвью диофантовых уравнений, где в основе лежит представление квадратичными формами чисел. Лагранж создал теорему, которая гласит, что выполнение существует для всех естественных N. Любое натуральное число может быть представлено в виде суммы трех квадратов (теорема Гаусса), но оно не должно иметь вид 4 a (8K-1), где a и k неотрицательные целые показатели.

Рациональные или интегральные решения системы диофантового уравнения типа F (x 1 , …, x n) = a, где F (x 1 , …, x n) является квадратичной формой с целыми коэффициентами. Таким образом, согласно теореме Минковского-Хассе, неравенство ∑a ij x i x j = b где a ij и b рационально, имеет интегральное решение в действительных и p-адических числах для каждого простого числа p только тогда, когда оно разрешимо в этой структуре.

Из-за присущих трудностей изучение чисел с произвольными формами третьей степени и выше изучалось в меньшей степени. Главным методом выполнения является способ тригонометрических сумм. В данном случае число решений уравнения явно выписывается в терминах интеграла Фурье. После чего метод окружения используется для выражения количества выполнения неравенства соответствующих конгруэнций. Способ тригонометрических сумм зависит от алгебраических особенностей неравенств. Существует большое количество элементарных методов для решения линейных диофантовых уравнений.

Диофантов анализ

Отделение математики, предметом которого является исследование интегральных и рациональных решений систем уравнений алгебры методами геометрии, из той же сферы. Во второй половине XIX века появление этой теории чисел привело к изучению уравнений Диофанта из произвольного поля с коэффициентами, и решения рассматривались либо в нем, либо в его кольцах. Система алгебраических функций развивалась параллельно с числами. Основная аналогия между двумя, которая была подчеркнута Д. Гильбертом и, в частности, Л. Кронекером, привела к равномерному построению различных арифметических концепций, которые обычно называются глобальными.

Это особенно заметно, если изучаемые алгебраические функции над конечным полем констант являются одной переменной. Такие понятия, как теория полей классов, делитель, а также ветвление и результаты являются хорошей иллюстрацией вышеизложенного. Эта точка зрения была принята в системе диофантовых неравенств только позднее, а систематическое исследование не только с численными, но и с коэффициентами, которые являются функциями, началось только в 1950-х годах. Одним из решающих факторов в этом подходе было развитие алгебраической геометрии. Одновременное изучение полей чисел и функций, которые возникают как две одинаково важные стороны одного и того же субъекта, не только давало изящные и убедительные результаты, но приводило к взаимному обогащению двух тем.

В алгебраической геометрии понятием многообразия заменяется неинвариантный набор неравенств над данным полем K, а их решения заменяются рациональными точками со значениями в K или в конечном его расширении. Можно, соответственно, сказать, что фундаментальная задача диофантовой геометрии заключается в изучении рациональных точек алгебраического множества X(K), X при этом - определенные числа в поле K. Целочисленное выполнение имеет геометрический смысл в линейных диофантовых уравнениях.

Исследования неравенств и варианты выполнения

При изучении рациональных (или интегральных) точек на алгебраических многообразиях возникает первая проблема, заключающаяся в их существовании. Десятая задача Гильберта сформулирована как проблема нахождения общего метода решения этого вопроса. В процессе создания точного определения алгоритма и после того, как было доказано, что подобных выполнений для большого числа задач не существует, проблема приобрела очевидный отрицательный результат, и наиболее интересным вопросом является определение классов диофантовых уравнений, для которых существует указанная выше система. Наиболее естественным подходом, с алгебраической точки зрения, является так называемый принцип Хассе: начальное поле K изучается вместе с его пополнениями K v по всем возможным оценкам. Поскольку X(K) = X(K v) являются необходимым условием существования, а K точка учитывает, что множество X(K v) не пусты для всех v.

Важность заключается в том, что он сводит две проблемы. Вторая намного проще, она ​​разрешима известным алгоритмом. В частном случае, когда многообразие X проективно, лемма Гензеля и его обобщения делают возможным дальнейшее сокращение: проблему можно свести к изучению рациональных точек над конечным полем. Затем он решается строить концепцию либо путем последовательного исследования, либо более эффективными методами.

Последнее важное соображение состоит в том, что множества X(K v) являются непустыми для всех v, за исключением конечного числа, так что количество условий всегда конечное, и они могут быть эффективно проверены. Однако принцип Хассе не применим к кривым степени. Например, 3x 3 + 4y 3 =5 имеет точки во всех p-адических числовых полях и в системе но не имеет рациональных точек.

Этот способ послужил отправным пунктом для построения концепции, описывающей классы главных однородных пространств абелевых многообразий для выполнения «отклонения» от принципа Хассе. Оно описывается в терминах специальной структуры, которые могут быть связаны с каждым многообразием (группа Тейта-Шафаревича). Основная трудность теории заключается в том, что методы вычисления групп сложно получить. Эта концепция также была распространена на другие классы алгебраических многообразий.

Поиск алгоритма выполнения неравенств

Другая эвристическая идея, используемая при изучении диофантовых уравнений, заключается в том, что если число переменных, участвующих в множестве неравенств - велико, то система обычно имеет решение. Однако это очень трудно доказать для любого конкретного случая. Общий подход к проблемам этого типа использует аналитическую теорию чисел и основан на оценках тригонометрических сумм. Этот метод первоначально применялся к специальным видам уравнений.

Однако впоследствии было доказано с его помощью, что если форма нечетной степени - это F, в d и n переменных и с рациональными коэффициентами, то n достаточно велико по сравнению с d, таким образом, имеет рациональную точку проективная гиперповерхность F = 0. Согласно гипотезе Артина, этот результат верен, даже если n > d 2 . Это доказано только для квадратичных форм. Аналогичные проблемы могут быть заданы и для других полей. Центральной проблемой диофантовой геометрии является структура множества целых или рациональных точек и их изучение, а первый вопрос, который нужно уточнить, состоит в том, является ли это множество конечным. В этой задаче ситуация обычно имеет конечное количество выполнений, если степень системы намного больше, чем число переменных. Это и есть основное предположение.

Неравенства на линиях и кривых

Группа X(K) может быть представлена ​​как прямая сумма свободной структуры ранга r и конечной группы порядка n. С 1930-х годов изучается вопрос о том, ограничены ли эти числа на множестве всех эллиптических кривых над данным полем K. Ограниченность кручения n была продемонстрирована в семидесятых годах. Существуют кривые произвольного высокого ранга в функциональном случае. В числовом случае по-прежнему нет ответа на этот вопрос.

Наконец, гипотеза Морделла утверждает, что количество интегральных точек является конечным для кривой рода g>1. В функциональном случае эта концепция была продемонстрирована Ю. И. Маниным в 1963 году. Основным инструментом, используемым при доказательстве теорем конечности в диофантовой геометрии, является высота. Из алгебраических многообразий размерности выше единицы абелевы многообразия, которые являются многомерными аналогами эллиптических кривых, были наиболее тщательно изучены.

А. Вейль обобщил теорему о конечности числа образующих группы рациональных точек на абелевы многообразия любой размерности (концепция Морделла-Вейля), распространив ее. В 1960-х годах появилась гипотеза Берча и Суиннертона-Дайера, усовершенствовавшая эту и группу и дзета-функции многообразия. Числовые доказательства подтверждают эту гипотезу.

Проблема разрешимости

Задача нахождения алгоритма, с помощью которого можно определить, имеет ли какое-либо диофантово уравнение способ решения. Существенной особенностью поставленной задачи является поиск универсального метода, который был бы подходящим для любого неравенства. Такой метод также позволил бы решать указанные выше системы, так как он эквивалентен P21+⋯+P2k=0.п1= 0 , ... , PK= 0п = 0,...,пК = 0 или п21+ ⋯ + P2К= 0 . п12+⋯+пК2=0. Проблема нахождения такого универсального способа обнаружения решений для линейных неравенств в целых числах была поставлена ​​Д. Гильбертом.

В начале 1950-х годов появились первые исследования, направленные на доказательство не существования алгоритма решения диофантовых уравнений. В это время появилась гипотеза Дэвиса, в которой говорилось, что любое перечислимое множество также принадлежит греческому ученому. Поскольку примеры алгоритмически неразрешимых множеств известны, но являются рекурсивно перечислимыми. Следует, что гипотеза Дэвиса верна и проблема разрешимости этих уравнений имеет отрицательное выполнение.

После этого для гипотезы Дэвиса осталось доказать, что существует метод преобразования неравенства, которое также (или не имело) в то же время решение. Было показано, что такое изменение диофантового уравнения возможно, если оно с указанными двумя свойствами: 1) в любом решении этого типа v uu ; 2) для любого k существует выполнение, в котором присутствует экспоненциальный рост.

Пример линейного диофантового уравнения этого класса завершил доказательство. Задача о существовании алгоритма разрешимости и распознавания в рациональных числах этих неравенств считается по-прежнему важным и открытым вопросом, который не изучен в достаточной степени.


Сегодня предлагаю поразмышлять над некоторой интересной математической задачкой.
А именно, давайте-ка для разминки решим следующее линейной уравнение:

«Чего сложного?» - спросите вы. Действительно, лишь одно уравнение и целых четыре неизвестных. Следовательно, три переменных есть свободные, а последняя зависит от оных. Так давайте выразим скорее! Например, через переменную , тогда множество решений следующее:

где - множество любых действительных чисел.

Что же, решение действительно оказалось слишком тривиальным. Тогда будем нашу задачу усложнять и делать её более интересной.

Вспомним про линейные уравнения с целыми коэффициентами и целыми корнями , которые, собственно, являются разновидностью диофантовых уравнений . Конкретно - наложим на наше уравнение соответствующие ограничение на целочисленность коэффициентов и корней. Коэффициенты при неизвестных у нас и так целые (), а вот сами неизвестные необходимо ограничить следующим:

где - множество целых чисел.

Теперь решение, полученное в начале статьи, «не проканает», так как мы рискуем получить как рациональное (дробное) число. Так как же решить это уравнение исключительно в целых числах?

Заинтересовавшихся решением данной задачи прошу под кат.

А мы с вами продолжаем. Попробуем произвести некоторые элементарные преобразования искомого уравнения:

Задача выглядит по-прежнему непонятной, в таких случаях математики обычно производят какую-нибудь замену. Давайте и мы с вами её бахнем:

Опа, мы с вами достигли интересного результата! Коэффициент при у нас сейчас равен единице , а это значит, что мы с вами можем выразить эту неизвестную через остальные неизвестные в этом уравнении без всяких делений (чем грешили в самом начале статьи). Сделаем это:

Обращу внимание, что это говорит нам о том, что какие бы не были (в рамках диофантовых уравнений), всё равно останется целым числом, и это прекрасно.

Вспоминая, что справедливо говорить, что . А подставив заместо полученный выше результат получим:

Тут мы также видим, что что какие бы не были , всё равно останется целым числом, и это по-прежнему прекрасно.

Тогда в голову приходит гениальная идея: так давайте же объявим как свободные переменные, а будем выражать через них! На самом деле, мы уже это сделали. Осталось только записать ответ в систему решений:

Теперь можно лицезреть, что в системе решений нигде нет деления , а это значит, что всегда решения будут целочисленными. Попробуем найти частное решение исходного уравнения, положив, к примеру, что :

Подставим в исходное уравнение:

Тождественно, круто! Давайте попробуем ещё разок на другом примере?

Тут мы видим отрицательный коэффициент, он может доставить нам изрядных проблем, так что давайте от греха избавимся от него заменой , тогда уравнение будет следующим:

Как мы помним, наша задача сделать такие преобразования, чтобы в нашем уравнении оказалась неизвестная с единичным коэффициентом при ней (чтобы затем выразить её через остальные без любого деления). Для этого мы должны снова что-нибудь взять «за скобку», самое быстрое - это брать коэффициенты из уравнения которые самые близкие к единице. Однако нужно понимать, что за скобку можно взять только лишь то число, которое обязательно является каким-либо коэффициентом уравнения (ни больше, ни меньше), иначе наткнемся на тавтологию/противоречие или дроби (иными словами, нельзя чтобы свободные переменные появились где-то кроме как в последней замене). Итак:

Введем замену , тогда получим:

Вновь возьмем за скобку и наконец получим в уравнении неизвестную с единичным коэффициентом:

Введем замену , тогда:

Выразим отсюда нашу одинокую неизвестную :

Из этого следует, что какие бы мы не взяли, все равно останется целым числом. Тогда найдем из соотношения :

Аналогичным образом найдем из соотношения :

На этом наша система решений созрела - мы выразили абсолютно все неизвестные, не прибегая к делению, тем самым показывая, что решение точно будет целочисленным. Также не забываем, что , и нам надо ввести обратную замену. Тогда окончательная система решений следующая:

Таким образом, осталось ответить на вопрос - а любое ли подобное уравнение можно так решить? Ответ: нет, если уравнение в принципе нерешаемо. Такое возникает в тех случаях, если свободный член не делится нацело на НОД всех коэффициентов при неизвестных. Иными словами, имея уравнение:

Для его решения в целых числах достаточно выполнение следующего условия:

(где - наибольший общий делитель).

Доказательство

Доказательство в рамках этой статьи не рассматривается, так как это повод для отдельной статьи. Увидеть его вы можете, например, в чудесной книге В. Серпинского «О решении уравнений в целых числах» в §2.

Резюмируя вышесказанное, выпишем алгоритм действий для решения линейных диофантовых уравнений с любым числом неизвестных:

В заключение стоит сказать, что также можно добавить ограничения на каждый член уравнения в виде неравенства на оного (тогда к системе решений добавляется система неравенств, в соответствии с которой нужно будет скорректировать ответ), а также добавить ещё чего-нибудь интересное. Ещё не стоит забывать и про то, что алгоритм решения является строгим и поддается записи в виде программы для ЭВМ.

С вами был Петр,
спасибо за внимание.

Диофантовые уравнения

Способы решения диофантовых уравнений

Наиболее изучены диофантовы уравнения первой и второй степени. Рассмотрим сначала уравнения первой степени. Так как решение линейного уравнения с одним неизвестным не представляет интереса, то обратимся к уравнениям с двумя неизвестными.Мы рассмотрим два метода решения этих уравнений.

Первый способ решения таких уравнений- алгоритм Евклида. Можно найти наибольший делитель натуральных чисел a и b, не раскладывая эти числа на простые множители, применяя процесс деления с остатком. Для этого надо разделить большее из этих чисел на меньшее, потом меньшее из чисел на остаток при первом делении, затем остаток при первом делении на остаток при втором делении и вести этот прицесс до тех пор, пока не произойдёт деление без остатка. Последний отличный от нуля остаток и есть искомый НОД(a,b). Чтобы доказать это утверждение, представим описанный процесс в виде следующей цепочки равенств:если a>b ,то

Здесь r1,….,rn-положительные остатки, убывающие с возрастанием номера. Из первого равенства следует,что общий делитель чисел a и b делит r1 и общий дилитель b и r1 делит а,поэтому НОД (a,b) = НОД (r1 ,r2)=….= НОД (rn-1, rn) = НОД (rn,0)= rn.Обратимся снова к системе(1).Из первого равенства, выразив остаток r1 чирез а и b ,получим r1=а- bq0. Подставляя его во второе равенство,найдём r2=b(1+q0q1)-aq1. Продолжая этот процесс дальше,мы сможем выразить все остатки через а и b, в том числе и последний rn=Аа+Вb. В результате нами доказано предложение:если d-наибольший общий делитель натуральных чисел а и b,то найдутся такие целые числа А и В,что d= Аа+Вb. Заметим,что коэффициенты А и В имеют разные знаки; если НОД(a,b)=1,то Аа+Вb=1. Как найти числа А и В видно из алгоритма Евклида.

Перейдём теперь к решению линейного уравнения с двумя неизвестными. Оно имеет вид:

Возможны два случая: либо c делится на d= НОД(a,b), либо нет. В первом случае можно разделить обе части на d и свести задачу к решению в целых числах уравнения a1x+b1y=c1, коэффициенты которого а1=а/d и b1=b/d взаимно просты. Во втором случае уравнение не имеет целочисленных решений: при любых целых x и y число аx+by делится на d и поэтому не может равнятся числу с,которое на d не делится. Итак, мы можем ограничиться случаем, когда в уравнении (2) коэффициенты взаимно просты. На основании предыдущего предложения найдутся такие целые числа x0 и y0,что ax0+by0=1, откуда пара (сx0,cy0) удовлетворяет уравнению (2) Вместе с ней уравнению (2) удовлетворяет бесконечное множество пар (x,y) целых чисел, которые можно найти по формулам

x=cx0+bt,y=cy0-at. (3)

Здесь t-любое целое число. Нетрудно показать,что других целочисленных решений нет уравнение ax+by=c не имеет. Решение, записанное в виде (3), называется общим решением уравнеия (2). Подставив вместо t конкретное целое число, получим его частное решение. Найдём, например, целочисленные решения уже встречавшегося нам уравнения 2x+5y=17. Применив к числам 2 и 5 алгоритм Евклида, получим 2*3-5=1. Значит пара cx0=3*17,cy0=-1*17 удовлетворяет уравнению 2x+5y=17. Поэтому общее решение исходного уравнения таково x=51+5t, y=-17-2t,где t принимает любые целые значения. Очевидно, неотрицательные решения отвечают тем t , для которых выполняются неравенства

Отсюда найдем -51 ?t? -17 . Этим неравенствам удовлетворяют числа -10, -9. 52

Соответствующие частные решения запишутся в виде пар (1,3), (6,1).

Применим этот же метод к решению одной из древних китайских задач о птицах.

Задача: Сколько можно купить на 100 монет петухов, кур и цыплят, если всего надо купить 100 птиц, причем петух стоит 5 монет, курица - 4, а 4 цыпленка - 1 монету?

Для решения этой задачи обозначим искомое число петухов через х, кур - через y, а цыплят через 4z (из условия видно, что число цыплят должно делится на 4). Составим систему уравнений:

которую надо решить в целых неотрицательных числах. Умножив первое уравнение системы на 4, а второе -- на (-- 1) и сложив результаты, придем к уравнению -- х+15z=300 с целочисленными решениями х= -- 300+ 15t, z = t. Подставляя эти значения в первое уравнение, получим y = 400 -- 19t. Значит, целочисленные решения системы имеют вид х= --300+15t, y = 400--19t, z = t. Из условия задачи вытекает, что

откуда 20?t?21 1/19, т.е. t = 20 или t = 21. Итак, на 100 монет можно купить 20 кур и 80 цыплят, или 15 петухов, 1 курицу и 84 цыпленка

Второй метод решения диофантовых уравнений первой степени по своей сути не слишком отличается от рассмотренного в предыдущем пункте, но он связан с ещё одим интересным математическим понятием. Речь идёт о непрерывных или цепных дробях. Чтобы определить их вновь обратимся к алгоритму Евклида. Из первого равенства системы (1) вытекает, что дробь а/b можно записать в виде суммы целой части и правильной дроби: a/b=q0+r1/b . Но r1/b=1/b, и на основании второго равенства той же системы имем b/r1=q1+r2/r1. Значит, a/b=q0+1/q1+r2/r1. Далее получим a/b=q0+1/q1+1/q2+r3/r2. Продолжим этот процесс до тех пор, пока не придём к знаменателю qn. В результате мы представим обыкновенную дробь a/b в следующем виде: a/b=q0+1/q1+1/q2+1/…1/qn. Эйлер назвал дроби такого вида непрерывными. Приблизительно в то же время в Германии появился другой термин- цепная дробь. Так за этими дробями и сохранились оба названия. В качестве примера представим дробь 40/3t в виде цепной: 40/3t=1+9/3t=1/3t/9=1+1/3+4/9=1+1/3+1/9/4=1+1/3+1/2+1/4 .

Цепные дроби обладают следующим важным свойством: если действительное число а записать в виде непрерывной дроби, то подходящая дробь Pk/Qk даёт наилучщее приближение числа a среди всех дробей, знаменатели которых не превосходят Qk . Именно в процессе поиска наилучшего приблежения значений квадратных корней итальянский математик Пиетро Антонио Катальди (1552-1626) пришёл в 1623году к цепным дробям, с чего и началось их изучение. В заключение вернёмся к цепным дробям и отметим их преимущество и недостаток по сравнению, например, с десятичными. Удобство заключается в том, что их свойства не связаны ни с какой системой исчисления. По этой причине цепные дроби эффективно используются в теоретических исследованиях. Но широкого практического применения они не получили, так как для них нет удобных правил выполнения арифметических действий, которые имеются для десятичных дробей.

Рассмотрим Диофантовы уравнения и решим их.

1 Решить в целых числах уравнение 3x+5y=7.

x=7-5y/3=6-3y-2y+1/3=2-y+1-2y/3,

y=1-3k/2=1-2k-k/2=-k+1-k/2,

y=1-3(1-2t)/2=-1+3t,

x=7-5(-1+3t)/3=4-5t

(t-любое число).

2 Решить в целых числах уравнение 6xІ+5yІ=74.

6xІ-24=50-5yІ, или 6(xІ-4)=5(10-yІ), откуда xІ-4=5u,т.е. 4+5u?0, откуда u?-4/5.

Аналогично:

10-yІ=6u, т.е. 10-6u?0, u?5/3.

Целое число u удовлетворяет неравенству

4/5?u?5/3, значит. u=0 и u=1.

При u=0, получим 10=yІ, где y-не целое, что неверно. Пусть u=1, тогда xІ=9, yІ=4.

Ответ: {x1=3, {x2=3, {x3=-3, {x4=-3,

{y1=2, {y2=-2, {y3=2, {y4=-2 .

3 Решить в целых числах уравнение xі+yі-3xy=2.

Если x и y оба нечётны или одно из них нечётно, то левая часть уравнения есть нечётное число, а правая-чётное. Если же x=2m и y=2n, то 8mі+8nі-12mn=2, т.е. 2(2mі+2nі-3mn)=1, что невозможно ни при каких целых m и n.

4 Доказать, что уравнение 2xІ+5yІ=7 не имеет решений в целых числах.

Доказательство.

Из уравнения видно, что y должен быть нечётным числом. Положив y=2z+1, получим 2xІ-20zІ-20z-5=7, или xІ-10zІ-10z=6, откуда следует что x есть чётное число. Положим x=2u. Тогда 2uІ-5z(z=1)=3, что невозможно, так как z(z+1) есть чётное число.

5 Доказать, что при любом целом положительном значении а уравнение xІ+yІ=аі разрешимо в целых числах.

Доказательство.

Положим x+y=аІ, x-y=а, откуда x=a(a+1)/2 и y=a(a-1)/2. Поскольку при любом целом значении а в числителе каждой из данных дробей стоит произведение чётного и нечётного чисел, определённые таким образом x и y представляют сорбой целые числа и удовлетворяют исходному уравнению.

6 Решите в целых числах уравнение (x+1)(xІ+10=yі.

Непосредственно видим, что пары чисел (0;1) и (-1;0) являются решениями уравнения. Других решений нет, так как

xі<(x+1)(xІ+1)<(x+1)(x+1)І=(x+1) і, то (x+1)(xІ+1)?yі

ни для какого целого y (распологающегося между кубами последовательных целых чисел).

10 и еще один способ решения квадратных уравнений

1. СПОСОБ: Разложение левой части уравнения на множители. 2. СПОСОБ: Метод выделения полного квадрата. 3. СПОСОБ: Решение квадратных уравнений по формуле. 4. СПОСОБ: Графическое решение квадратного уравнения...

10 способов решения квадратных уравнений

Квадратные уравнения - это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических...

Диофантовые уравнения

Задачи Диофантовой «Арифметики» решаются с помощью уравнений, проблемы решения уравнеий скорее относятся к алгебре, чем к арифметике. Почему же тогда мы говорим, что эти уравнения относятся к арифметическим? Дело в том...

Линейные диофантовы уравнения

Диофант (Diophantos) представляет одну из занимательных загадок в истории математики. Мы не знаем, кем был Диофант, точные года его жизни, нам не известны его предшественники, которые работали бы в той же области, что и он...

Логические задачи и методы их решения

Математическая модель системы слежения РЛС

В производстве всегда существовала проблема, сущность которой заключалась в переводе системы из некоторого начального фазового состояния в некоторое заранее заданное конечное состояние. Причем точность перехода должна быть максимальной...

Математические уравнения и их использование в решении задач

Уравнением с одним неизвестным называется запись вида А (х)=В (х) - выражения от неизвестного х. В эти выражения помимо чисел, знаков арифметических операций и обозначений функций могут входить и другие буквы, которые обозначают переменные...

Методические особенности обучения решению текстовых задач учащихся начальной школы

Решить задачу - это значит через логически верную последовательность действий и операций с имеющимися в задаче явно или косвенно числами, величинами, отношениями выполнить требование задачи (ответить на ее вопрос)...

Методы геометрии чисел для решения диофантовых уравнений

Теорема Лагранжа о четырех квадратах. Теорема: Всякое натуральное может быть представлено в виде суммы четырех квадратов целых чисел (*) Ясно, что достаточно доказать существование представления (*) лишь для бесквадратных чисел...

Нестандартные методы решения задач по математике

К числу наиболее сложных задач на вступительных конкурсных экзаменах по математике относятся задачи, решение которых сводится к рассмотрению функциональных уравнений вида или где, --- некоторые функции и...

Нестандартные методы решения уравнений и неравенств

Существуют и другие нестандартные методы решения уравнений и неравенств, помимо использования свойств функции. Данная глава посвящена дополнительным методам решения...

Наиболее изучены диофантовы уравнения первой и второй степени. Рассмотрим сначала уравнения первой степени. Так как решение линейного уравнения с одним неизвестным не представляет интереса, то обратимся к уравнениям с двумя неизвестными.Мы рассмотрим два метода решения этих уравнений.

Первый способ решения таких уравнений- алгоритм Евклида. Можно найти наибольший делитель натуральных чисел a и b, не раскладывая эти числа на простые множители, применяя процесс деления с остатком. Для этого надо разделить большее из этих чисел на меньшее, потом меньшее из чисел на остаток при первом делении, затем остаток при первом делении на остаток при втором делении и вести этот прицесс до тех пор, пока не произойдёт деление без остатка. Последний отличный от нуля остаток и есть искомый НОД(a,b). Чтобы доказать это утверждение, представим описанный процесс в виде следующей цепочки равенств:если a>b ,то

Здесь r1,….,rn-положительные остатки, убывающие с возрастанием номера. Из первого равенства следует,что общий делитель чисел a и b делит r1 и общий дилитель b и r1 делит а,поэтому НОД (a,b) = НОД (r1 ,r2)=….= НОД (rn-1, rn) = НОД (rn,0)= rn.Обратимся снова к системе(1).Из первого равенства, выразив остаток r1 чирез а и b ,получим r1=а- bq0. Подставляя его во второе равенство,найдём r2=b(1+q0q1)-aq1. Продолжая этот процесс дальше,мы сможем выразить все остатки через а и b, в том числе и последний rn=Аа+Вb. В результате нами доказано предложение:если d-наибольший общий делитель натуральных чисел а и b,то найдутся такие целые числа А и В,что d= Аа+Вb. Заметим,что коэффициенты А и В имеют разные знаки; если НОД(a,b)=1,то Аа+Вb=1. Как найти числа А и В видно из алгоритма Евклида.

Перейдём теперь к решению линейного уравнения с двумя неизвестными. Оно имеет вид:

Возможны два случая: либо c делится на d= НОД(a,b), либо нет. В первом случае можно разделить обе части на d и свести задачу к решению в целых числах уравнения a1x+b1y=c1, коэффициенты которого а1=а/d и b1=b/d взаимно просты. Во втором случае уравнение не имеет целочисленных решений: при любых целых x и y число аx+by делится на d и поэтому не может равнятся числу с,которое на d не делится. Итак, мы можем ограничиться случаем, когда в уравнении (2) коэффициенты взаимно просты. На основании предыдущего предложения найдутся такие целые числа x0 и y0,что ax0+by0=1, откуда пара (сx0,cy0) удовлетворяет уравнению (2) Вместе с ней уравнению (2) удовлетворяет бесконечное множество пар (x,y) целых чисел, которые можно найти по формулам

x=cx0+bt,y=cy0-at. (3)

Здесь t-любое целое число. Нетрудно показать,что других целочисленных решений нет уравнение ax+by=c не имеет. Решение, записанное в виде (3), называется общим решением уравнеия (2). Подставив вместо t конкретное целое число, получим его частное решение. Найдём, например, целочисленные решения уже встречавшегося нам уравнения 2x+5y=17. Применив к числам 2 и 5 алгоритм Евклида, получим 2*3-5=1. Значит пара cx0=3*17,cy0=-1*17 удовлетворяет уравнению 2x+5y=17. Поэтому общее решение исходного уравнения таково x=51+5t, y=-17-2t,где t принимает любые целые значения. Очевидно, неотрицательные решения отвечают тем t , для которых выполняются неравенства

Отсюда найдем -51 ?t? -17 . Этим неравенствам удовлетворяют числа -10, -9. 52

Соответствующие частные решения запишутся в виде пар (1,3), (6,1).

Применим этот же метод к решению одной из древних китайских задач о птицах.

Задача: Сколько можно купить на 100 монет петухов, кур и цыплят, если всего надо купить 100 птиц, причем петух стоит 5 монет, курица - 4, а 4 цыпленка - 1 монету?

Для решения этой задачи обозначим искомое число петухов через х, кур - через y, а цыплят через 4z (из условия видно, что число цыплят должно делится на 4). Составим систему уравнений:

которую надо решить в целых неотрицательных числах. Умножив первое уравнение системы на 4, а второе -- на (-- 1) и сложив результаты, придем к уравнению -- х+15z= 300 с целочисленными решениями х= -- 300+ 15t, z = t. Подставляя эти значения в первое уравнение, получим y = 400 -- 19t. Значит, целочисленные решения системы имеют вид х= --300+15t, y = 400--19t, z = t. Из условия задачи вытекает, что

откуда 20?t?21 1/19, т.е. t = 20 или t = 21. Итак, на 100 монет можно купить 20 кур и 80 цыплят, или 15 петухов, 1 курицу и 84 цыпленка

Второй метод решения диофантовых уравнений первой степени по своей сути не слишком отличается от рассмотренного в предыдущем пункте, но он связан с ещё одим интересным математическим понятием. Речь идёт о непрерывных или цепных дробях. Чтобы определить их вновь обратимся к алгоритму Евклида. Из первого равенства системы (1) вытекает, что дробь а/b можно записать в виде суммы целой части и правильной дроби: a/b=q0+r1/b . Но r1/b=1/b, и на основании второго равенства той же системы имем b/r1=q1+r2/r1. Значит, a/b=q0+1/q1+r2/r1. Далее получим a/b=q0+1/q1+1/q2+r3/r2. Продолжим этот процесс до тех пор, пока не придём к знаменателю qn. В результате мы представим обыкновенную дробь a/b в следующем виде: a/b=q0+1/q1+1/q2+1/…1/qn. Эйлер назвал дроби такого вида непрерывными. Приблизительно в то же время в Германии появился другой термин- цепная дробь. Так за этими дробями и сохранились оба названия. В качестве примера представим дробь 40/3t в виде цепной: 40/3t=1+9/3t=1/3t/9=1+1/3+4/9=1+1/3+1/9/4=1+1/3+1/2+1/4 .

Цепные дроби обладают следующим важным свойством: если действительное число а записать в виде непрерывной дроби, то подходящая дробь Pk/Qk даёт наилучщее приближение числа a среди всех дробей, знаменатели которых не превосходят Qk . Именно в процессе поиска наилучшего приблежения значений квадратных корней итальянский математик Пиетро Антонио Катальди (1552-1626) пришёл в 1623году к цепным дробям, с чего и началось их изучение. В заключение вернёмся к цепным дробям и отметим их преимущество и недостаток по сравнению, например, с десятичными. Удобство заключается в том, что их свойства не связаны ни с какой системой исчисления. По этой причине цепные дроби эффективно используются в теоретических исследованиях. Но широкого практического применения они не получили, так как для них нет удобных правил выполнения арифметических действий, которые имеются для десятичных дробей.

Рассмотрим Диофантовы уравнения и решим их.

1 Решить в целых числах уравнение 3x+5y=7.

x=7-5y/3=6-3y-2y+1/3=2-y+1-2y/3,

y=1-3k/2=1-2k-k/2=-k+1-k/2,

y=1-3(1-2t)/2=-1+3t,

x=7-5(-1+3t)/3=4-5t

(t-любое число).

2 Решить в целых числах уравнение 6xІ+5yІ=74.

6xІ-24=50-5yІ, или 6(xІ-4)=5(10-yІ), откуда xІ-4=5u,т.е. 4+5u?0, откуда u?-4/5.

Аналогично:

10-yІ=6u, т.е. 10-6u?0, u?5/3.

Целое число u удовлетворяет неравенству

4/5?u?5/3, значит. u=0 и u=1.

При u=0, получим 10=yІ, где y-не целое, что неверно. Пусть u=1, тогда xІ=9, yІ=4.

Ответ: {x1=3, {x2=3, {x3=-3, {x4=-3,

{y1=2, {y2=-2, {y3=2, {y4=-2 .

3 Решить в целых числах уравнение xі+yі-3xy=2.

Если x и y оба нечётны или одно из них нечётно, то левая часть уравнения есть нечётное число, а правая-чётное. Если же x=2m и y=2n, то 8mі+8nі-12mn=2, т.е. 2(2mі+2nі-3mn)=1, что невозможно ни при каких целых m и n.

4 Доказать, что уравнение 2xІ+5yІ=7 не имеет решений в целых числах.

Доказательство.

Из уравнения видно, что y должен быть нечётным числом. Положив y=2z+1, получим 2xІ-20zІ-20z-5=7, или xІ-10zІ-10z=6, откуда следует что x есть чётное число. Положим x=2u. Тогда 2uІ-5z(z=1)=3, что невозможно, так как z(z+1) есть чётное число.

5 Доказать, что при любом целом положительном значении а уравнение xІ+yІ=аі разрешимо в целых числах.

Доказательство.

Положим x+y=аІ, x-y=а, откуда x=a(a+1)/2 и y=a(a-1)/2. Поскольку при любом целом значении а в числителе каждой из данных дробей стоит произведение чётного и нечётного чисел, определённые таким образом x и y представляют сорбой целые числа и удовлетворяют исходному уравнению.

6 Решите в целых числах уравнение (x+1)(xІ+10=yі.

Непосредственно видим, что пары чисел (0;1) и (-1;0) являются решениями уравнения. Других решений нет, так как

xі<(x+1)(xІ+1)<(x+1)(x+1)І=(x+1) і, то (x+1)(xІ+1)?yі

ни для какого целого y (распологающегося между кубами последовательных целых чисел).

  • Алгоритмы решений диофантовых уравнений
  • Алгоритм Евклида
    • Пример №1 (простой)
    • Пример №2 (сложный)
  • Решаем задачи на подбор чисел без подбора
    • Задача про кур, кроликов и их лапы
    • Задача про продавщицу и сдачу
  • По отзывам сибмам, настоящим камнем преткновения в школьном курсе математики не только для учеников, но и для родителей становятся диофантовы уравнения. Что это такое и как их правильно решать? Разобраться нам помогли учитель математики образовательного центра «Горностай» Аэлита Бекешева и кандидат физико-математических наук Юрий Шанько.

    Кто такой Диофант?

    Еще древние египтяне для удобства рассуждений придумали специальное слово, обозначавшее неизвестное число, но в то время не было еще знаков действий и знака равенства, поэтому и записывать уравнения они не умели.

    Первым, кто придумал, как можно записать уравнение, был замечательный ученый Диофант Александрийский. Александрия была большим культурным, торговым и научным центром древнего мира. Этот город существует и сейчас, он находится на Средиземноморском побережье Египта.

    Жил Диофант, по-видимому, в III веке н.э. и был последним великим математиком античности. До нас дошли два его сочинения — «Арифметика» (из тринадцати книг сохранилось шесть) и «О многоугольных числах» (в отрывках). Творчество Диофанта оказало большое влияние на развитие алгебры, математического анализа и теории чисел.

    А ведь вы знаете кое-что о диофантовых уравнениях…

    Диофантовы уравнения знают все! Это задачки для учеников младших классов, которые решаются подбором.

    Например, «сколькими различными способами можно расплатиться за мороженое ценой 96 копеек, если у вас есть только копейки и пятикопеечные монеты?»

    Если дать диофантовому уравнению общее определение, то можно сказать, что это алгебраическое уравнение с дополнительным условием: все его решения должны быть целыми числами (а в общем случае и рациональными).

    Зачастую мамы (особенно те, кто окончил школу еще при развитом социализме) полагают, что основная цель таких задач - научить детей расплачиваться мелочью за мороженое. И вот, когда они искренне убеждены, что раскладывание мелочи кучками осталось далеко в прошлом, их любимый семиклассник (или восьмиклассник) подходит с неожиданным вопросом: «Мама, как это решать?», и предъявляет уравнение с двумя переменными. Раньше таких задачек в школьном курсе не было (все мы помним, что уравнений должно быть столько же, сколько и переменных), так что мама не-математик нередко впадает в ступор. А ведь это та же самая задача про мелочь и мороженое, только записанная в общем виде!

    Кстати, а зачем к ней вдруг возвращаются в седьмом классе? Все просто: цель изучения диофантовых уравнения - дать основы теории целых чисел, которая дальше развивается как в математике, так и в информатике и программировании. Диофантовы уравнения часто встречаются среди задач части «С» единого госэкзамена. Трудность, прежде всего в том, что существует множество методов решения, из которых выпускник должен выбрать один верный. Тем не менее, линейные диофантовы уравнения ax + by = c могут быть решены относительно легко с помощью специальных алгоритмов.

    Алгоритмы для решения диофантовых уравнений

    Изучение диофантовых уравнения начинается в углубленном курсе алгебры с 7 класса. В учебнике Ю.Н. Макарычева, Н.Г. Миндюка приводятся некоторые задачи и уравнения, которые решают с использованием алгоритма Евклида и метода перебора по остаткам , - рассказывает Аэлита Бекешева. - Позже, в 8 - 9 классе, когда уже рассматриваем уравнения в целых числах более высоких порядков, показываем ученикам метод разложения на множители , и дальнейший анализ решения этого уравнения, оценочный метод . Знакомим с методом выделения полного квадрата . При изучении свойств простых чисел знакомим с малой теоремой Ферма, одной из основополагающих теорем в теории решений уравнений в целых числах. На более высоком уровне это знакомство продолжается в 10 - 11 классах. В это же время мы подводим ребят к изучению и применению теории «сравнений по модулю», отрабатываем алгоритмы, с которыми знакомились в 7 - 9 классах. Очень хорошо это материал прописан в учебнике А.Г. Мордковича «Алгебра и начала анализа, 10 класс» и Г.В. Дорофеева «Математика» за 10 класс.

    Алгоритм Евклида

    Сам метод Евклида относится к другой математической задаче - нахождению наибольшего общего делителя: вместо исходной пары чисел записывают новую пару - меньшее число и разность между меньшим и большим числом исходной пары. Это действие продолжают до тех пор, пока числа в паре не уравняются - это и будет наибольший общий множитель. Разновидность алгоритма используется и при решении диофантовых уравнений - сейчас мы вместе с Юрием Шанько покажем на примере, как решать задачи "про монетки".

    Рассматриваем линейное диофантово уравнение ax + by = c, где a, b, c, x и y — целые числа. Как видите, одно уравнение содержит две переменных. Но, как вы помните, нам нужны только целые корни, что упрощает дело - пары чисел, при которых уравнение верно, можно найти.

    Впрочем, диофантовы уравнения не всегда имеют решения. Пример: 4x + 14y = 5. Решений нет, т.к. в левой части уравнения при любых целых x и y будет получаться четное число, а 5 — число нечетное. Этот пример можно обобщить. Если в уравнении ax + by = c коэффициенты a и b делятся на какое-то целое d, а число c на это d не делится, то уравнение не имеет решений. С другой стороны, если все коэффициенты (a, b и c) делятся на d, то на это d можно поделить все уравнение.

    Например, в уравнении 4x + 14y = 8 все коэффициенты делятся на 2. Делим уравнение на это число и получаем: 2𝑥 + 7𝑦 = 4. Этот прием (деления уравнения на какое-то число) позволяет иногда упростить вычисления.

    Зайдем теперь с другой стороны. Предположим, что один из коэффициентов в левой части уравнения (a или b) равен 1. Тогда наше уравнение уже фактически решено. Действительно, пусть, например, a = 1, тогда мы можем в качестве y взять любое целое число, при этом x = c − by. Если научиться сводить исходное уравнение к уравнению, в котором один из коэффициентов равен 1, то мы научимся решать любое линейное диофантово уравнение!

    Я покажу это на примере уравнения 2x + 7y = 4.

    Его можно переписать в следующем виде: 2(x + 3y) + y = 4.

    Введем новую неизвестную z = x + 3y, тогда уравнение запишется так: 2z + y = 4.

    Мы получили уравнение с коэффициентом один! Тогда z — любое число, y = 4 − 2z.

    Осталось найти x: x = z − 3y = z − 3(4 − 2z) = 7z − 12.

    Пусть z=1. Тогда y=2, x=-5. 2 * (-5)+7 * 2=4

    Пусть z=5. Тогда y=-6, x=23. 2 * (23)+7 * (-6)=4

    В этом примере важно понять, как мы перешли от уравнения с коэффициентами 2 и 7 к уравнению с коэффициентами 2 и 1. В данном случае (и всегда!) новый коэффициент (в данном случае - единица) это остаток от деления исходных коэффициентов друг на друга (7 на 2).

    В этом примере нам повезло, мы сразу после первой замены получили уравнение с коэффициентом 1. Такое бывает не всегда, но и мы можем повторять предыдущий трюк, вводя новые неизвестные и выписывая новые уравнения. Рано или поздно после таких замен получится уравнение с коэффициентом 1.

    Давайте попрообуем решить более сложное уравнение, предлагает Аэлита Бекешева.

    Рассмотрим уравнение 13x - 36y = 2.

    Шаг №1

    36/13=2 (10 в остатке). Таким образом, исходное уравнение можно переписать следующим образом: 13x-13* 2y-10y=2. Преобразуем его: 13(x-2y)-10y=2. Введем новую переменную z=x-2y. Теперь мы получили уравнение: 13z-10y=2.

    Шаг №2

    13/10=1 (3 в остатке). Исходное уравнение 13z-10y=2 можно переписать следующим образом: 10z-10y+3z=2. Преобразуем его: 10(z-y)+3z=2. Введем новую переменную m=z-y. Теперь мы получили уравнение: 10m+3z=2.

    Шаг №3

    10/3=3 (1 в остатке). Исходное уравнение 10m+3z=2 можно переписать следующим образом: 3* 3m+3z+1m=2. Преобразуем его: 3(3m+z)+1m=2. Введем новую переменную n=3m+z. Теперь мы получили уравнение: 3n+1m=2.

    Ура! Мы получили уравнение с коэффициентом единица!

    m=2-3n, причем n может быть любым числом. Однако нам нужно найти x и y. Проведем замену переменных в обратном порядке. Помните, мы должны выразить x и y через n, которое может быть любым числом.

    y=z-m; z=n-3m, m=2-3n ⇒ z=n-3* (2-3n), y=n-3*(2-3n)-(2-3n)=13n-8; y=13n-8

    x=2y+z ⇒ x=2(13n-8)+(n-3*(2-3n))=36n-22; x=36n-22

    Пусть n=1. Тогда y=5, x=24. 13 * (14)-36 * 5=2

    Пусть n=5. Тогда y=57, x=158. 13 * (158)-36 * (57)=2

    Да, разобраться не очень просто, зато теперь вы всегда сможете решить в общем виде задачи, которые решаются подбором!

    Решаем задачи на подбор чисел

    Примеры задач для учеников младших классов, которые решаются подбором: посоревнуйтесь с ребенком, кто решит их быстрее: вы, используя алгорит Евклида, или школьник - подбором?

    Задача про лапы

    Условия

    В клетке сидят куры и кролики. Всего у них 20 лап. Сколько там может быть кур, а сколько - кроликов?

    Решение

    Пусть у нас будет x кур и y кроликов. Составим уравнение: 2х+4y=20. Сократим обе части уравнения на два: x+2y=10. Следовательно, x=10-2y, где x и y - это целые положительные числа.

    Ответ

    Число кроликов и куриц: (1; 8), (2; 6), (3; 4), (4; 2), (5; 0)

    Согласитесь, получилось быстрее, чем перебирать «пусть в клетке сидит один кролик...»

    Задача про монетки

    Условия

    У одной продавщицы были только пяти- и двухрублевые монетки. Сколькими способами она может набрать 57 рублей сдачи?

    Решение

    Пусть у нас будет x двухрублевых и y пятирублевых монеток. Составим уравнение: 2х+5y=57. Преобразуем уравнение: 2(x+2y)+y=57. Пусть z=x+2y. Тогда 2z+y=57. Следовательно, y=57-2z , x=z-2y=z-2(57-2z) ⇒ x=5z-114 . Обратите внимание, переменная z не может быть меньше 23 (иначе x, число двухрублевых монеток, будет отрицательным) и больше 28 (иначе y, число пятирублевых монеток, будет отрицательным). Все значения от 23 до 28 нам подходят.

    Ответ

    Шестью способами.

    Подготовила Татьяна Яковлева