Элементы теории надежности электрооборудования. Разработка технологии повышения надежности электроснабжения низковольтных электрических сетей в ненормальных режимах работы

1.Основные понятия и определения теории надежности электрооборудования
2. Показатели надежности
3. Вероятностные характеристики показателей надежности
4. Простейшие методы расчета надежности

1.Основные понятия и определения теории надежности электрооборудования

В процессе эксплуатации оборудование переходит многократно из одного состояния в другое, как показано на рисунке 5.1. Состояния 1 и 2 определяются технологическими особенностями оборудования. Например, в сельском хозяйстве, наряду с круглогодичным использованием, часто наблюдается сезонная занятость. Продолжительность хранения и использования достаточно точно определяется производственными характеристиками оборудования.

Частота перехода оборудования из состояния 2 в состояние 3 и продолжительность пребывания в ремонте заранее неизвестны. Также нельзя сразу определить частоту перехода в состояние 4. Но без этих данных нельзя организовать рациональное техническое обслуживание или его ремонт. Такие сведения позволяют получить методы теории надежности.

Во всех сферах деятельности и общения у человека возникает потребность оценить успешность своих действий. В таких ситуациях возникает интуитивное представление о надежности как об уверенности в осуществлении своих замыслов. Наука о надежности исключает произвольные толкования, заменяя их четкими понятиями, определениями, и устанавливает количественное описание свойств надежности.

Надежность - свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортировки (ГОСТ 27.002-86^ Можно сказать,

что надежность характеризует способность объекта сохранять свои первоначальные качества в процессе эксплуатации.

Теория надежности возникла на стыке ряда научных дисциплин: теории вероятностей и случайных процессов, математической логики, технической диагностики и др. Она изучает закономерности изменения показателей качества объектов с течением времени, а также физическую природу этих изменений. В теории надежности сложное явление изменчивости изучают путем использования идеализированных понятий о состояниях, свойствах и событиях и т. п. Приближенная замена реальных явлений и объектов идеализированными моделями позволяет установить количественные связи между интересующими показателями и определить эти показатели с достаточной для практики точностью.

Способность объекта выполнять требуемые функции оценивают несколькими состояниями, в пределах которых параметры объекта остаются постоянными.

Исправность - состояние объекта, при котором он соответствует всем установленным требованиям.

Неисправность - состояние объекта, при котором он не соответствует хотя бы одному из указанных требований.

Работоспособность - состояние соответствия установленным требованиям тех параметров, которые характеризуют способность выполнять указанные функции.

Неработоспособность - состояние, при котором хотя бы один параметр работоспособности не соответствует установленным требованиям.

Предельное состояние - состояние объекта, при котором его дальнейшая эксплуатация недопустима по условиям безопасности или нецелесообразна по экономическим критериям.

Центральным понятием теории надежности служит отказ - событие, заключающееся в потере работоспособности, т. е. переход из работоспособного в неработоспособное состояние. Различают внезапные и постепенные, полные и частичные отказы.

Внезапные отказы наступают неожиданно, мгновенно из-за внезапной концентрации нагрузки или аварийной ситуации.

Постепенные отказы возникают под действием постепенного изменения свойств объектов, старения или износа деталей.

Полный отказ приводит к полной потере работоспособности, а частичный - лишь к утрате отдельных функций объекта.

Рис. 5.1. Модель состояния оборудования

Объект (в теории надежности) - предмет определенного целевого назначения, в жизненном цикле которого выделяют стадии проектирования, изготовления и эксплуатации. Объектом может быть система или элемент.

Система - это совокупность взаимосвязанных устройств, предназначенная для самостоятельного достижения некоторой цели.

Элемент - часть системы, которая способна выполнять некоторые локальные функции системы.

Представление объекта в виде системы или элемента зависит от постановки задачи и является условной процедурой. Например, при изучении надежности парка электрооборудования предприятия электропривод рассматривают как элемент, а в других случаях как систему, в которой выделяют ряд элементов (пусковую аппаратуру, устройство защиты, двигатель и т.д.).

В свою очередь элементы и системы, допускающие восстановление работоспособности после отказа, называют восстанавливаваемыми, а в противном случае - ^восстанавливаемыми (неремонтируемыми). К первому виду относят, например, трансформаторы двигатели, а к второму - электроосветительные лампы и трубчатые нагреватели. Таким образом, элементы (системы), изучаемые в теории надежности, имеют три главных признака, характеризующих: природу отказов (внезапные и постепенные); виды отказов по их последствиям (полные и частичные); приспособленность к ремонту (ремонтируемые и неремонтируемые).

В зависимости от сочетания этих признаков элементы (системы) разделяют на простые и сложные. Простым считают элемент, который имеет внезапные полные отказы, поэтому не подлежит ремонту. Сложный элемент имеет наряду с перечисленными и ряд дополнительных признаков, т. е. он имеет внезапные и постепенные отказы (или только постепенные), "отказы могут быть частичными, их последствия устраняют в итроцессе ремонта.

; При изучении надежности объекта как способности сохранять свои параметры в процессе эксплуатации возникает необходимость оценить стабильность этих параметров на разных этапах эксплуатации, приспособленность к ремонту и ряд других призна-"ков. Поэтому надежность - сложное, комплексное свойство объекта, включающее ряд более простых свойств (в отдельности или в определенном сочетании) (ГОСТ 27.002-86):

Безотказность - свойство объекта непрерывно сохранять работоспособность в течение некоторого времени или наработки;

Долговечность - свойство объекта сохранять работоспособность объекта до наступления предельного состояния при установленной системе технического обслуживания и ремонта;

Ремонтопригодность - приспособленность к предупреждению и обнаружению причин возникновения отказов (повреждений), к поддержанию и восстановлению работоспособного состояния путем проведения технического обслуживания и ремонтов;

Сохраняемость - свойство объекта сохранять значения показателей безотказности, долговечности и ремонтопригодности во время хранения или транспортировки;

Устойчивость - способность объекта переходить при различных возмущениях от одного устойчивого режима к другому;

живучесть - свойство системы противостоять крупным возмущениям, не допуская развития аварий.

На практике различают конструкционную и эксплуатационную надежность. Конструкционной называют номинальную надежность, которая определяет способность к стабильному функционированию в типовых (номинальных) условиях эксплуатации. Она характеризует свойства объекта, заложенные при его проектировании и изготовлении.

Под эксплуатационной понимают надежность, наблюдаемую в условиях эксплуатации с учетом всей совокупности воздействий: дестабилизирующих факторов окружающей среды, реальных режимов использования, качества технического обслуживания и ремонтов.

Задачи эксплуатационной надежности приобрели большую актуальность в связи с тем, что многие виды электрооборудования сельскохозяйственных предприятий, имея достаточно высокие показатели конструкционной надежности, по эксплуатационным показателям не отвечают требованиям производства. Так, двигатели серии 4А рассчитаны на безотказную работу в течение 10 лет, а фактическое время безотказной работы до капитального ремонта составляет: в животноводстве - 3,5 года, в растениеводстве - 4 года, на подсобных предприятиях - 5 лет.

Показатели надежности служат для количественной оценки уровня надежности объекта. С их помощью сравнивают надежность различных объектов между собой или надежность одного и того же объекта в разных условиях либо на разных этапах эксплуатации. По ремонтопригодности выделяют дополнительно показатели для восстанавливаемых и невосстанавливаемых объектов.

Кроме того, показатели могут быть единичными и комплексными. Единичный показатель относят к одному из свойств, а комплексный - к нескольким свойствам.

Введение показателей надежности основывают на рассмотрении эксплуатации как процесса случайного изменения свойств объекта в виде последовательного чередования работоспособного и неработоспособного состояний. Другими словами, процесс изменения свойств объекта - это поток случайных дискретных изменений состояний. При таком представлении мерой надежности служат характеристики перехода объекта из одного состояния в другое. Используя их, определяют, как часто осуществляются переходы, как долго объект находится в работоспособном и неработоспособном состояниях, какова вероятность наступления этих событий и т. д.

Показатели безотказности характеризуют способность объекта непрерывно сохранять работоспособность в течение некоторого

времени (некоторой наработки). Их содержание поясняет следующий пример.

Интенсивность отказов

Показатели ремонтопригодности . Ремонтопригодность по ГОСТ 27301-86 - приспособленность к предупреждению и обнаружению причин отказов и устранению их последствий путем проведения технического обслуживания и ремонтов. Конструкционная ремонтопригодность характеризует лишь техническую сторону восстанавливаемости объекта; эксплуатационная - дополнительно быстроту восстановления и зависит от квалификации обслуживающего персонала, а также его материально-технического обеспечения.

Вопрос о процессе восстановления был затронут при рассмотрении безотказности ремонтируемых элементов. Там предполагалось, что все отказы устраняют мгновенно. На самом деле каждый отказ устраняют в некотором интервале времени, являющемся случайной величиной. Поэтому процесс восстановления считают потоком случайных событий.

Среднее время восстановления Тв - это математическое ожидание продолжительности восстановления работоспособности после отказа элемента

Показатели долговечности . Под долговечностью понимают свойство элемента сохранять работоспособность до наступления предельного состояния при надлежащем техническом обслуживании и ремонте. Для восстанавливаемых элементов долговечность совпадает с временем их эксплуатации до отказа. Количественные оценки долговечности - срок службы и ресурс.

Ресурсом называют наработку объекта от начала эксплуатации или после ремонта до наступления предельного состояния. Различают средний ресурс и гамма-процентный ресурс.

Средний срок службы - средняя календарная продолжительность службы объектов. Различают средний срок службы до первого капитального ремонта и между капитальными ремонтами.

Средний срок службы до списания - средняя календарная продолжительность эксплуатации до предельного состояния.

Гамма-процентный срок службы - средняя календарная продолжительность эксплуатации, в течение которой объект не достигает предельного состояния с заданной вероятностью у процентов.

Показатели сохраняемости характеризуют свойство элемента сохранять эксплуатационные качества во время хранения и транспортировки. Для этого используют средний срок сохраняемости Тх и интенсивность отказов при хранении Хх. Свойство сохраняемости можно рассматривать как специфический случай безотказности в период хранения и транспортировки. В сельском хозяйстве большая часть энергетического оборудования занята в течение года от двух до шести месяцев, а остальное время ее не используют. Для такого оборудования свойство сохраняемости имеет первостепенное значение.

Комплексные показатели надежности . Коэффициент готовности КГ характеризует готовность объекта к применению по назначению:

Коэффициент технического использования Кти характеризует время нахождения объекта в работоспособном состоянии с учетом простоя объекта на всех видах технического обслуживания и ремонта:

Показатели надежности электроснабжения . Все перечисленные показатели можно использовать для оценки системы сельского электроснабжения, главное требование к которой - бесперебойное снабжение электрической энергией присоединенных к ней потребителей. Поэтому основными показателями надежности принято считать число (п) и длительность (ТОТКл) отключений.

Отключения сельских сетей происходят по различным причинам. Они могут быть случайными (внезапными) или преднамеренными (плановыми). Первые возникают при аварийных ситуациях, а вторые осуществляет обслуживающий персонал в плановом порядке. Аварийные отключения из-за своей неожиданности приносят больший ущерб, чем плановые. Для учета этих особенностей вводят понятие эквивалентной продолжительности отключений

Показатели надежности могут принимать значения, неизвестные заранее, т. е. являются случайными величинами. Такие величины изучают в теории вероятностей, где вероятность - это количественная оценка возможности появления случайного события, или случайной величины.

При помощи теории надежности определяют общие закономерности изменения эксплуатационных свойств оборудования. Эти закономерности имеют важное значение для решения общих задач, связанных с выбором схем электроустановок, режимов их использования, стратегии обслуживания и т. п. Для решения инженерных задач необходимо иметь численные значения показателей надежности.

Основной закон надежности устанавливает связь между тремя показателями: вероятностью безотказной работы, средней наработкой на отказ и интенсивностью отказов. Если известны два из них, то третий легко определить из этого закона. Простейшие методы расчета надежности рассмотрим, решая задачи.

..

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

электрооборудование эксплуатационный надежность токоведущий

Введение

Развитие производства основывается на современных технологиях, широко использующих электрическую энергию. В связи с этим возросли требования к надёжности электроснабжения сельскохозяйственных объектов, к качеству электрической энергии, к её экономному использованию и рациональному расходованию материальных и трудовых ресурсов при проектировании систем электроснабжения.

Электроснабжение, то есть производство, распределение и применение электроэнергии во всех отраслях народного хозяйства и быта населения - один из важных факторов технического прогресса.

На базе электрификации развивается промышленность, сельское хозяйство и транспорт. Главная особенность электроснабжения производства - необходимость подводить энергию к небольшому числу крупногабаритных объектов, сосредоточенных на территории. От проблемы рационального электроснабжения производства в значительной степени зависит экономическая эффективность применения электроэнергии. Для решения этих задач применяются решения технической политики: замена проводов на СИПы, установка трансформаторов. Работающих без замены 40 лет, применение сухих выключателей.

1. Мероприятия, направленные на повышение эксплуатационной надежности электрооборудования

Всё оборудование распределительных устройств эксплуатируется согласно заводских инструкций, правил ПТЭ, ПУЭ и ПТБ и правил пожарной безопасности.

Все данные при плановых, текущих и капремонтах, как правило, вносятся в эксплуатационную документацию

В сельском электроснабжении значительное распространение получили комплектные распределительные устройства наружной установки (КРУН). Они предназначены для работы при температуре окружающей среды от -40 до 40 °С. Из шкафов КРУН собирают распределительные устройства (РУ) 10 кВ распределительных пунктов (РП) и комплектных трансформаторных подстанции 220-110-35/6-10 кВ. В шкафах устанавливают выключатели ВМГ-10, ВМП-10К, ВММ-10 и другие с ручными, грузовыми, пружинными и электромагнитными приводами. Для сельской электрификации широко используют комплектные трансформаторные подстанции (КТП) на напряжение 6... 10/0,4 кВ, состоящие из трансформаторов и блоков, изготавливаемых на заводе и доставляемых на место установки в собранном виде. Оборудование КТП размешают в металлическом кожухе.

Промышленность изготовляет КТП по упрощенным схемам с использованием, где это возможно, предохранителей, короткозамыкателей и отделителей. Выключатели 35 кВ используют только в цепи линий проходных (транзитных) КТП 35/10 кВ, в РУ -35 кВ. КТПБ 110/35/6 - 10 кВ.

В электросетях сельскохозяйственного назначения наибольшее распространение получили СК.ТП 35/10 кВ мощностью 630 - 6300 кВ*А. изготавливаемые по схемам первичных соединений.

Основные задачи при эксплуатации РУ: обеспечение соответствия режимов работы РУ и отдельных цепей техническим характеристикам оборудования; надзор и уход за оборудованием; устранение в кратчайший срок неисправностей, которые приводят к аварии; своевременное проведение профилактических испытаний и ремонтов электрооборудования

2. Организационные и технические мероприятия, обеспечивающие безопасность работ

Подготовка рабочих мест для проведения ремонтных работ.

Если работы производятся без снятия напряжения вблизи токоведущих частей, находящихся под напряжением выполняются мероприятия препятствующие приближению работающих лиц к этим токоведущим частям.

К числу таких мероприятий относятся:

· безопасное расположение работающих лиц по отношению к находящимся под напряжением токоведущим частям;

· организация беспрерывного надзора за работающим персоналом;

· применение основных и дополнительных изолирующих защитных средств.

Работы вблизи и на токоведущих частях, находящихся под напряжением, должны производиться по наряду.

Лицо производящее такие работы должно располагаться так, чтобы токоведущие части были перед ним и только с одной боковой стороны, запрещается работать в согнутом положении.

Работы на токоведущих частях, находящихся под напряжением производятся с применением основных и дополнительных средств защиты.

Для подготовки рабочего места при работах с частичным или полным снятием напряжения должны быть выполнены в указанной ниже последовательности следующие технические мероприятия:

· производство необходимых отключений и принятие мер, препятствующих подаче напряжения к месту работы вследствие ошибочного или самопроизвольного включения коммутационной аппаратуры;

· вывешивание плакатов: «Не включать - работают люди» и при необходимости установка ограждений;

· присоединение к «земле», переносных заземлений. Проверка отсутствия напряжения на токоведущих частях, на которые должно быть нанесено заземление;

· наложение заземлений (непосредственно после проверки отсутствия напряжения), т.е. включения заземляющих ножей или там, где они отсутствуют, наложение переносных заземлений;

· ограждение рабочего места и вывешивание плакатов: «Стой - высокое напряжение», «Не влезай - убьёт», «Работать здесь», «Влезать здесь». При необходимости производится ограждение оставшихся под напряжением токоведущих частей.

3. Эксплуатация электрооборудования распределительных устройств

Одна из основных задач эксплуатации распределительных устройств поддержание необходимых запасов по пропускной способности, динамической, термической устойчивости и по уровню напряжения в устройстве в целом и в отдельных его элементах.

Периодичность осмотров распределительных устройств. Периодичность осмотра устанавливают в зависимости от типа устройства, его назначения и формы обслуживания. Примерные сроки осмотров следующие: в распределительных устройствах, обслуживаемых сменным персоналом, дежурящим на самой подстанции или на дому, - ежесуточно. При неблагоприятной погоде (мокрый снег, туманы, сильный и продолжительный дождь, гололед и т.п.), а также после коротких замыканий и при появлении сигнала и замыкании на землю в сети проводят дополнительные осмотры. Рекомендуют 1 раз в неделю осматривать устройство в темноте для выявления возможных разрядов коронирования в местах повреждения изоляции и местных нагревов токоведущих частей; в распределительных устройствах подстанций напряжение 35 кВ и выше, не имеющих постоянного дежурного персонала, график осмотров составляют в зависимости от типа устройства (закрытое или открытое) и от назначения подстанции. В этом случае осмотры выполняет начальник группы подстанции или мастер не реже 1 раза в месяц; трансформаторные подстанции и распределительные устройства электрических сетей 10 кВ и ниже, не имеющие дежурного персонала, осматривают не реже 1 раза в шесть месяце. Внеочередные осмотры на объектах без постоянного дежурного персонала проводят в сроки, устанавливаемые местными инструкциями с учетом мощности короткого замыкания и состояния оборудования. Во всех случаях независимо от значения отключаемой мощности короткого замыкания осматривают выключатель после цикла неуспешного АПВ и отключении короткого замыкания.

О всех неисправностях, замеченных при осмотрах распределительных устройств, делают запись в эксплуатационном журнале. Неисправности, которые нарушают нормальный режим работы, необходимо устранять в кратчайший срок.

Исправность резервных элементов распределительных устройств (трансформаторов, выключателей, шин и др.) нужно регулярно проверять, включая их под напряжение в сроки, установленные местными инструкциями. Резервное оборудование должно быть в любой момент готово к включению без каком либо предварительной подготовки.

Периодичность очистки распределительных устройств от пыли и грязи зависит от местных условий и устанавливается главным инженером предприятия.

Обслуживание выключателей. Внешние осмотры масляных выключателей без отключения проводятся с учетом местных условий, но не реже 1 раза в шесть месяцев, вместе с осмотрами РУ. При осмотрах проверяют: состояние изоляторов, креплений и контактов ошиновки; уровень масла и состояние маслоуказателей; отсутствие течи масла из розеточных контактов малообъемных или через прокладки баковых выключателей.

Уровень масла у выключателей во многом определяет надежность их работы. Он не должен выходить за пределы маслоуказателя при температурах окружающей среды от -40 до 40 °С. Повышенный уровень масла в полюсах и соответственно уменьшенный объем воздушной подушки над маслом приводят к чрезмерному давлению в баке при гашении дуги, что может служить причиной разрушения выключателя.

Снижение объема масла также приводит к разрушению выключателя. Снижение объема масла особенно опасно в мало объемных выключателях ВМГ-10, ВМП-10. Если течь значительна и масла нет в масломерном стекле, то выключатель необходимо отремонтировать и заменить и нем масло. При этом ток нагрузки разрывают другим выключателем или снижают нагрузку на данном присоединении до нуля.

Ненормальный нагрев дугогасительных контактов малообъемных выключателей вызывает потемнение и подъем уровня масла в маслоуказательном стекле, а также характерный запах. Если температура бачка выключателя превышает 70 °С, выключатель следует отремонтировать.

В местностях с минимальной температурой ниже 20 °С выключатели оборудуют автоматическими устройствами для подогрева масла в баках.

Не реже 1 раза в три (шесть) месяцев рекомендуют проводить проверку приводов выключателя. При наличии АПВ опробование на отключение целесообразно осуществлять от релейной защиты с выключением от АПВ. При отказе в срабатывании выключатель необходимо отремонтировать.

При наружном осмотре воздушных выключателей обращают внимание на его общее состояние, на целостность изоляторов дугогасительных камер, отделителей, шунтирующих сопротивлений и емкостных делителей напряжения, опорных колонок и изолирующих растяжек, а также на отсутствие загрязненности поверхности изоляторов. По манометрам, установленным в распределительном шкафу, проверяют давление воздуха в резервуарах выключателя и поступление его па вентиляцию (у выключателей, работающих с АПВ, давление должно быть в пределах 1,9... 2,1 МПа и у выключателей без АПВ - 1,6... 2,1 МПа). В схеме управления выключателем предусмотрена блокировка, препятствующая работе выключателя при понижении давления воздуха ниже нормального.

При осмотре также контролируют исправность и правильность показаний устройств, сигнализирующих включенном или выключенном положении выключателя. Обращают внимание на то, надежно ли закрыты заслонки выхлопных козырьков дугогасительных камер. Визуально проверяют целостность резиновых прокладок в соединениях изоляторов дугогасительных камер, отделителей и их опорных колонок. Контролируют степень нагрева контактных соединений шин и аппаратных соединений.

При эксплуатации воздушных выключателей 1--2 раза в месяц из резервуаров удаляют накапливающийся конденсат. В период дождей увеличивается подача воздуха на вентиляцию, при понижении температуры окружающего воздуха ниже -5 °С включается электрообогрев в шкафах управления и в распределительных шкафах. Не реже 2 раз в год проверяют работоспособность выключателя путем контрольных опробований на отключение и включение. Для предупреждения повреждений выключателей 2 раза в год (весной и осенью) проверяют и подтягивают болты всех уплотнении соединений.

4. Обслуживание комплектных распределительных устройств

Эксплуатация комплектных распределительных устройств (КРУ) имеет свои особенности в связи с ограниченными габаритными размерами ячеек. Для защиты персонала от случайного прикосновения к токоведущим частям, находящимся под напряжением, в КРУ предусмотрена блокировка. В стационарных КРУ блокируют сетчатые двери, которые открывают только после отключения выключателя и разъединителей присоединения. В КРУ выкатного исполнения есть автоматические шторки, закрывающие доступ в отсек неподвижных разъединяющих контактов при выкаченной тележке. Кроме того, имеется оперативная блокировка, предохраняющая персонал при выполнении ошибочных операций. Например, выкатывание тележки в испытательное положение разрешается блокировкой только после отключения выключателя, а выкатывание тележки в рабочее положение -- при отключенном положении выключателя и заземляющих ножей. Наблюдение за оборудованием ведут через смотровые окна и сетчатые ограждения или смотровые люки, закрытые защитной сеткой.

Осмотры КРУ без их отключения проводят по графику, но не реже 1 раза в месяц. При осмотрах проверяют работу сетей освещения и отопления помещений и шкафов КРУ; состояние выключателей, приводов, разъединителей, первичных разъединяющих контактов, механизмов блокировки; загрязненность и отсутствие видимых повреждений изоляторов; состояние цепей вторичной коммутации; действие кнопок управления выключателей.

Систематически в зависимости от местных условий необходимо очищать изоляцию от пыли и загрязнений, особенно в КРУ наружной установки.

При осмотрах комплектных распределительных устройств КРУ и КРУН необходимо обращать внимание на: состояние уплотнений в местах стыков элементов металлоконструкций; исправность присоединения оборудования к контуру заземления; наличие средств безопасности и пожаротушения; работу и исправность устройств обогрева шкафов КРУН; наличие, достаточность и нормальный цвет масла в выключателях; состояние монтажных соединений; нагрев токоведущих частей и аппаратов; отсутствие посторонних шумов и запахов; исправность сигнализации, освещения и вентиляции.

Одновременно с осмотром проверяют правильность положения коммутирующих аппаратов. Встроенное в КРУ и КРУП оборудование осматривают в соответствии с инструкциями по эксплуатации. При эксплуатации КРУ запрещается отвинчивать съемные детали шкафа, поднимать и открывать автоматические шторки при наличии напряжения в тех местах, доступы в которые ими закрыты. В шкафах КРУ выкатного типа для заземления отводящих линий при помощи разъединителей, встроенных в КРУ, нужно сделать следующее: отключить выключатель, выкатить тележку, проверить отсутствие напряжения на нижних разъединяющих контактах, включить заземляющий разъединитель, поставить тележку в испытательное положение.

Предохранители в шкафу трансформатора собственных нужд можно менять только при снятой нагрузке. При проведении работ внутри отсека выкатной тележки на автоматической шторке необходимо вывешивать предупреждающие плакаты: «Нe включать! Работают люди», «Высокое напряжение! Опасно для жизни!»

Выкатывать тележку с выключателем и устанавливать ее в рабочее положение может только оперативный персонал. Вкатывать тележку в рабочее положение разрешается только при отключенном положении заземляющего разъединителя.

5. Обслуживание разъединителей

При регулировании механической части трехполюсных разъединителей проверяют одновременность включения ножей. При регулировании момента касания и сжатия подвижных ножей изменяют длину тяги или хода ограничителей и упорных шайб либо слегка перемещают изолятор на цоколе или губки па изоляторе. При полном включении нож на 3...5 мм не должен доходить до упора контактной площадки. Наименьшее усилие вытягивания одного ножа и.) неподвижного контакта должно составлять 200 Н для разъединителей на поминальные токи 400...600 А и 400 Н для разъединителей на номинальные токи 1000...2000 А. Плотность прилегания контактов разъединителя контролируют по значению сопротивления постоянному току, которое должно быть в следующих пределах: для разъединителей РЛНД (35...220 кВ) на поминальный ток 600 А -- 220 мкОм; для остальных типов разъединителей на все напряжения с номинальным током 600 А 175 мкОм; 100 А -- 120; 1500...2000 А -- 50 мкОм.

Контактные поверхности разъединителей в процессе эксплуатации смазывают нейтральным вазелином с примесью графита. Трущиеся части привода покрывают незамерзающей смазкой. Состояние изоляторов разъединителей оценивают по сопротивлению изоляции, распределению напряжения на отдельных элементах штыревых изоляторов или по результатам испытания изолятора повышенным напряжением промышленной частоты.

Блок-контакты привода, предназначенные для сигнализации и блокировки положения разъединителя, должны быть установлены так, чтобы сигнал об отключении разъединителя начал действовать после прохождения ножом 75% полного хода, а сигнал о включении -- не ранее момента касании ножом неподвижных контактов.

6. Обслуживание короткозамыкателей и отделителей

Короткозамыкатели -- аппараты, предназначенные для искусственного создания короткого замыкания в тех случаях, когда ток при повреждениях в трансформаторе может оказаться недостаточным для срабатывания релейной защиты.

Короткозамыкатель типа КЗ-35 на напряжение 35 кВ выполнен в виде двух отдельных полюсов с общим приводом. Включается короткозамыкатель автоматически приводом ШИК при срабатывании релейной защиты, отключается вручную.

Отключение силовых трансформаторов без нагрузки, а также автоматическое отключение поврежденных трансформаторов осуществляют отделителями. Отделители ОД-35 представляют собой разъединители типа РЛНД-35/600, укомплектованные двумя дополнительными отключающими пружинами. Отключение отделителя проводится автоматически или вручную, включение - только вручную при помощи съемной рукоятки.

На присоединениях 35...110 кВ с установленными последовательно отделителями и разъединителями отключение намагничивающего тока трансформаторов и емкостных токов линий следует выполнять отделителями.

Отделителями на 35 кВ допускается отключение тока замыкания на землю до 5 А. В среднем на 10 км ВЛ 35 кВ зарядный ток составляет 0,6 А и ток замыкания на землю 1 А.

Короткозамыкатели и отделители осматривают не реже 2 раз в год, а также после аварийных отключений. При осмотрах особое внимание обращают на состояние изоляторов, контактов, заземляющего провода, пропущенного через окно трансформатора тока. При обнаружении следов обгорания контакты зачищают или заменяют.

Продолжительность движения подвижных частей короткозамыкателя на напряжение 35 и 110 кВ от подачи импульса до замыкания контактов должна быть не более 0,4 с, а отделителя от подачи импульса до размыкания контактов соответственно 0,5 и 0,7 с.

В процессе эксплуатации короткозамыкателей и отделителей особое внимание следует уделять наиболее ненадежным узлам: открытым или недостаточно защищенным от возможных загрязнений и обледенения пружинам, контактным системами шарнирным соединениям, а также незащищенным подшипникам, выступающим с задней стороны.

Во время наладки короткозамыкателя и отделителя обращают внимание на надежное срабатывание блокировочного реле отделителя (БРО), которое рассчитано на токи 500...800 А. Поэтому при токах К.З. менее 500 А шипу заземления следует заменить проводом и пропустить его через трансформатор тока несколько раз. Если этого не сделать, реле БРО будет подтягивать якорь нечетко и тем самым освобождать запирающий механизм привода отделителя до отключения тока К.З. Преждевременное отключение отделителей -- одна из причин их разрушения.

Текущий ремонт отключающих аппаратов, а также проверку их действия (опробование) проводят по мере необходимости в сроки, установленные главным инженером предприятий. В объем работ по текущему ремонту входят: внешний осмотр, чистка, смазка трущихся частей и измерение сопротивления контактов постоянному току.

Внеплановые ремонты выполняют в случае обнаружения внешних дефектов, нагрева контактов или неудовлетворительного состояния изоляции.

Наладка короткозамыкателя и отделителя заключается в проверке работы привода на включение и отключение, проверке положения ножей и завода отключающей пружины привода с блокирующим реле БРО, регулировке хода сердечников электромагнитов и реле.

7. Контроль состояния токоведущих частей и контактных соединений

Состояние токоведущих частей и контактных соединений шин и аппаратов распределительных устройств можно выявить при осмотрах.

Контроль за нагревом разъемных соединений в закрытых распределительных устройствах осуществляют при помощи электротермометров или термосвечей и термоиндикаторов.

Действие электротермометра основано на принципе измерения температуры при помощи терморезистора, наклеенного на наружную поверхность головки датчика и закрытого медной фольгой.

Температуру нагрева контактных соединений определяют при помощи набора термосвечей с различными температурами плавления.

В качестве термоиндикаторов применяют обратимые пленки многократного действия, которые при длительном нагреве изменяют свой цвет. Термоиндикатор должен выдерживать, не разрушаясь, не менее 100 изменений цвета при длительном нагреве до температуры 110 °С

8. Обслуживание потребительских подстанций

Надежность работы потребительских подстанций во многом зависит от правильности эксплуатации, которую необходимо осуществлять в соответствии с существующими руководящими и инструктивными материалами. Эксплуатационно-профилактические работы TП проводят с целью предупреждения и устранения возможных при эксплуатации повреждении и дефектов.

В объем этих работ входят систематические осмотры, профилактические измерения и проверки. Плановые осмотры ТП выполняют в дневное время по утвержденному графику, но не реже 1 раза в шесть месяцев.

После аварийных отключений питающих линий, при перегрузках оборудования, резком изменении погоды и стихийных явлениях (мокрый снег, гололед, ураган и т. п.) проводят внеочередные осмотры. Не реже 1 раза в год инженерно-технический персонал выполняет контрольные осмотры ТП. Обычно их совмещают с приемкой объектов к работе в зимних условиях, с осмотрами ВЛ 10 или 0,4 кВ и т. д.

Для поддержания ТП в технически исправном состоянии осуществляют планово-предупредительные ремонты, которые позволяют обеспечить длительную, надежную и экономичную их работу.

Осмотры, ремонты и профилактические испытания оборудования на трансформаторных подстанциях 10/0,4 кВ проводятся в основном комплексно в одни сроки, без снятия напряжения, а при необходимости с частичным или полным отключением оборудования.

При осмотре мачтовых подстанций с земли проверяют состояние предохранителей, разъединителей и их проводов, изоляторов, крепление проводов к ошиновке, заземляющих спусков и контактов, крепление и взаимное расположение проводов высшего и низшего напряжений, состояние конструкции подстанции, состояние древесины и железобетона, наличие и состояние предупредительных плакатов, а также целостность замков и лестниц. При осмотрах подстанций типа КТП дополнительно проверяют загрязненность поверхности металлических корпусов, шкафов, плотность закрытия дверей и исправность их запоров, состояние опорных фундаментов.

При осмотрах оборудования ТП и КТП необходимо обращать внимание на следующее: у выключателей нагрузки, разъединителей и их приводов -- отсутствие следов перекрытия и разрядов на изоляторах и изоляционных тягах; положение ножей в неподвижных контактах; внешнее состояние дугогасящих ножей и камер у выключателя; правильное положение рукояток приводов; исправность гибкой связи между ножом и вводным зажимом у разъединителя РЛНД;

у предохранителей типа ПК--соответствие плавких вставок параметрам защищаемого оборудования, целостность и исправность патронов, правильность расположения и закрепления патронов в неподвижных контактах, состояние и положение указателей срабатывания предохранителей;

у разрядников -- отсутствие следов дуги перекрытия по поверхности, правильность установки, состояние внешних искровых промежутков трубчатых разрядников и правильность расположения зон выхлопа газов;

у проходных, опорных и штыревых изоляторов -- отсутствие сколов, трещин и следов перекрытия дуги;

у ошиновки РУ 10 кВ -- отсутствие следов местного нагрева контактов в местах присоединения к оборудованию и в соединениях шин, состояние окраски и крепления шин;

у кабельных устройств -- состояние кабельных муфт и воронок, отсутствие течи мастики, целостность наконечников, наличие маркировки, заземление муфт и воронок, состояние кабельных приямков и проходов через степы;

у РУ низкого напряжения (0,4 кВ) -- состояние рабочих контактов рубильников, предохранителей и автоматов, отсутствие на них следов копоти, перегрева и оплавления, состояние трансформаторов тока, реле защиты и разрядников типа РВН-0,5, целостность плавких вставок предохранителей и их соответствие параметрам потребителей, исправность фотореле, целостность пломб и защитных стекол на приборах учета и измерения, состояние контактов ошиновки 0,4 кВ и ее крепления.

Для устранения замеченных при осмотре неисправностей в работе оборудования ТП и КТП в случаях, не терпящих отлагательств до очередного текущего или капитального ремонта, проводят профилактические выборочные ремонты с заменой отдельных элементов и деталей. Эти работы выполняет эксплуатационный оперативный персонал.

9. Эксплуатация трансформаторного масла

Для надежной работы маслонаполненного оборудования зависит от состояния трансформаторного масла залитого в оборудовании.

Трансформаторное масло, находящееся в эксплуатации, должно подвергаться сокращенному анализу и измерению tg согласно «Нормам испытания электрооборудования» (СПО OPГРЭС, 1977) в сроки, указанные в табл. 1 и после текущего ремонта трансформаторов и реактором.

Табл. 1. периодичность отбора проб трансформаторного масла

Наименование

Номинальное напряжение, кВ

Периодичность отбора проб масла

Трансформаторы энергоблоков мощностью 180 МВ*А и более

Не реже 1 раза в год

Трансформаторы всех мощностей

Остальные трансформаторы и реакторы

До 220 (включительно)

Не реже 1 раза в 3 года

Вводы маслонаполненные не герметичные

В течении первых двух лет 2 раза в год, в дальнейшем 1 раз в 2 года

В течении первых двух лет эксплуатации 1 раз в год, в дальнейшем 1 раз в три года.

Вводы маслонаполненные герметичные

Не проверяются

Контакторы устройства РПН

Через определенное число переключений согласно инструкции завода, но не реже 1 раза в год.

Сушка масла.

В энергетических системах масло сушат двумя способами: просасыванием через него сухого азота или углекислого газа при комнатной температуре; над маслом создают вакуум 20...30 кПа; распылением масла при комнатной температуре и остаточном давлении 2,5... 5,5 кПа. Для ускорения сушки масло подогревают до 40... 50 °С при остаточном давлении 8... 13 кПа.

В условиях небольших ремонтных предприятий масло сушат путем подогрева или отстоя его при температуре 25...35 °С. Отстой -- крайне простой, дешевый и безвредный для масла способ сушки. Недостаток его -- большая длительность операции.

Сушка масла при помощи подогрева также несложна, причем масло можно подогревать самыми различными методами, в том числе в собственном баке трансформатора. Но длительный нагрев масла может привести к его порче.

Очистка масла.

В условиях эксплуатации масло не только увлажняется, но и загрязняется. От воды и механических примесей масло очищают центрифугированием и фильтрованием.

Центрифугирование позволяет отделить воду и примеси, которые тяжелее масла. Температура масла должна быть 45...55 °С. При пониженной температуре высокая вязкость масла препятствует отделению воды и примесей, а при повышении температуры выше 70 °С воду трудно отделить из-за начинающегося парообразования и повышенной растворимости воды в масле. Кроме того, при повышенной температуре происходит интенсивное старение масла.

Фильтрование -- продавливание масла через пористую среду (картон, бумага, материя, слой отбеливающего материала или силикагеля) -- осуществляют при помощи фильтр-прессов. Фильтровальная бумага и картон не только задерживают примеси, но и впитывают воду.

Наибольшей гигроскопичностью обладает мягкий и рыхлый картон, однако он плохо задерживает шлам и уголь и сам выделяет много волокон. Чередование в фильтр-прессе листов мягкого и твердого картона позволяет получить хорошо очищенное масло.

Фильтровать масло желательно при температуре 40…50 С, так как при большей температуре падает гигроскопичность картона и возрастает растворимость воды в масле. Загрязненный картон можно прополоскать в чистом масле, высушить и вновь пустить в работу. Для очистки 1 т масла требуется около 1 кг картона.

Фильтр-пресс включают обычно после центрифуги для удаления остатков шлама и воды. Он обеспечивает почти предельную очистку масла от воды и наиболее высокую электрическую прочность масла. К достоинствам фильтр-пресса относят его способность работать при нормальной температуре, отсутствие смешивания масла с воздухом и возможность очистки масла от мельчайших частиц угля. Однако центрифуги способны очистить масло, содержащее эмульсии, тогда как фильтр-пресс для очистки таких масел непригоден.

Центрифугу применяют для очистки масел, находящихся в баках работающих трансформаторов, но при строгом соблюдении техники безопасности. Использование, в фильтр-прессах в качестве дополнительной фильтрующей среды силикагеля или отбеливающих глин заметно уменьшает кислотное число масла.

Список использованной литературы

1. Пястолов А.А., Ерошенко Г.П. Эксплуатация электрооборудования - М.: Агропромэнерго, 1990 - 287 с.

2. Ерошенко Г.П., Пястолов А.А. Курсовое и дипломное проектирование по эксплуатации электрооборудования - М.: Агропромиздат, 1988 - 160 с.

3. Правила устройства электроустановок - М.: Энергоатомиздат, 1986 г. - 424 с.

4. Е.А. Конюхова. Электроснабжение объектов. - М, 2001-320 с.

5. П.Н. Листова. Применение электрической энергии в сельскохозяйственном производстве, 1984 г.

Размещено на Allbest.ru

Подобные документы

    Описание основных мероприятий, направленных на повышение эксплуатационной надежности электрооборудования. Формы контроля состояния токоведущих частей и контактных соединений. Обслуживание потребительских подстанций. Эксплуатация трансформаторного масла.

    реферат , добавлен 24.12.2008

    Задание по нахождению вероятности безотказной работы электроустановки со всеми входящими в нее элементами. Надежность как важнейший технико-экономический показатель качества любого технического устройства. Структурная надежность электрической машины.

    контрольная работа , добавлен 31.03.2009

    Назначения и схемные решения защиты оборудования. Характеристика комплектного распределительного устройства (КРУ), электрической подстанции, трансформаторов тока, разъединителей, короткозамыкателей и отделителей. Монтаж КРУ и другого оборудования.

    курсовая работа , добавлен 14.11.2017

    Характеристика изоляторов, используемых в распределительных устройствах. Выполнение соединений алюминиевых шин и проводов. Виды и элементы выключателей, особенности их работы. Назначение разъединителей, отделителей, короткозамыкателей и их приводов.

    реферат , добавлен 29.10.2014

    Назначение, устройство и виды, особенности действия короткозамыкателей, отделителей, предохранителей, разъединителей, выключателей нагрузки наружной и внутренней установок с приводом и трансформатором тока. Условные обозначения и маркировка устройств.

    презентация , добавлен 08.07.2014

    Описание системы электроснабжения конверторного цеха. Окружающая среда цеха и ее влияние на работу электрооборудования. Характеристика маломасляных и вакуумных выключателей, комплектных распределительных устройств и измерительных трансформаторов тока.

    дипломная работа , добавлен 14.09.2012

    Методы профилактики и модернизации электроустановок. Техническое обслуживание (осмотры) электрических сетей. Назначение заземляющих устройств. Расчет объема работ по обслуживанию электрооборудования. Выбор формы и структуры электротехнических служб.

    курсовая работа , добавлен 27.12.2010

    Расчёт системы электроснабжения промышленного электрооборудования. Выбор трансформаторов для понижающей подстанции, силовых кабелей, распределительных и защитных устройств групп электрооборудования. Оснащение для электроснабжения промышленного здания.

    курсовая работа , добавлен 12.11.2015

    Характеристика потребителей электроэнергии. Расчет мощности подстанции, определение нагрузок, выбор трансформаторов. Компоновка распределительных устройств. Расчет токов короткого замыкания. Выбор электрооборудования, коммутационной и защитной аппаратуры.

    дипломная работа , добавлен 10.04.2017

    Выбор схемы и основного электрооборудования подстанции. Технико-экономическое сравнение двух вариантов схем проектируемой подстанции. Выбор электрических аппаратов, токоведущих частей, изоляторов. Тип и конструкция распределительного устройства.

Страница 30 из 60

Основной показатель качества электрооборудования - его надежность работы в различных условиях эксплуатации. Надежность - это свойство объекта выполнять заданные функции, сохраняя эксплуатационные показатели (производительность, экономичность, расход электроэнергии и другие паспортное характеристики) в заданных пределах в течение требуемого промежутка времени.
Надежность - это комплексное свойство объекта, включающее в себя безотказность, долговечность, ремонтопригодность и в значительной мере зависит от условий эксплуатации.
Безотказность - это свойство электроаппарата сохранять работоспособность в течение некоторого времени без вынужденных перерывов. Под работоспособностью в данном случае понимается состояние объекта, при котором он способен выполнять заданные функции, сохраняя значения заданных параметров в установленных документацией пределах. Понятие работоспособности уже понятия надежности. Например, электродвигатель, работающий в тяжелых условиях животноводческих ферм, работоспособен, но ненадежен и может выйти из строя в любой момент времени.
Долговечность - это свойство машины, агрегата сохранять работоспособность до наступления предельного состояния при установленной системе технического обслуживания и ремонтов. Предельное состояние объекта определяется невозможностью его дальнейшей эксплуатации из-за непоправимого изменения заданных параметров, неустранимого снижения эффективности эксплуатации ниже допустимой и т. п.
Ремонтопригодность - это состояние объекта, при котором можно устранять повреждения и восстанавливать его технические параметры путем проведения ремонтов и технического обслуживания.
Остановимся на определениях некоторых терминов, которые необходимы для перехода к оценке показателей надежности.
Неисправность - это состояние оборудования, при котором оно не соответствует хотя бы одному из технических требований.
Отказ - событие, заключающееся в нарушении работоспособности объекта. Это частичная или полная утрата таких свойств, которые обеспечивают работоспособность объекта.
Наработка - продолжительность или объем работы, выполненной электроаппаратом.
Наработка на отказ - средняя продолжительность работы между отказами. Если наработка выражается в единицах времени, можно применять термин «Средняя продолжительность безотказной работы».
Ресурс - продолжительность работы изделия до наступления предельного состояния. Различают ресурс до первого ремонта, межремонтный и т. д.
Надежность работы электрооборудования может быть представлена показателями надежности. При определении надежности электрооборудования часто пользуются следующими количественными показателями:
время безотказной работы;
вероятность безотказной работы;
интенсивность отказов;
срок службы и межремонтный срок службы.
Время безотказной работы Т0 оценивается средним числом часов работы оборудования до первого отказа и может быть определено на основе статистических данных:

Где ti - время исправной работы i-го аппарата до первого отказа; п - общее число рассматриваемых отказов.
На практике более часто используется вероятность безотказной работы Р (t), заключающаяся в том, что в заданном интервале времени или в пределах заданной наработки машина работает без отказа.
где &.N - число отказавших машин за время t, N0 - число испытуемых машин в начальный момент времени.

Для электродвигателей вероятность безотказной работы определяется по статистическим данным:
Интенсивность отказов представляет собой вероятность отказа перемонтируемой машины в единицу времени. Вероятность отказов определяют по статистическим данным:

где ДN - число машин, отказавших за время Дt; Д< - интервал времени наблюдения.
Срок службы - это продолжительность работы аппарата до момента возникновения предельного состояния, определяемого техническими условиями. Различают сроки службы до первого капитального ремонта, между ремонтами и т. п.
Межремонтный срок службы, или межремонтный ресурс, - наработка аппарата, прошедшего ремонт, до состояния, при котором он подлежит следующему очередному ремонту.
Надежность электрооборудования можно исследовать аналитически или при помощи статистического метода.
При аналитическом методе устанавливают функциональные связи между надежностью отдельных элементов и электродвигателя в целом, а также определяют влияние различных факторов на них. Затем при помощи математической модели электродвигателя и полученных функциональных связей определяют надежность электродвигателя для определенных условий.
Многообразие функциональных связей между элементами электродвигателя и его системой в целом, а также факторов, различно воздействующих на двигатель, затрудняет использование аналитического метода при исследовании надежности. Этот метод нашел применение при расчете надежности в стадии конструирования.
Эксплуатационная надежность зависит от качества активных и конструкционных материалов, используемых при изготовлении электроаппаратов, от качества изготовления и ремонта, от условий эксплуатации и определяется на основе статистических материалов наблюдения за работой аппарата в процессе эксплуатации.

Эксплуатационные свойства электрооборудования – это те его объективные особенности или признаки качества, которые ха­рактеризуют, в какой мере то или иное изделие соответствует требованиям эксплуатации. Чем полнее приспособлено обору­дование к эффективному использованию и техническому обслу­живанию (ремонту), тем лучше его эксплуатационные свойства. Такие возможности закладывают при разработке и изготовлении электрооборудования, а реализуют в процессе его эксплуатации.

Совокупность эксплуатационных свойств можно разделить на общие, присущие всем видам электрооборудования, и специ­альные, имеющие значение для конкретных групп электрооборудования. К общим свойствам относятся надежность и технико-экономические свойства, а к специальным – технологические, энергетические, эргономические и другие свойства. На рис. 3.1 приведена примерная классификация эксплуатационных свойств оборудования.

Численную оценку эксплуатационных свойств осуществляют при помощи единичных или комплексных показателей (параметры, характеристики). Единичный показатель относится только к одному свойству либо одному его аспекту, а комплекс­ный - к нескольким свойствам. Каждый показатель может по-разному учитывать фактор времени. По этому признаку их раз­деляют на номинальные, рабочие и результирующие показатели.

Номинальные показатели – это указанные изготовителем электрооборудования значения основных параметров, регламен­тирующие его свойства и служащие исходными для отсчета от­клонений от этого значения при испытаниях и эксплуатации. Их указывают в технической документации и на заводском щитке электрооборудования.

Рабочие показатели – это фактические значения, наблюдае­мые в данный момент эксплуатации при конкретном сочетании действующих факторов. Они дают обычно «точечную» оценку свойств.

Результирующие показатели – это средние или средневзве­шенные значения за некоторый период эксплуатации (сезон, год или срок службы). Они дают более полное представление об эф­фективности использования и результативности обслуживания (ремонта) электрооборудования. Эксплуатация должна быть на­лажена таким образом, чтобы результирующие показатели были не хуже номинальных.

Современное производство предъявляют особые требования к надеж­ности оборудования.

В настоящее время обычно наибольшую опасность представляет не факт отказа оборудования, а про­должительность восстановления его работоспособности, т.е. простой. Если простой объекта превысит некоторое допустимое время, то нарушение технологического процесса приведет к недовыпуску и пор­че продукции, а также другим нежела­тельным последствиям. Повышение долговечности оборудова­ния зависит от правильного выбора номенклатуры, числа и раз­мещения резервных (запасных) элементов; хорошей организации оперативно-дежурного обслуживания энергетического хозяйства предприятий.



. Технико-экономические показатели характеризуют типоразмерный ряд, стоимость приобретения, монтажа, обслуживания и ремонта электрооборудования. Типоразмерный ряд конкретного вида электрооборудования определяет его номенклатуру по мощ­ности, напряжению, исполнению и другим параметрам. Чем больше шкала типоразмеров, тем точнее можно подобрать электрооборудование к условиям эксплуатации. Чтобы удовлетво­рить растущие требования к качеству электрооборудования со стороны потребителя, электротехническая промышленность не­прерывно увеличивает номенклатуру выпускаемых изделий. Так, первая серия электродвигателей имела 9, вторая- 17, а четвер­тая - более 25 модификаций и специализированных исполнений.

Однако излишняя многономенклатурность затрудняет орга­низацию рациональной эксплуатации из-за неизбежных сложно­стей приобретения и хранения большого количества запасных деталей, материалов, инструментов и приборов. Повышаются требования к квалификации эксплуатационного персонала. По­этому стремятся к выпуску электрооборудования с оптимальной структурой его типоразмерного ряда.

Рисунок 3.1- Классификация эксплуатационных свойств электрооборудования

Стоимостные показатели дают обобщенную и сопоставимую оценку оборудования. Они необходимы при обосновании опти­мальной периодичности обслуживания (ремонта) и нагрузки оборудования, при расчете резервного фонда и решении ряда других эксплуатационных задач.

Оптимальные значения результирующих показателей эксплу­атационных свойств определяют суммарными затратами на раз­работку и использование оборудования. Повышение надежнос­ти или КПД связано с увеличением затрат на создание или тех­ническую эксплуатацию, но при этом удается снизить техноло­гический ущерб из-за отказов оборудования, потери энергии и затраты на капитальные ремонты. Стоимостные показатели позволяют сопоставить названные конкурирующие показатели и найти наилучшее решение.

Технологические или агрозоотехнические свойства характеризуют соответствие, элек­трооборудования агрозоотехнологическим или другим специаль­ным требованиям. По отношению к животным и растениям электрооборудование общего назначения (двигатели, трансфор­маторы и т. п.) должно быть безопасным и безвредным, а спе­циальное электрооборудование (облучатели, нагреватели и т. п.) - оказывать необходимое воздействие на животных (растения). Например, если облучательная установка не обес­печивает заданный спектральный состав излучения, то вместо ожидаемого укрепления организма животного может наступить его заболевание.

Правильный выбор электрооборудования по технологическим свойствам и поддержание этих свойств в процессе эксплуатации обеспечивают не только высокое качество технологического процесса, по и экономию энергоресурсов.

Энергетические свойства отражают способность оборудова­ния потреблять (производить, распределять) энергию с высокой эффективностью в отношении КПД, коэффициента мощности и других энергетических показателен, а также его приспособлен­ность к переходным (пуск, торможение) и другим режимам ра­боты. Хорошие –энергетические свойства должны быть у любого вида оборудования. Напри­мер, электрооборудование подключают к источнику питания через протяженные электрические сети с многократной транс­формацией энергии. Система электроснабжения имеет невысо­кий КПД (70%), и поэтому электроприемники сетей с многократной трансформацией имеют низкие энергетические свойства и вызывают огромные потери эле­ктроэнергии.

При оценке энергетических свойств необходимо учитывать не только номинальные, но и результирующие показатели. Рас­смотрим рабочие характеристики КПД двигателей, показанные на рис. 1.2. Номинальный КПД первого двигателя значительно выше, чем второго. Но это не может служить основанием для правильного выбора первого двигателя, так как повышенные значения КПД у него наблюдаются лишь в узком интервале на­грузок, а за пределами этого интервала энергетические свойства резко ухудшаются. При использовании таких двигателей трудно обеспечить для каждого из них строго оптимальную нагрузку. Поэтому средний КПД группы двигателей будет ниже номи­нального. У второго двигателя высокие значения КПД наблю­даются в широком диапазоне нагрузок. При применении таких двигателей их суммарный результирующий КПД будет близок к номинальному значению.

Рисунок 3.2- Характеристики КПД двигателей

Таким образом, электрооборудование должно иметь высокие энергетические показатели в достаточно широком интервале изменения нагрузок, питающего напряжения и других эксплуа­тационных факторов. При этом следует учитывать, что почти все факторы имеют случайный характер изменения.

Эргономические свойства определяют соответствие оборудо­вания психофизиологическим возможностям обслуживающего персонала. Они оцениваются по гигиеническим, антропометри­ческим, физиологическим и психологическим показателям, ус­тановленным ГОСТ 21033-75 и Г.ОСТ 16456-70. В группу гигие­нических показателей входят уровни освещенности, запыленнос­ти, шума, вибрации, напряженности магнитного поля и др. Обычно новое электрооборудование имеет удовлетворительные гигиенические показатели, но в процессе эксплуатации они ухудшаются. Особенно нестабильны механические и магнитные виброшумовые воздействия. Своевременное и качественное тех­ническое обслуживание позволяет поддерживать гигиенические показатели на требуемом уровне. К антропометрическим отно­сятся показатели, характеризующие соответствие конструкции и размещения оборудования росту обслуживаемого персонала. При правильном размещении электроустановки легко ее обслу­живать. Распределительные щиты и пункты не в полной мере удовлетворяют этим требованиям, так как они обычно располо­жены в узких проходах, на большой высоте и т. п. Другие эрго­номические свойства оборудования должны соответствовать зрительным, слуховым, силовым и рефлекторным возможностям человека и его трудовым профессиональным навыкам.

Качество электротехнических устройств представляет совокупность свойств, определяющих их пригодность для эксплуатации. Для оценки качества электротехнического устройства используется показатель качества. Под показателем качества понимают количественную характеристику свойств устройства применительно к определенным условиям его изготовления, монтажа и эксплуатации. Все показатели качества называются технико-экономическими, поскольку они характеризуют как технические особенности электроустановок, так и экономическую эффективность их применения.

Рассмотрим подробно толькопоказатели надёжности, так как они являются наиболее важными для оценки качества электротехнического устройства.

Надёжность - это свойство электротехнического устройства сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортирования. Надёжность является обязательным свойством любого электротехнического устройства.

Надежность является сложным понятием, которое в зависимости от назначения электротехнического устройства и условий его применения характеризуется рядом свойств:безотказности, долговечности, ремонтопригодности и сохраняемости.

Безотказность - это свойство электротехнического устройства непрерывно сохранять работоспособность в течение некоторой наработки. Под наработкой понимается продолжительность или объём работы электротехнического устройства. Обычно измеряется либо в часах, либо числом циклов или переключений. Так, в часах выражают наработку электродвигателей, распределительных устройств, а числом циклов или переключений - наработку переключателей и реле. Различают наработку между отказами, до первого отказа и др.

Долговечность - это свойство электротехнического устройства сохранять работоспособность до наступления предельного состояния при установленной системе технического обслуживания и ремонта. Предельное состояние электротехнического устройства определяется несоответствием хотя бы одного его параметра, характеризующего способность выполнять заданные функции, требованиям нормативно-технической и (или) конструкторской документации.

Ремонтопригодность - это свойство электротехнического устройства, заключающееся в приспособленности к предупреждению и обнаружению причин возникновения отказов, повреждений, поддержанию и восстановлению работоспособного состояния путем проведения технического обслуживания и ремонтов.

Сохраняемость - это свойство электротехнического устройства, сохранять значения показателей безотказности, долговечности и ремонтопригодности в течение и после хранения и (или) транспортирования.

Надёжность электротехнических устройств и их элементов закладывается при проектировании, обеспечивается в процессе производства и монтажа, поддерживается в условиях эксплуатации. Соответственно этому различают конструктивную, производственную и эксплуатационную надёжность. Для персонала, эксплуатирующего электротехнические устройства, наибольший интерес представляетэксплуатационная надёжность электротехнического устройства.

Для некоторых видов электрооборудования показатели конструктивной надежности приведены в табл. 3.1.

Таблица 3.1- Показатели конструктивной надежности электрических изделий

Наименование изделия Вид норма­тивно-тех­нической докумен­тации Значение показателя надежности
Трехфазные асин­хронные коротко-замкнутые двигате­ли серии 4А мощ­ностью от 0.06 до 400 кВт ГОСТ 19523-81 Средний срок службы не менее 15 лет при наработке не более 40 000 ч. На­работка обмотки статора не менее 20 000 ч. Наработка подшипников не менее 12000ч. Вероятность безотказ­ной работы не менее 0,9 при 10 000 ч наработки
Рубильники и разъ­единители на номи­нальные токи от 100 до 6300 А и на на­пряжение до 1 000 В ГОСТ 2327-76 Механическая износостойкость для аппаратов до 630 А не менее 10 000 циклов. Электрическая износостойкость аппаратов при коммутации тока: 100А -4000 циклов; 250А- 2500 циклов; 400А- 1600 циклов; 630 А - 1 000 цик­лов; 630 А - 1 000 циклов
Плавкие предохра­нители на напряже­ние до 100В ГОСТ 17242-79 Срок службы не менее 16 000 ч. Вероят­ность безотказной работы не менее 0,94 при доверительной вероятности 0,8
Электромагнитные пускатели на на­пряжение до 1 000 В ГОСТ 2491-81 Нижнее значение вероятности безотказ­ной работы при доверительной вероят­ности 0,8 за 2 млн. циклов не менее 0,92
Электроустановочные, светотехничес­кие изделия ГОСТ 8223-81 Вероятность безотказной работы при доверительной вероятности 0,8 должна быть не менее 0,85
Силовые кабели с пластмассовой изо­ляцией типа АВВГ, АПВГ ГОСТ 16442-80 Срок службы не менее 25 лет

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Технологический институт

Федерального государственного автономного образовательного учреждения высшего профессионального образования

«Южный федеральный университет» в г. Таганроге

Кафедра Электротехники и Мехатроники

Реферат

Факторы надёжность электрооборудования

Выполнил:

студент группы ЗКС-358

Максимов М.А.

Проверил:

Титаренко А.Д.

Таганрог 2011

Введение

Надежность электрооборудования и показатель MTBF

Методика расчета MTBF

Надежность и диагностика электрооборудования

Факторы, влияющие на надежность работы электрооборудования

Список литературы

ВВЕДЕНИЕ

Надежность любого электрооборудования и аппаратуры автоматики существенным образом зависит от условий эксплуатации. Условия эксплуатации в производственных помещениях характеризуются климатическими и электромеханическими воздействиями, режимами работы и отсутствием рационального технического обслуживания.

К климатическим воздействиям относятся температура, влажность, запыленность и загазованность окружающего воздуха, атмосферное давление, интенсивность дождя, выпадение росы и инея, скорость движения воздушной струи, ночные и дневные перепады температуры.

К электромеханическим воздействиям относятся вибрационные и ударные нагрузки при работе и перемещениях, колебаниях частоты и напряжения питания.

Повышенная температура вызывает перегрев электрооборудования, ускоряет старение изоляции, смазочных материалов и уплотнителей. Наоборот, пониженная температура снижает прочности пластмасс, резины, металла. Колебания температуры приводят к деформациям и заклиниванию подвижных элементов, нарушению теплообмена, снижению прочности паяных соединений. Повышенная влажность вызывает коррозию металлов, рост плесневых грибков, снижает диэлектрические свойства изоляции.

Повышенная запыленность и наличие агрессивных газов приводят к загрязнению смазки, снижают поверхностное сопротивление и вызывают коррозию изоляционных материалов. Наличие в атмосфере углекислого газа, окислов серы и азоты, а также высокая влажность приводят к образованию кислотных вод и капель конденсата, что также увеличивает скорость коррозии материалов, является одной из причин короткого замыкания токоведущих частей. Ориентировочный расчет надежности проводят в простейших предположениях и не учитывают эксплуатационных режимов использования элементов изделия.

Уточненный расчет надежности отличается от ориентировочного тем, что в нем учитывают электрические, тепловые и прочие эксплуатационные режимы элементов изделия.

Как ориентировочный, так и утоненный расчет приводят в предположении экспоненциальной надежности всех элементов и независимости отказов. Расчеты неизмеримо возрастают, когда модели надежности элементов, блоков и узлов отличны от экспоненциальной. В этих условиях, особенно для сложных и ответственных систем, используют методы статистического моделирования с применением ЭВМ.

Надежность работы электрооборудования и показатель MTBF

Важнейшей характеристикой любого электрооборудования, в том числе трансформаторов, является надежность его работы. Тем более этот показатель важен для системы энергообеспечения города, области или страны.

Для обеспечения бесперебойного функционирования электротехнических предприятий часто используется методика составления пользовательских отчетов с детальной статистикой по оборудованию и группам оборудования. При этом рассчитываются такие параметры, как:

* простои оборудования;

* стоимость технического обслуживания оборудования;

* коэффициент использования оборудования;

* средняя наработка на отказ;

* средний период между ремонтами;

* фактический износ оборудования;

* прогноз полного износа;

* другие показатели.

Такой подход позволяет наладить учет и техническое обслуживание производственного оборудования, перейти от аварийного к планово-предупредительному техобслуживанию, а также получить информацию для расследования причин отказов, наладить материально-техническое снабжение работ, вести планирование людских, материальных и энергетических ресурсов.

Благодаря этому, предприятие может продлить срок эксплуатации производственного оборудования, сократить простои, связанные с отказами, повысить производительность труда.

Это особенно важно для таких предприятий, например, как энергоснабжающая компания, для которых внеплановая остановка оборудования означает крупную аварию и обесточивание десятков населенных пунктов. Важнейшим параметром для определения сроков проведения регламентных и ремонтных работ является показатель «средняя наработка оборудования на отказ» -- Тер. Т.е. время, в течение которого отказывает половина данного оборудования. Этот показатель будет различен для различного оборудования и уменьшается по мере роста сложности оборудования. Для определения Тер используются сложные расчеты, учитывающие состав данного устройства и надежность его составных частей.

Тер = 1 / X ,

где X - вероятность безотказной работы изделия и, для разных элементов, имеющий величину порядка 0,1...25х

В последнее время для описания характеристик надежности того или иного устройства (даже таких простых, как DC/DC-преобразователь, сетевой источник питания и т.п.) широко используют показатель MTBF.

Показатель MTBF

Изначально показатель MTBF (Mean Time Between Failure) - в прямом переводе «среднее время наработки на отказ»был введен для характеристики надежности компьютерных систем. Поскольку производить расчеты надежности системы, включающей в себя многие сотни и даже тысячи компонентов, достаточно сложно, то был предложен упрощенный эмпирический подход для определения их надежности. Производители компьютерных компонентов, а теперь зачастую и производители электротехнических изделий, как правило, определяют их надежность на основании испытаний партии изделий по следующей формуле:

Т - время проведения испытаний;

N - количество испытуемых изделий;

No - количество изделий, вышедших из строя.

Например, если испытывалось 100 изделий в течение месяца и за это время 10 из них вышло из строя, то MTBF будет равно 10 месяцам. Т.е. предполагается, что через 10 месяцев все изделия выйдут из строя. В этой упрощенной формуле заложены главные недостатки методики определения MTBF.

1. Само понятие MTBF отражает совсем не то, что следует из его названия - «среднее время наработки на отказ». Реальное среднее время наработки на отказ составляет только половину MTBF, поскольку по определению за время MTBF все изделия выйдут из строя. Так, в рассмотренном выше примере это «среднее время» будет не 10 месяцев, а пять, поскольку в среднем все экземпляры изделия проработают не 10 месяцев, а вполовину меньше.

2. Методика расчета MTBF предполагает, что число отказов в единицу времени постоянно на протяжении всего срока эксплуатации. В реальности это, конечно, совершенно не так. На самом деле кривая отказов имеет вид, показанный на рисунке 1.

Рисунок 1 - Кривая отказов

В зоне 1 проявляются отказы изделий, имеющие дефекты изготовления. Здесь отказов много. В зоне 2 (от t1 до t2) количество отказов в единицу времени постоянно. В зоне 3 начинают проявляться износовые отказы.

Как видим, только в зоне 2 отказы вызываются случайными факторами, и их число постоянно в единицу времени. Однако изготовители электрооборудования распространяют эту зону на весь срок эксплуатации производимых ими устройств. Но реальная статистика отказов на протяжении всего срока эксплуатации подтверждает, что эта теоретическая модель расчета MTBF далека от действительности.

3. Показатель MTBF никак не связан со временем t2, а это важнейший показатель надежности работы системы. При достижении времени t2 необходимо вывести оборудование из эксплуатации и произвести регламентные работы либо заменить оборудование новым. Иначе надежность работы системы при переходе ее в зону 3 резко уменьшится.
Таким образом, MTBF, заявляемый производителем (если он честно произвел тестирование своих изделий), - это время, в течение которого изделие выйдет из строя со 100% вероятностью. Т.е. уже здесь очевидно стремление фирм - производителей ввести потребителя в заблуждения, увеличивая вдвое цифру, характеризующую время безотказной работы изделия.

На рисунке 2 приведены соотношения между MTBF и PPM для некоторых изделий. На рисунке шкала MTBF приведена в часах, а шкала

PPM - в отказах на миллион.

Рисунок 2 - Соотношения между MTBF и PPM

Кроме того, что показатель MTBF является эмпирическим, в настоящее время существует несколько методик его расчета. Наиболее часто используют расчет по методикам IEC61709, MIL-STD 217F или MIL-HDBK 217F. Тонкость здесь в том, что для одного и того же устройства, например DC/DC-преобразователя, показатель MTBF, рассчитанный по разным методикам может отличаться более чем в 10 раз. Это само по себе наводит на мысли о несовершенстве способа определения надежности устройства путем вычисления MTBF.

Методика расчета MTBF

Рассмотрим стандартное описание методики расчета MTBF, например, силовых трансформаторов по методике MIL-STD 217F, которое приводят производители этого оборудования.

1. Регистрируется дата включения в работу каждого трансформатора.

2. От этой даты отнимается 30 дней для компенсации времени приработки.

3. Умножаем количество трансформаторов на количество отработанных дней (-30) и умножаем на 24 часа в сутках. Количество часов работы делим на количество трансформаторов, отказавших за время испытаний.

4. Умножаем полученное значение на 0,95, чтобы учесть не включенные трансформаторы, т.е. трансформаторы, находящиеся в ремонте или в резерве.

Расчет производится по следующей формуле:

MTBF = {[(N1 х (D1 -30) х 24) + (N2 х (D2 (D3-30)x24)....]/Nf}x0,95,

N1, N2, N3 - количество включенных трансформаторов;

Dl, D2, D3 - число дней работы;

30 - число дней, отводимых на приработку;

0,95 - фактор компенсации для неработающих трансформаторов (в ремонте, на складе и т.п.);

24 - число часов в сутках;

Nf - количество трансформаторов, отказавших во время испытаний.

Пример:

* 50 трансформаторов испытывались 360 дней;

* 30 трансформаторов испытывались 250 дней;

* 20 трансформаторов испытывались 200 дней.

* во время испытаний отказал 1 трансформатор.

Произведя расчеты, получим MTBF, равный 604200 часам или 69 годам.

В заключение описания методики расчета, как правило, приводится следующая фраза: «Этот метод расчета является эмпирическим и, насколько нам известно, не описан в каких-либо стандартах».

Как относиться к заявляемым производителями MTBF?

Указывая в технической документации то или иное значение MTBF, производители электротехнического оборудования зачастую не задумываются, что указываемая ими цифра во многие миллионы часов противоречит не только законам физики, но и здравому смыслу. В самом деле, MTBF, равный 2,5 млн. часов, означает, что устройство до отказа должно проработать 285 лет. Понятно, что эта цифра абсурдная: за такой срок не только проржавеет корпус трансформатора, но и его обмотки превратятся в прах. В то же время, производители электротехнических изделий часто заявляют MTBF своих изделий равный 3 и даже 3,5 млн. часов. Причем такие результаты они получают в ходе честных испытаний своих изделий по приведенной выше методике. В чем здесь дело? Очевидно, что в самой упрощенной методике определения надежности, имеющей весьма узкие границы применимости. Действительно, как можно на основании 3- или даже 9-месячных испытаний изделия утверждать, что оно проработает 200 лет?

Расчет надежности электрооборудования -- это сложный и кропотливый процесс, связанный с анализом внутренней структуры устройства, с учетом характеристик используемых в нем компонентов, учетом напряженности режима работы каждой из составных частей устройства и т.д. Следует учитывать также резко ограниченный срок службы некоторых компонентов изделия. При определении MTBF все это игнорируется.

Так о чем же говорит тот факт, что заявляемый производителем MTBF у трансформатора 1 равен 2 млн. часов, а у трансформатора 2 - 1 млн. часов? Только о том, что в некоторой зоне работы трансформатора, после 100...300 часов приработки, но до 5...30 тыс. часов работы (т.е. до начала износовых отказов), вероятность отказа трансформатора 1 будет ниже. Но только при том условии, что оба трансформатора собраны на одной и той же элементной базе и имеют схожее схемное решение.

Таким образом, MTBF пригоден только для сравнения однородной продукции одного и того же производителя и только иногда может быть использован для сравнения аналогичной продукции разных производителей, при условии, что она тестировалась в одинаковых условиях. Но в любом случае MTBF ничего не говорит о средней наработке изделия на отказ Тср и о значении t2 . Соответственно, использование MTBF для расчетов надежности функционирования электрооборудования выглядит более чем сомнительно. Для решения задач, о которых говорилось в начале статьи, следует использовать Тер, а не MTBF.

Надежность и диагностика электрооборудования

Пониженная температура снижает прочности пластмасс, резины, металла. Колебания температуры приводят к деформациям и заклиниванию подвижных элементов, нарушению теплообмена, снижению прочности паяных соединений. Повышенная влажность вызывает коррозию металлов, рост плесневых грибков, снижает диэлектрические свойства изоляции. Повышенная запыленность и наличие агрессивных газов приводят к загрязнению смазки, снижают поверхностное сопротивление и вызывают коррозию изоляционных материалов. Наличие в атмосфере углекислого газа, окислов серы и азоты, а также высокая влажность приводят к образованию кислотных вод и капель конденсата, что также увеличивает скорость коррозии материалов, является одной из причин короткого замыкания токоведущих частей.

Ориентировочный расчет надежности проводят в простейших предположениях и не учитывают эксплуатационных режимов использования элементов изделия. Уточненный расчет надежности отличается от ориентировочного тем, что в нем учитывают электрические, тепловые и прочие эксплуатационные режимы элементов изделия. Как ориентировочный, так и утоненный расчет приводят в предположении экспоненциальной надежности всех элементов и независимости отказов. Расчеты неизмеримо возрастают, когда модели надежности элементов, блоков и узлов отличны от экспоненциальной. В этих условиях, особенно для сложных и ответственных систем, используют методы статистического моделирова ния с применением ЭВМ.

Определим надежность всей системы с учетом условий эксплуатации и без них. При проведении ориентированных расчетов надежности без учета условий эксплуатации необходимо считать, что анализируемый блок управления и защиты (БУ и З) структурно является последовательным, отказы элементов независимы и отказ одного элемента приводит к отказу всего БУ и З в целом. В этом случае математическая модель отказов будет иметь экспоненциальный вид. Определяем интенсивность отказа lі каждого элемента по Таблице 1.2 - Интенсивности отказов элементов при температуре окружающей среды 20°С и относительной влажности 50-70 %. Таблица 1.2 - Интенсивности отказов элементов при температуре окружающей среды 20°С и относительной влажности 50-70 %.

Наименование элемента lіЧ10-6, ч-1 Наименование элемента lіЧ10-6, ч-1 Диоды: кремниевые 0,2 Трансформаторы: силовые 1,0 Контакторы (на один контакт) 2,5 Дроссели 0,35 Разъемы штепсельные: на один штырек 0,3 Интегральные микросхемы 0,25 Реле (на одну контактную группу): Электромагнитные времени 0,3 1,2 Конденсаторы: Слюдяные электролитические 0,25 0,35 Транзисторы: Германиевые кремниевые 0,3 0,5 Резисторы: металлопленочные, 0,04 Для каждой группы, определяем групповое значение интенсивности отказов: для силового трансформатора: для штепсельного разъема: для контактора трехполюсного: для реле электромагнитного (три контактные группы): для реле пневматического (две контактные группы): для конденсатора электролитического: для конденсатора слюдяного: для резистора металлопленочного: для резистора проволочного: для транзистора германиевого: для транзистора кремниевого: для диода кремниевого: для интегральной микросхемы: для дросселя: Интенсивность отказов БУ и З в целом определяется суммой интенсивностей отказов всех групп составляющих элементов: Результирующая вероятность безотказной работы без учета условий эксплуатации определяется по формуле: Среднее время безотказной работы БУ и З (Тср) без учета условий эксплуатации определяется по формуле: Расчет надежности анализируемого блока управления и защиты без учета условий эксплуатации показал, что результирующая вероятность безотказной работы всей системы равна 0,751, что является низкой величиной. Это является следствием высокого значения интенсивности отказа некоторых элементов системы (например, контактор, реле времени). Для увеличения вероятности безотказной работы рекомендуется, либо заменить эти элементы более надежными (например, контактор заменить пускателем), либо зарезервировать их элементами с более большей вероятностью безотказной работы. Но на практике данные рекомендации выполнить не всегда является возможным. Уточненный расчет (с учетом условий эксплуатации) При проведении уточненного расчета надежности с учетом условий эксплуатации необходимо учитывать воздействия внешней среды, в которой функционирует БУ и З (температура, влажность, давление, вибрация, запыленность и т.п.), а также особенности энергетического режима работы самого БУ и З (выделяемой элементами БУ и З тепловой энергии, величин электромагнитных нагрузок, механических напряжений и т.п.). Степень влияния различных факторов условий эксплуатации на показатели надежности различна.

При приближенных расчетах учет влияния условий эксплуатации на надежность работы БУ и З производят путем введения следующих показателей: температура поверхности элемента t°; коэффициент внешних условий kэ, суммарно учитывающий остальные внешние условия эксплуатации; коэффициент нагрузки элемента kн, представляющий отношение фактических значений нагрузки к номинальным. Параметры электрических нагрузок для различных элементов БУ и З различны. Так, для резисторов параметром нагрузки является мощность рассеивания; для конденсаторов - рабочее напряжение; для полупроводниковых диодов - выпрямленный ток и обратное напряжение; для транзисторов - суммарная мощность рассеивания на переходах в непрерывном и импульсном режимах; для трансформаторов - мощность первичной обмотки; для дросселей - плотность тока в обмотках; для электрических машин - рабочая мощность; для пускателей, переключателей, штепсельных разъемов - ток, протекающий через контакты; для реле - ток через контакты и время нахождения обмотки под напряжением. Поэтому при расчете показателей надежности БУ и З с учетом условий эксплуатации следует различать коэффициент нагрузки по току, коэффициент нагрузки по напряжению и коэффициент нагрузки по мощности. Таблица 1.3 - Коэффициенты нагрузки электротехнических устройств Наименование элемента Коэффициент нагрузки Рекомендуемое значение Диоды Дроссели Конденсаторы Коммутационные элементы Резисторы Реле, контакторов, магнитные пускатели Транзисторы, интегральные микросхемы Трансформаторы силовые Трансформаторы вращающиеся Электрические машины kнi, kнv kнi kнv kнi kнw kнi kнw kнw kнv kнw 0,7 0,9 0,85 0,9 0,8 0,8 0,85 0,9 0,95 0,9 Результирующее значение интенсивности отказов элементов БУ и З с учетом условий эксплуатации ljэ можно определить по формуле: при температуре t1?=40?С внутри блока управления и защиты: для силового трансформатора: для штепсельного разъема: для контактора трехполюсного: для реле электромагнитного (три контактные группы): для реле пневматического (две контактные группы): для конденсатора электролитического: для конденсатора слюдяного: для резистора металлопленочного: 150%">для резистора проволочного: для транзистора германиевого: для транзистора кремниевого: для диода кремниевого: для интегральной микросхемы: для дросселя: при температуре t2?=50?С внутри блока управления и защиты: для силового трансформатора: для штепсельного разъема: для контактора трехполюсного: для реле электромагнитного (три контактные группы): для реле пневматического (две контактные группы): для конденсатора электролитического: для конденсатора слюдяного: для резистора металлопленочного: для резистора проволочного: для транзистора германиевого: для транзистора кремниевого: для диода кремниевого: для интегральной микросхемы: для дросселя: при температуре t3?=60?С внутри блока управления и защиты: для силового трансформатора: для штепсельного разъема: для контактора трехполюсного: для реле электромагнитного (три контактные группы): для реле пневматического (две контактные группы): для конденсатора электролитического: для конденсатора слюдяного: для резистора металлопленочного: для резистора проволочного: для транзистора германиевого: для транзистора кремниевого: для диода кремниевого: для интегральной микросхемы: для дросселя: Значения коэффициента, учитывающего условия эксплуатации для элементов БУ и З в зависимости от коэффициента нагрузки и температуры элементов определены по зависимостям представленным на Рисунке 1.2 - Семейство кривых. Суммарная интенсивность отказов Sljэ и интенсивность отказов всего БУ и З, с учетом условий эксплуатации lsэ определяется по формуле: для 40°С: для 50°С: для 60°С: Рассчитываем результирующую вероятность безотказной работы Рэ(t) и среднее время безотказной работы для Тср.э БУ и З по формулам: для 40°С: для 50°С: ign:justify;text-indent:36.0pt;line-height: 150%">для 60°С: Результаты расчета всех параметров элементов блока управления и защиты приведены в Таблице 1.3 - Результаты расчета. Температурные зависимости и представлены на рисунке 1.1 - Зависимость результирующей интенсивности отказа а) и результирующей вероятности безотказной работы б) БУ и З от температуры. Расчет надежности анализируемого блока управления и защиты с учетом условий эксплуатации показал, что результирующая вероятность безотказной работы всей системы уменьшается при увеличении температуры элементов и вследствие влияния условий окружающей среды. Для увеличения вероятности безотказной работы системы рекомендуется уменьшить влияние окружающей среды на элементы системы, увеличив герметичность оболочек элементов, а также недопущение перегрева элементов путем применения более лучших систем охлаждения. Надежность всех объектов также зависит от коэффициента нагрузки, чем он больше, тем надежность объекта меньше.

Решить эту проблему можно либо путем уменьшения коэффициента нагрузки для этого же объекта, либо заменой этого объекта объектом большей мощности при том же коэффициенте нагрузки, но это сопряжено с увеличением экономических затрат, объемов, веса, габаритов, затрат электроэнергии. Поэтому находят такую структуру, которая в условиях экономических ограничений обладает наибольшей надежностью, или находят такой вариант структуры, для которого при ограничении на надежность стоимость затрат наименьшая.

Какие факторы влияют на надежность работы электрооборудования

Опыт эксплуатации показывает, что надежность работы электрооборудования зависит от многочисленных и разнообразных факторов, которые условно могут быть разделены на четыре группы; конструктивные, производственные, монтажные, эксплуатационные.

Конструктивные факторы обусловлены установкой в устройство малонадежных элементов; недостатками схемных и конструктивных решений, принятых при проектировании; применением комплектующих элементов, не соответствующих условиям окружающей среды.

Производственные факторы обусловлены нарушениями технологических процессов, загрязненностью окружающего воздуха, рабочих мест и приспособлений, слабым контролем качества изготовления и монтажа и др.

В процессе монтажа электротехнических устройств их надежность может быть снижена при несоблюдении требований технологии.

Условия эксплуатации оказывают наибольшее влияние на надежность электротехнических устройств. Удары, вибрация, перегрузки, температура, влажность, солнечная радиация, песок, пыль, плесень, коррозирующие жидкости и газы, электрические и магнитные поля -- все влияет на работу устройств. Различные условия эксплуатации по-разному могут сказываться на сроке службы и надежности работы электроустановок.

Ударно-вибрационные нагрузки значительно снижают надежность электротехнических устройств. Воздействие ударно-вибрационных нагрузок может в ряде случае быть значительнее воздействия других механических, а также электрических и тепловых нагрузок. В результате длительного знакопеременного воздействия даже небольших ударно-вибрационных нагрузок происходит накопление усталости в элементах, что приводит обычно к внезапным отказам. Под воздействием вибраций и ударов возникают многочисленные механические повреждения элементов конструкции, ослабляются их крепления и нарушаются контакты электрических соединений.

Нагрузки при циклических режимах работы , связанных с частыми включениями и выключениями электротехнического устройства, так же как и ударно-вибрационные нагрузки, способствуют возникновению и развитию признаков усталости элементов. Физическая природа повышения опасности отказов устройств при их включении и выключении заключается в том, что во время переходных процессов в их элементах возникают сверхтоки и перенапряжения, значение которых часто намного превосходит (хотя и кратковременно) значения, допустимые техническими условиями.

Электрические и механические перегрузки происходят в результате неисправности механизмов, значительных изменений частоты или напряжения питающей сети, загустения смазки механизмов в холодную погоду, превышения номинальной расчетной температуры окружающей среды в отдельные периоды года и дня и т. д.Перегрузки приводят к повышению температуры нагрева изоляции электротехнических устройств выше допустимой и резкому снижению срока ее службы.

Климатические воздействия , более всего температура и влажность, влияют на надежность и долговечность любого электротехнического устройства.

При низких температурах снижается ударная вязкость металлических деталей электротехнических устройств: меняются значения технических параметров полупроводниковых элементов; происходит «залипание» контактов реле; разрушается резина.

Вследствие замерзания или загустения смазочных материалов затрудняется работа переключателей, ручек управления и других элементов. Высокие температуры также вызывают механические и электрические повреждения элементов электротехнического устройства, ускоряя его износ и старение.

Влияние повышенной температуры на надежность работы электротехнических устройств проявляется в самых разнообразных формах: образуются трещины в изоляционных материалах, уменьшается сопротивление изоляции, а значит, увеличивается опасность электрических пробоев, нарушается герметичность (начинают вытекать заливочные и пропиточные компаунды. В результате нарушения изоляции в обмотках электромагнитов, электродвигателей и трансформаторов возникают повреждения. Заметное влияние оказывает повышенная температура на работу механических элементов электротехнических устройств.

Под влиянием влаги происходит очень быстрая коррозия металлических деталей электротехнических устройств, уменьшается поверхностное и объемное сопротивление изоляционных материалов, появляются различные утечки, резко увеличивается опасность поверхностных пробоев, образуется грибковая плесень, под воздействием которой поверхность материалов разъедается и электрические свойства устройств ухудшаются.

Пыль , попадая в смазку, оседает на частях и механизмах электротехнических устройств и вызывает быстрый износ трущихся частей и загрязнение изоляции. Пыль наиболее опасна для электродвигателей, в которые она попадает с засасываемым для вентиляции воздухом. Однако и в других элементах электротехнических устройств износ намного ускоряется, если пыль проникает сквозь уплотнения к поверхности трения. Поэтому при большой запыленности особое значение приобретает качество уплотнений элементов электрических устройств и уход за ними.

Качество эксплуатации электротехнических устройствзависит от степени научной обоснованности применяемых методов эксплуатации и квалификации обслуживающего персонала (знание материальной части, теории и практики надежности, умение быстро находить и устранять неисправности и т.п.). Применение профилактических мероприятий (регламентные работы, осмотры, испытания), ремонта, использование опыта эксплуатации электротехнических устройств обеспечивают их более высокую эксплуатационную надежность.

надежность работа электрооборудование показатель mtbf

Список литературы

1. Сборник задач по теории надежности /А.Н. Половко, И.М. Маликов.-М: Сов. Радио, 1972.-408 с., ил. 2. Певзнер Л.Д. Надежность горного электрооборудования и технических средств шахтной автоматики. - М.: Недра, 1983. - 198 с., ил.

Размещено на Allbest.ru

Подобные документы

    Основные показатели надежности электрооборудования, показатели безотказности объектов, ремонтопригодность, долговечность и сохраняемость электрооборудования. Определение резервного фонда электрооборудования, особенности его технической диагностики.

    учебное пособие , добавлен 26.04.2010

    Показатели безотказности работы электрооборудования: вероятность безотказной работы, плотность распределения и интенсивность отказов. Средняя наработка до отказа. Показатели наработки оборудования, рассеивания величины. Расчет показателей надежности.

    курсовая работа , добавлен 25.09.2014

    Задание по нахождению вероятности безотказной работы электроустановки со всеми входящими в нее элементами. Надежность как важнейший технико-экономический показатель качества любого технического устройства. Структурная надежность электрической машины.

    контрольная работа , добавлен 31.03.2009

    Описание основных мероприятий, направленных на повышение эксплуатационной надежности электрооборудования. Формы контроля состояния токоведущих частей и контактных соединений. Обслуживание потребительских подстанций. Эксплуатация трансформаторного масла.

    реферат , добавлен 24.12.2008

    Обоснование периодичности текущего ремонта электрооборудования. Описание технологии текущего ремонта электродвигателя. Компоновка участка по проведению ТО и ТР электрооборудования. Выбор оборудования для диагностирования и ремонта. Задачи проектирования.

    курсовая работа , добавлен 27.02.2009

    Принципы выбора рационального напряжения, режима нейтрали сети и схемы электроснабжения подстанции. Организация эксплуатации и ремонта трансформаторной подстанции "Новая ". Оценка технического состояния и эксплуатационной надежности электрооборудования.

    курсовая работа , добавлен 02.11.2009

    Организация эксплуатации энергосистемы для обеспечения бесперебойного снабжения потребителей электроэнергией. Основные мероприятия, выполняемые при обслуживании электрооборудования для повышения эффективности его работы, виды профилактических работ.

    реферат , добавлен 05.12.2009

    Модернизация трансформаторной подстанции инструментального цеха ОАО НПК "Уралвагонзавод"; обеспечение надежности системы электроснабжения и электрооборудования: выбор оптимального числа трансформаторов, защитной аппаратуры, расчет кабелей и проводов.

    дипломная работа , добавлен 25.11.2011

    Определение объема работ по эксплуатации электрооборудования предприятия. Перечень и трудоемкость выполнения работ по обслуживанию и ремонту электрооборудования. Система планово-предупредительного ремонта и технического обслуживания электрооборудования.

    курсовая работа , добавлен 30.09.2013

    Расход электроэнергии всего и по видам потребления. Присоединенная мощность электроприемников. Характеристика и экономические показатели работы. Периодичность технического обслуживания и ремонта электрооборудования. Расчёт потребности в материалах.