Как работает мозг в разных состояниях. Принципы работы мозга

История компьютерных наук в целом сводится к тому, что учёные пытаются понять, как работает человеческий мозг, и воссоздать нечто аналогичное по своим возможностям. Как именно учёные его исследуют? Представим, что в XXI веке на Землю прилетают инопланетяне, никогда не видевшие привычных нам компьютеров, и пытаются исследовать устройство такого компьютера. Скорее всего, они начнут с измерения напряжений на проводниках, и обнаружат, что данные передаются в двоичном виде: точное значение напряжения не важно, важно только его наличие либо отсутствие. Затем, возможно, они поймут, что все электронные схемы составлены из одинаковых «логических вентилей», у которых есть вход и выход, и сигнал внутри схемы всегда передаётся в одном направлении. Если инопланетяне достаточно сообразительные, то они смогут разобраться, как работают комбинационные схемы - одних их достаточно, чтобы построить сравнительно сложные вычислительные устройства. Может быть, инопланетяне разгадают роль тактового сигнала и обратной связи; но вряд ли они смогут, изучая современный процессор, распознать в нём фон-неймановскую архитектуру с общей памятью, счётчиком команд, набором регистров и т.п. Дело в том, что по итогам сорока лет погони за производительностью в процессорах появилась целая иерархия «памятей» с хитроумными протоколами синхронизации между ними; несколько параллельных конвейеров, снабжённых предсказателями переходов, так что понятие «счётчика команд» фактически теряет смысл; с каждой командой связано собственное содержимое регистров, и т.д. Для реализации микропроцессора достаточно нескольких тысяч транзисторов; чтобы его производительность достигла привычного нам уровня, требуются сотни миллионов. Смысл этого примера в том, что для ответа на вопрос «как работает компьютер?» не нужно разбираться в работе сотен миллионов транзисторов: они лишь заслоняют собой простую идею, лежащую в основе архитектуры наших ЭВМ.

Моделирование нейронов

Кора человеческого мозга состоит из порядка ста миллиардов нейронов. Исторически сложилось так, что учёные, исследующие работу мозга, пытались охватить своей теорией всю эту колоссальную конструкцию. Строение мозга описано иерархически: кора состоит из долей, доли - из «гиперколонок» , те - из «миниколонок» … Миниколонка состоит из примерно сотни отдельных нейронов.

По аналогии с устройством компьютера, абсолютное большинство этих нейронов нужны для скорости и эффективности работы, для устойчивости ко сбоям, и т.п.; но основные принципы устройства мозга так же невозможно обнаружить при помощи микроскопа, как невозможно обнаружить счётчик команд, рассматривая под микроскопом микропроцессор. Поэтому более плодотворный подход - попытаться понять устройство мозга на самом низком уровне, на уровне отдельных нейронов и их колонок; и затем, опираясь на их свойства - попытаться предположить, как мог бы работать мозг целиком. Примерно так пришельцы, поняв работу логических вентилей, могли бы со временем составить из них простейший процессор, - и убедиться, что он эквивалентен по своим способностям настоящим процессорам, даже хотя те намного сложнее и мощнее.

На рисунке, приведённом чуть выше, тело нейрона (слева) - небольшое красное пятнышко в нижней части; всё остальное - дендриты , «входы» нейрона, и один аксон , «выход». Разноцветные точки вдоль дендритов - это синапсы , которыми нейрон соединён с аксонами других нейронов. Работа нейронов описывается очень просто: когда на аксоне возникает «всплеск» напряжения выше порогового уровня (типичная длительность всплеска 1мс, уровень 100мВ), то синапс «пробивается», и всплеск напряжения переходит на дендрит. При этом всплеск «сглаживается»: вначале напряжение за 5..20мс растёт до порядка 1мВ, затем экспоненциально затухает; таким образом, длительность всплеска растягивается до ~50мс.

Если несколько синапсов одного нейрона активизируются с небольшим интервалом по времени, то «разглаженные всплески», возбуждаемые в нейроне каждым из них, складываются. Наконец, если одновременно активны достаточно много синапсов, то напряжение на нейроне поднимается выше порогового уровня, и его собственный аксон «пробивает» синапсы связанных с ним нейронов.

Чем мощнее были исходные всплески, тем быстрее растут разглаженные всплески, и тем меньше будет задержка до активизации следующих нейронов.

Кроме того, бывают «тормозящие нейроны», активация которых понижает общее напряжение на связанных с ним нейронах. Таких тормозящих нейронов 15..25% от общего числа.

У каждого нейрона тысячи синапсов; но в любой момент времени активны не больше десятой части всех синапсов. Время реакции нейрона - единицы мс; такого же порядка задержки на распространение сигнала вдоль дендрита, т.е. эти задержки оказывают существенное влияние на работу нейрона. Наконец, пару соседних нейронов, как правило, связывает не один синапс, а порядка десятка - каждый с собственным расстоянием до тел обоих нейронов, а значит, с собственной длительностью задержки. На иллюстрации справа два нейрона, изображённые красным и синим, связаны шестью синапсами.

У каждого синапса своё «сопротивление», понижающее входящий сигнал (в примере выше - со 100мВ до 1мВ). Это сопротивление динамически подстраивается: если синапс активизировался сразу перед активацией аксона - то, видимо, сигнал с этого синапса хорошо коррелирует с общим выводом, так что сопротивление понижается, и сигнал будет вносить больший вклад в напряжение на нейроне. Если же синапс активизировался сразу после активации аксона - то, видимо, сигнал с этого синапса не имел отношения к активации аксона, так что сопротивление синапса повышается. Если два нейрона связаны несколькими синапсами с разной длительностью задержки, то такая подстройка сопротивлений позволяет выбрать оптимальную задержку, или оптимальную комбинацию задержек: сигнал начинает доходить именно тогда, когда от него больше всего пользы.

Таким образом, модель нейрона, принятая исследователями нейронных сетей - с единственной связью между парой нейронов и с мгновенным распространением сигнала от одного нейрона к другому - весьма далека от биологической картины. Кроме того, традиционные нейронные сети оперируют не временем отдельных всплесков, а их частотой : чем чаще всплески на входах нейрона, тем чаще будут всплески на выходе. Те детали устройства нейрона, которые отброшены в традиционной модели - существенны или несущественны они для описания работы мозга? Нейробиологи накопили огромную массу наблюдений об устройстве и поведении нейронов - но какие из этих наблюдений проливают свет на общую картину, а какие - лишь «детали реализации», и - как и предсказатель переходов в процессоре - не влияют ни на что, кроме эффективности работы? Джеймс считает, что именно временны́е характеристики взаимодействия между нейронами и позволяют приблизиться к пониманию вопроса; что асинхронность так же важна для работы мозга, как синхронность - для работы ЭВМ.

Ещё одна «деталь реализации» - ненадёжность нейрона: с некоторой вероятностью он может активизироваться спонтанно, даже если сумма напряжений на его дендритах не достигает порогового уровня. Благодаря этому, «обучение» колонки нейронов можно начинать с любого достаточно большого сопротивления на всех синапсах: вначале никакая комбинация активаций синапсов не будет приводить к активации аксона; затем спонтанные всплески приведут к тому, что понизится сопротивление синапсов, которые активизировались незадолго до этих спонтанных всплесков. Таким образом нейрон начнёт распознавать конкретные «паттерны» входных всплесков. Что самое важное, паттерны, похожие на те, на которых нейрон обучался, - тоже будут распознаваться, но всплеск на аксоне будет тем слабее и/или позднее, чем меньше нейрон «уверен» в результате. Обучение колонки нейронов получается намного эффективнее, чем обучение обычной нейронной сети: колонке нейронов не нужен контрольный ответ для тех образцов, на которых она обучается - фактически, она не распознаёт , а классифицирует входные паттерны. Кроме того, обучение колонки нейронов локализовано - изменение сопротивления синапса зависит от поведения лишь двух соединённых им нейронов, и никаких других. В результате этого, обучение приводит к изменению сопротивлений вдоль пути следования сигнала, тогда как при обучении нейронной сети веса изменяются в обратном направлении: от нейронов, ближайших к выходу - к нейронам, ближайшим ко входу.

Например, вот колонка нейронов, обученная распознавать паттерн всплесков (8,6,1,6,3,2,5) - значения обозначают время всплеска на каждом из входов. В результате обучения, задержки настроились на точное соответствие распознаваемому паттерну, так что напряжение на аксоне, вызываемое правильным паттерном, получается максимально возможным (7):

Та же самая колонка отреагирует на похожий входной паттерн (8,5,2,6,3,3,4) меньшим всплеском (6), причём напряжение достигает порогового уровня заметно позднее:

Наконец, тормозящие нейроны могут использоваться для реализации «обратной связи»: например, как на иллюстрации справа, - подавлять повторные всплески на выходе, когда вход длительное время остаётся активным; или подавлять всплеск на выходе, если он слишком задерживается по сравнению со входными сигналами, - чтобы сделать классификатор более «категоричным»; или, в нейросхеме для распознавания паттернов, разные колонки-классификаторы могут быть связаны тормозящими нейронами, чтобы активация одного классификатора автоматически подавляла все остальные классификаторы.

Распознавание изображений

Для распознавания рукописных цифер из базы MNIST (28x28 пикселей в оттенках серого) Джеймс из колонок-классификаторов, описанных выше, собрал аналог пятислойной «свёрточной нейросети» . Каждая из 64 колонок в первом слое обрабатывает фрагмент 5х5 пикселей из исходного изображения; такие фрагменты перекрываются. Колонки второго слоя обрабатывают по четыре выхода из первого слоя каждая, что соответствует фрагменту 8х8 пикселей из исходного изображения. В третьем слое всего четыре колонки - каждой соответствует фрагмент из 16х16 пикселей. Четвёртый слой - итоговый классификатор - разбивает все изображения на 16 классов: класс назначается в соответствии с тем, который из нейронов активизируется первым. Наконец, пятый слой - классический перцептрон, соотносящий 16 классов с 10 контрольными ответами.

Классические нейросети достигают на базе MNIST точности 99.5% и даже выше; но по утверждению Джеймса, его «гиперколонка» обучается за гораздо меньшее число итераций, благодаря тому, что изменения распространяются вдоль пути следования сигнала, а значит, затрагивают меньшее число нейронов. Как и для классической нейросети, разработчик «гиперколонки» определяет только конфигурацию соединений между нейронами, а все количественные характеристики гиперколонки - т.е. сопротивление синапсов с разными задержками - приобретаются автоматически в процессе обучения. Кроме того, для работы гиперколонки требуется на порядок меньшее число нейронов, чем для аналогичной по возможностям нейросети. С другой стороны, симуляция таких «аналоговых нейросхем» на электронном компьютере несколько затрудняется тем, что в отличие от цифровых схем, работающих с дискретными сигналами и с дискретными интервалами времени - для работы нейросхем важны непрерывность изменения напряжений и асинхронность нейронов. Джеймс утверждает, что шага симуляции в 0.1мс достаточно для корректной работы его распознавателя; но он не уточнял, сколько «реального времени» занимает обучение и работа классической нейросети, и сколько - обучение и работа его симулятора. Сам он давно на пенсии, и свободное время он посвящает совершенствованию своих аналоговых нейросхем.

Касательно работы мозга существует множество противоречивых научных теорий и гипотез. Эмоции решения у человека зачастую противостоят друг другу. Эмоции появляются у человека ввиду природы мозга, запрограммированного на систему инстинктов. Так, при виде положительных стимулов - вкусной еды, денег как источника удовольствия, привлекательного представителя противоположного пола - мозг вырабатывает сигналы и отправляет их гормональной системе. Вырабатываются химические вещества, влияющие на реакцию человека - он может начать испытывать страх, радость, или восхищение.

Работы по эмоциональному интеллекту имеют тем больший вес, что могут применяться в бизнесе, маркетинге и политике. Многие решения человек применяет подсознательно. Причем это не всегда плохо. В заднем отделе мозга формируются паттерны: шаблоны человеческого поведения в испытанных ранее ситуациях.

IQ: рациональное мышление

Считается, что левое отвечает за рациональные действия. Поэтому левое полушарие называют аналитическим, а правое - творческим. В полной мере данная гипотеза даже не могла оправдаться. Мозг человека гораздо более сложен. Он разделен на тысячи областей, каждая из которых отвечает за одну из возможных функций. Имеется и ряд «пустых» областей, функциональность которых развивается в зависимости от потребностей личности. Тем не менее большинство ученых к выводу о том, что большая часть аналитических участков мозга действительно находится в левом полушарии.

Основа рационального мышления - приверженность знаковым системам. Отделы левого полушария активизируются при чтении, и решении математических задач. Какая бы то ни было письменность не свойственна животным, их левые полушария задействованы в меньшей степени, чем в мозге человека. Исключение составляют высшие млекопитающие (дельфины, киты).

Связь между полушариями

Связь между полушариями мозга и отдельными участками образуется за счет нейронных сетей. Это своего рода провода, передающие электрические мозговые импульсы с невообразимой скоростью. Мышление человека (мыслительный вектор, скорость, черты характера) напрямую зависит от наличия сформированных нейронных связей.

Считается, что люди, обладающие проявлениями гениальности, имеют огромное количество устойчивых связей нейронов и синапсов (еще один вид соединительных «проводов») между левым и правым полушариями. Это позволяет им анализировать определенную знаковую информацию, творчески ее интерпретировать и преподносить в переработанном виде в другой знаковой системе. Развитию устойчивых нейронных связей способствуют привычки. Вот почему многие гении занимались любимым делом уже в раннем возрасте - сформировавшиеся привычки способствовали укреплению нейронных связей, которые позволяли им творить произведения мирового масштаба.

Видео по теме

Связанная статья

Источники:

  • как работает человеческий мозг

Головной мозг состоит из миллиардов нервных клеток, которые имеют собственные структурные особенности и расположены в соответствии с выполняемыми ими функциями. Орган контролирует деятельность всего организма, поведение, мысли, чувства. Сложная высокоуровневая нервная система соединяет тело человека и обеспечивает функционал каждого органа.

Инструкция

Большой мозг является самой большой частью органа и формирует его структуру. Наружный слой отдела называется церебральным кортексом (корой головного мозга) или серым веществом. Внутренние извилины и изгибы увеличивают полезную площадь ткани для обеспечения обработки большего количества информации.

Часть разделяется на два полушария, которые связываются между собой при помощи толстых нервных волокон, называемых мозолистым телом и расположенных в основании разделов. Полушария в свою очередь разделяются на 4 доли, которые и обеспечивают работу мозга. Фронтальная доля отвечает за мыслительные процессы, а также кратковременную память и передвижение. Теменные доли обрабатывают информацию, полученную с органов чувств человека. Затылочный отдел осуществляет построение изображений, получаемых при помощи глаз, а затем связывают данную информацию с памятью. Височная часть обеспечивает сохранение данных, интерпретацию запахов, вкусовых ощущений и звука.

Мозжечок состоит из морщинистой ткани и располагается чуть ниже основной части мозга. Орган отвечает за координацию движений тела и обрабатывает информацию, полученную от мышц, глаз и ушей. Ствол мозга связывает мозг с позвоночником и контролирует часть жизненно важных функций, например, сердцебиение, давление и дыхание. Данный раздел также участвует в процессе сна.

Структуры, расположенные внутри головного мозга, контролируют эмоции и воспоминания и составляют лимбическую систему. Таламус направляет сигналы, полученные от головного мозга, к церебральным полушариям. Гипоталамус обрабатывает эмоции, регулирует температуру тела и отвечает за другие важные нужды, например, прием пищи или сон. Гиппокамп отвечает за распределение воспоминаний в соответствующих секциях большого мозга, а также извлекает их при необходимости.

Мозг – самая сложная система человеческого организма, которая управляет всей его деятельностью.

При помощи этой системы контролируются не только осознанные процессы: речь, движение, эмоции. Мозг также регулирует все процессы, которые происходят в организме автоматически: движение, кровообращение, поддержание равновесия и многие другие.

Ученые до сих пор спорят о том, как работает мозг человека. Однако кое-что им уже хорошо известно.

Электрохимическая машина

Человеческий мозг весит всего полтора килограмма, в которые «помещаются» около 100 млрд клеток. Большинство из них – нейроны .

Принцип работы этих клеток примерно такой же, как у обычного электрического выключателя. У нейронов есть состояние покоя (выключено) и активное состояние (включено), при котором электрический импульс передается дальше по «проводу».

Каждый нейрон состоит из тела клетки, «провода» – аксона , на котором есть своеобразный «контакт» – синапс . Посредством него нейрон соединяется с другим нейроном.

Для этого в нейронах производятся особые химические вещества – нейромедиаторы . К ним относятся, например, адреналин, дофамин и другие. Различные нейроны используют и разные химические вещества. Выброс нейромедиаторов для вызова других нейронов происходит в синапсе.

Кстати, все нервные клетки способны генерировать электрический разряд, общая мощность которого может достигать 60 ватт .

Электрическая активность головного мозга – это один из важных показателей его работы. Ее можно измерить при помощи специального устройства – электроэнцефалографа (ЭЭГ).

Как в мозг поступает информация?

Все информация от тела поступает в головной мозг через спинной мозг . Он напоминает собой толстый телефонный кабель с большим количеством жил внутри.

Если спинной мозг поврежден – человек не может двигаться или чувствовать, что происходит с его телом. Также через спинной мозг отдаются команды телу.

А вот информация от глаз и ушей идет непосредственно в головной мозг , минуя спинной. Именно поэтому полностью парализованные люди могут без проблем видеть и слышать.

Информация из спинного мозга обрабатывается в сером веществе , находящемся на поверхности полушарий мозга. Белым веществом называется «проводящая система», которая состоит из аксонов.

Какие процессы контролируют разные полушария?

Значительная часть мозга относится к двум полушариям – правому и левому. Они выполняют разные функции.

Правое полушарие отвечает за группировку информации, левое – за ее анализ. Например, правое полушарие «видит» машину и признает, что это действительно машина. А левое – «определяет», что это не просто машина, а машина соседа.

Распространено мнение, что правое полушарие отвечает за восприятие абстрактных вещей (цвет и форма), а левое – за математические способности, логику и речь. Исследователи находят все новые и новые доказательства такой дифференциации.

Пока же совершенно точно ученые могут сказать только то, что правое полушарие управляет левой половиной тела, а левое – правой.

Самое важное

Мозг – это сложная структура, состоящая из миллиардов нейронов. Каждый из них работает по принципу маленького электрического выключателя, передавая нервные импульсы.

Вся информация, которую организм получает при помощи такой «электропроводки» из внешнего мира попадает в большие полушария мозга, где и обрабатывается.

Лекцию «Мифы и реалии мозга человека: нейроинтерфейсы, искусственный интеллект, киборги и симбиоты», в которой рассказал про работу мозга и поделился мыслями о будущем взаимодействия человека и машин.

Кадр из кинофильма «Джонни Мнемоник»

Вокруг мозга и интеллекта много мифов, которые в перспективе могут стать устойчивым знанием. Наша работа сосредоточена на том, чтобы развеять эти мифы , - Александр Каплан

Из чего состоит человеческий мозг?

Это 86 миллиардов нервных клеток. Для понимания их работы важнее изучить не сами клетки, а их контакты друг с другом - каждая нервная клетка мозга (нейрон) имеет 10-15 тысяч контактов с другими клетками. Это миллион миллиардов операциональных единиц. Наш мозг управляет 640 мышцами и 360 суставами.

Например, 1 шаг - это работа 300 мышц, а поцелуй - 34.

Наш мозг особо не изменился по сравнению с кроманьонцами. Наш мозг уникален тем, что он не меняет свою структуру под внешние условия, а изменяет окружающую среду под себя.

86 миллиардов - это много или мало?

86 миллиардов нейронов - это очень много. У таких сравнительно умных животных, как обезьяна и дельфин - по 6-8 миллиардов нервных клеток. Настоящий рекордсмен - это слон; в его мозгу 250 млрд нейронов.

Почему слон не пишет музыку и не летает в космос, если у него так много нервных клеток? Дело в том, что у слона почти все нейроны размещены в мозжечке . Слон - очень крупное животное, ему нужно координировать огромное количество мышц, чтобы двигаться. Мозжечок как раз отвечает за координацию движений.

Как учёные считают количество нервных клеток?

Откуда мы знаем про то, сколько нервных клеток в мозге живых организмов? Все эти подсчёты сделала Сюзанна Херкулано-Хузел , профессор нейроанатомии из Рио-де-Жанейро (Бразилия). Результаты своего исследования она опубликовала в 2009 году.

Сюзанна брала мёртвый мозг и взбивала его в блендере, пока не получала что-то вроде смузи. Ядра клеток довольно прочные, поэтому они не пострадали от механического воздействия лезвий. Измерив количество нервных клеток на единицу объёма мозгового смузи, Сюзанна смогла посчитать примерное количество нейронов в мозгу человека, слона или дельфина.

Джонс - наркозависимый бывший военный дельфин из фильма «Джонни Мнемоник». Развитый интеллект этого дельфина позволял животному взламывать системы безопасности противника.

Как мы видим то, что мы видим?

Наши глаза - настоящее природное чудо. Свет фокусируется и попадает на дно глазного яблока, на котором располагаются примерно 120 миллионов светочувствительных «колбочек ». Нервные клетки возбуждаются и отправляют по нервному каналу электрический разряд, попадающий в заднюю часть мозга. Но эти разряды не несут в себе никаких изображений, как в компьютере. После того, как отдел мозга получает электрический разряд от «колбочек», происходит реконструкция изображения.

На основании прошлого опыта. Здесь есть опасность, что мы можем обмануться в том, насколько соответствуют наши внутренние психические образы реальным.

Что такое красный цвет? Откуда мы вообще знаем, что красный - это красный, а зелёный - это зелёный? Цвет является результатом общественного договора. Большинство людей считают так.

Наша внутренняя психическая модель образа зависит от общественного мнения.

На протяжении всей жизни мы выстраиваем модель окружающего нас мира. Эта модель невероятно сложна. В ней мы учитываем даже физические законы, иначе мы бы не могли предсказать самим себе, как полетит мяч, например. Мы подгоняем реальность под нашу индивидуальную модель мира, и картина мира в мозгу достраивается постоянно.

Кадр из кинофильма «Матрица». Мир «Матрицы» является нейроинтерактивной моделью Земли конца XX века. Можно сказать, что принципы моделирования окружающего мира мозгом человека перешли и в Матрицу.

Наш мозг испытывает потребность в достраивании этой модели. Это желание побуждает нас изучать мир вокруг. Наша ментальная модель напрямую зависит от опыта.

Какой у нас объём памяти?

Трейлер к видеоигре Deus Ex: Mankind Divided показывает будущее, в котором люди массово пользуются различными улучшениями для тела. Такими, как многофункциональные протезы конечностей, имплантаты и многое другое.