Каковы перспективы развития ядерной энергетики? Перспективы развития ядерной энергетики.

Т.е. в тех промышленно развитых странах, где недостаточно природных энергоресурсов. Эти страны производят от четверти до половины своей электроэнергии на АЭС. США производят на АЭС только восьмую часть своей электроэнергии, но это составляет около одной пятой ее мирового производства.

Атомная энергетика остается предметом острых дебатов. Сторонники и противники атомной энергетики резко расходятся в оценках ее безопасности, надежности и экономической эффективности. Кроме того, широко распространено мнение о возможной утечке ядерного топлива из сферы производства электроэнергии и его использовании для производства ядерного оружия.

Ядерный топливный цикл.

Атомная энергетика – это сложное производство, включающее множество промышленных процессов, которые вместе образуют топливный цикл. Существуют разные типы топливных циклов, зависящие от типа реактора и от того, как протекает конечная стадия цикла.

Обычно топливный цикл состоит из следующих процессов. В рудниках добывается урановая руда. Руда измельчается для отделения диоксида урана, а радиоактивные отходы идут в отвал. Полученный оксид урана (желтый кек) преобразуется в гексафторид урана – газообразное соединение. Для повышения концентрации урана-235 гексафторид урана обогащают на заводах по разделению изотопов. Затем обогащенный уран снова переводят в твердый диоксид урана, из которого изготавливают топливные таблетки. Из таблеток собирают тепловыделяющие элементы (твэлы), которые объединяют в сборки для ввода в активную зону ядерного реактора АЭС. Извлеченное из реактора отработанное топливо имеет высокий уровень радиации и после охлаждения на территории электростанции отправляется в специальное хранилище. Предусматривается также удаление отходов с низким уровнем радиации, накапливающихся в ходе эксплуатации и технического обслуживания станции. По истечении срока службы и сам реактор должен быть выведен из эксплуатации (с дезактивацией и удалением в отходы узлов реактора). Каждый этап топливного цикла регламентируется так, чтобы обеспечивались безопасность людей и защита окружающей среды.

Ядерные реакторы.

Промышленные ядерные реакторы первоначально разрабатывались лишь в странах, обладающих ядерным оружием. США, СССР, Великобритания и Франция активно исследовали разные варианты ядерных реакторов. Однако впоследствии в атомной энергетике стали доминировать три основных типа реакторов, различающиеся, главным образом, топливом, теплоносителем, применяемым для поддержания нужной температуры активной зоны, и замедлителем, используемым для снижения скорости нейтронов, выделяющихся в процессе распада и необходимых для поддержания цепной реакции.

Среди них первый (и наиболее распространенный) тип – это реактор на обогащенном уране, в котором и теплоносителем, и замедлителем является обычная, или «легкая», вода (легководный реактор). Существуют две основные разновидности легководного реактора: реактор, в котором пар, вращающий турбины, образуется непосредственно в активной зоне (кипящий реактор), и реактор, в котором пар образуется во внешнем, или втором, контуре, связанном с первым контуром теплообменниками и парогенераторами (водо-водяной энергетический реактор – ВВЭР). Разработка легководного реактора началась еще по программам вооруженных сил США. Так, в 1950-х годах компании «Дженерал электрик» и «Вестингауз» разрабатывали легководные реакторы для подводных лодок и авианосцев ВМФ США. Эти фирмы были также привлечены к реализации военных программ разработки технологий регенерации и обогащения ядерного топлива. В том же десятилетии в Советском Союзе был разработан кипящий реактор с графитовым замедлителем.

Второй тип реактора, который нашел практическое применение, – газоохлаждаемый реактор (с графитовым замедлителем). Его создание также было тесно связано с ранними программами разработки ядерного оружия. В конце 1940-х – начале 1950-х годов Великобритания и Франция, стремясь к созданию собственных атомных бомб, уделяли основное внимание разработке газоохлаждаемых реакторов, которые довольно эффективно вырабатывают оружейный плутоний и к тому же могут работать на природном уране.

Третий тип реактора, имевший коммерческий успех, – это реактор, в котором и теплоносителем, и замедлителем является тяжелая вода, а топливом тоже природный уран. В начале ядерного века потенциальные преимущества тяжеловодного реактора исследовались в ряде стран. Однако затем производство таких реакторов сосредоточилось главным образом в Канаде отчасти из-за ее обширных запасов урана.

Развитие атомной промышленности.

После Второй мировой войны в электроэнергетику во всем мире были инвестированы десятки миллиардов долларов. Этот строительный бум был вызван быстрым ростом спроса на электроэнергию, по темпам значительно превзошедшим рост населения и национального дохода. Основной упор делался на тепловые электростанции (ТЭС), работающие на угле и, в меньшей степени, на нефти и газе, а также на гидроэлектростанции. АЭС промышленного типа до 1969 не было. К 1973 практически во всех промышленно развитых странах оказались исчерпанными ресурсы крупномасштабной гидроэнергетики. Скачок цен на энергоносители после 1973, быстрый рост потребности в электроэнергии, а также растущая озабоченность возможностью утраты независимости национальной энергетики – все это способствовало утверждению взгляда на атомную энергетику как на единственный реальный альтернативный источник энергии в обозримом будущем. Эмбарго на арабскую нефть 1973–1974 породило дополнительную волну заказов и оптимистических прогнозов развития атомной энергетики.

Но каждый следующий год вносил свои коррективы в эти прогнозы. С одной стороны, атомная энергетика имела своих сторонников в правительствах, в урановой промышленности, исследовательских лабораториях и среди влиятельных энергетических компаний. С другой стороны, возникла сильная оппозиция, в которой объединились группы, защищающие интересы населения, чистоту окружающей среды и права потребителей. Споры, которые продолжаются и по сей день, сосредоточились главным образом вокруг вопросов вредного влияния различных этапов топливного цикла на окружающую среду, вероятности аварий реакторов и их возможных последствий, организации строительства и эксплуатации реакторов, приемлемых вариантов захоронения ядерных отходов, потенциальной возможности саботажа и нападения террористов на АЭС, а также вопросов умножения национальных и международных усилий в области нераспространения ядерного оружия.

Проблемы безопасности.

Чернобыльская катастрофа и другие аварии ядерных реакторов в 1970-е и 1980-е годы, помимо прочего, ясно показали, что такие аварии часто непредсказуемы. Например, в Чернобыле реактор 4-го энергоблока был серьезно поврежден в результате резкого скачка мощности, возникшего во время планового его выключения. Реактор находился в бетонной оболочке и был оборудован системой аварийного расхолаживания и другими современными системами безопасности. Но никому и в голову не приходило, что при выключении реактора может произойти резкий скачок мощности и газообразный водород, образовавшийся в реакторе после такого скачка, смешавшись с воздухом, взорвется так, что разрушит здание реактора. В результате аварии погибло более 30 человек, более 200 000 человек в Киевской и соседних областях получили большие дозы радиации, был заражен источник водоснабжения Киева. На севере от места катастрофы – прямо на пути облака радиации – находятся обширные Припятские болота, имеющие жизненно важное значение для экологии Беларуси, Украины и западной части России.

В Соединенных Штатах предприятия, строящие и эксплуатирующие ядерные реакторы, тоже столкнулись с множеством проблем безопасности, что замедляло строительство, заставляя вносить многочисленные изменения в проектные показатели и эксплуатационные нормативы, и приводило к увеличению затрат и себестоимости электроэнергии. По-видимому, было два основных источника этих трудностей. Один из них – недостаток знаний и опыта в этой новой отрасли энергетики. Другой – развитие технологии ядерных реакторов, в ходе которого возникают новые проблемы. Но остаются и старые, такие, как коррозия труб парогенераторов и растрескивание трубопроводов кипящих реакторов. Не решены до конца и другие проблемы безопасности, например повреждения, вызываемые резкими изменениями расхода теплоносителя.

Экономика атомной энергетики.

Инвестиции в атомную энергетику, подобно инвестициям в другие области производства электроэнергии, экономически оправданы, если выполняются два условия: стоимость киловатт-часа не больше, чем при самом дешевом альтернативном способе производства, и ожидаемая потребность в электроэнергии, достаточно высокая, чтобы произведенная энергия могла продаваться по цене, превышающей ее себестоимость. В начале 1970-х годов мировые экономические перспективы выглядели очень благоприятными для атомной энергетики: быстро росли как потребность в электроэнергии, так и цены на основные виды топлива – уголь и нефть. Что же касается стоимости строительства АЭС, то почти все специалисты были убеждены, что она будет стабильной или даже станет снижаться. Однако в начале 1980-х годов стало ясно, что эти оценки ошибочны: рост спроса на электроэнергию прекратился, цены на природное топливо не только больше не росли, но даже начали снижаться, а строительство АЭС обходилось значительно дороже, чем предполагалось в самом пессимистическом прогнозе. В результате атомная энергетика повсюду вступила в полосу серьезных экономических трудностей, причем наиболее серьезными они оказались в стране, где она возникла и развивалась наиболее интенсивно, – в США.

Если провести сравнительный анализ экономики атомной энергетики в США, то становится понятным, почему эта отрасль промышленности потеряла конкурентоспособность. С начала 1970-х годов резко выросли затраты на АЭС. Затраты на обычную ТЭС складываются из прямых и косвенных капиталовложений, затрат на топливо, эксплуатационных расходов и расходов на техническое обслуживание. За срок службы ТЭС, работающей на угле, затраты на топливо составляют в среднем 50–60% всех затрат. В случае же АЭС доминируют капиталовложения, составляя около 70% всех затрат. Капитальные затраты на новые ядерные реакторы в среднем значительно превышают расходы на топливо угольных ТЭС за весь срок их службы, чем сводится на нет преимущество экономии на топливе в случае АЭС.

Перспективы атомной энергетики.

Среди тех, кто настаивает на необходимости продолжать поиск безопасных и экономичных путей развития атомной энергетики, можно выделить два основных направления. Сторонники первого полагают, что все усилия должны быть сосредоточены на устранении недоверия общества к безопасности ядерных технологий. Для этого необходимо разрабатывать новые реакторы, более безопасные, чем существующие легководные. Здесь представляют интерес два типа реакторов: «технологически предельно безопасный» реактор и «модульный» высокотемпературный газоохлаждаемый реактор.

Прототип модульного газоохлаждаемого реактора разрабатывался в Германии, а также в США и Японии. В отличие от легководного реактора, конструкция модульного газоохлаждаемого реактора такова, что безопасность его работы обеспечивается пассивно – без прямых действий операторов или электрической либо механической системы защиты. В технологически предельно безопасных реакторах тоже применяется система пассивной защиты. Такой реактор, идея которого была предложена в Швеции, по-видимому, не продвинулся далее стадии проектирования. Но он получил серьезную поддержку в США среди тех, кто видит у него потенциальные преимущества перед модульным газоохлаждаемым реактором. Но будущее обоих вариантов туманно из-за их неопределенной стоимости, трудностей разработки, а также спорного будущего самой атомной энергетики.

Сторонники другого направления полагают, что до того момента, когда развитым странам потребуются новые электростанции, осталось мало времени для разработки новых реакторных технологий. По их мнению, первоочередная задача состоит в том, чтобы стимулировать вложение средств в атомную энергетику.

Но помимо этих двух перспектив развития атомной энергетики сформировалась и совсем иная точка зрения. Она возлагает надежды на более полную утилизацию подведенной энергии, возобновляемые энергоресурсы (солнечные батареи и т.д.) и на энергосбережение. По мнению сторонников этой точки зрения, если передовые страны переключатся на разработку более экономичных источников света, бытовых электроприборов, отопительного оборудования и кондиционеров, то сэкономленной электроэнергии будет достаточно, чтобы обойтись безо всех существующих АЭС. Наблюдающееся значительное уменьшение потребления электроэнергии показывает, что экономичность может быть важным фактором ограничения спроса на электроэнергию.

Таким образом, атомная энергетика пока не выдержала испытаний на экономичность, безопасность и расположение общественности. Ее будущее теперь зависит от того, насколько эффективно и надежно будет осуществляться контроль за строительством и эксплуатацией АЭС, а также насколько успешно будет решен ряд других проблем, таких, как проблема удаления радиоактивных отходов. Будущее атомной энергетики зависит также от жизнеспособности и экспансии ее сильных конкурентов – ТЭС, работающих на угле, новых энергосберегающих технологий и возобновляемых энергоресурсов.

Повсеместное применение ядерной энергии началось благодаря научно-техническому прогрессу не только в военной области, но и в мирных целях. Сегодня нельзя обойтись без нее в промышленности, энергетике и медицине.

Вместе с тем, использование ядерной энергии имеет не только преимущества, но и недостатки. Прежде всего, это опасность радиации, как для человека, так и для окружающей среды.

Применение ядерной энергии развивается в двух направлениях: использование в энергетике и использование радиоактивных изотопов.

Изначально атомную энергию предполагалось использовать только в военных целях, и все разработки шли в этом направлении.

Использование ядерной энергии в военной сфере

Большое количество высокоактивных материалов используют для производства ядерного оружия. По оценкам экспертов, ядерные боеголовки содержат несколько тонн плутония.

Ядерное оружие относят к потому что оно производит разрушения на огромных территориях.

По радиусу действия и мощности заряда ядерное оружие делится на:

  • Тактическое.
  • Оперативно-тактическое.
  • Стратегическое.

Ядерные боеприпасы делят на атомные и водородные. В основу ядерного оружия положены неуправляемые цепные реакции деления тяжелых ядер и реакции Для цепной реакции используют уран либо плутоний.

Хранение такого большого количества опасных материалов - это большая угроза для человечества. А применение ядерной энергии в военных целях может привести к тяжелым последствиям.

Впервые ядерное оружие было применено в 1945 году для атаки на японские города Хиросима и Нагасаки. Последствия этой атаки были катастрофичными. Как известно, это было первое и последнее применение ядерной энергии в войне.

Международное агентство по атомной энергии (МАГАТЭ)

МАГАТЭ создано в 1957 году с целью развития сотрудничества между странами в области использования атомной энергии в мирных целях. С самого начала агентство осуществляет программу «Ядерная безопасность и защита окружающей среды».

Но самая главная функция - это контроль за деятельностью стран в ядерной сфере. Организация контролирует, чтобы разработки и использование ядерной энергии происходили только в мирных целях.

Цель этой программы - обеспечивать безопасное использование ядерной энергии, защита человека и экологии от воздействия радиации. Также агентство занималось изучением последствий аварии на Чернобыльской АЭС.

Также агентство поддерживает изучение, развитие и применение ядерной энергии в мирных целях и выступает посредником при обмене услугами и материалами между членами агентства.

Вместе с ООН МАГАТЭ определяет и устанавливает нормы в области безопасности и охраны здоровья.

Атомная энергетика

Во второй половине сороковых годов двадцатого столетия советские ученые начали разрабатывать первые проекты мирного использования атома. Главным направлением этих разработок стала электроэнергетика.

И в 1954 году в СССР построили станцию. После этого программы быстрого роста атомной энергетики начали разрабатывать в США, Великобритании, ФРГ и Франции. Но большинство из них не были выполнены. Как оказалось, АЭС не смогла конкурировать со станциями, которые работают на угле, газе и мазуте.

Но после начала мирового энергетического кризиса и подорожания нефти спрос на атомную энергетику вырос. В 70-х годах прошлого столетия эксперты считали, что мощность всех АЭС сможет заменить половину электростанций.

В середине 80-х рост атомной энергетики снова замедлился, сраны начали пересматривать планы на сооружение новых АЭС. Этому способствовали как политика энергосбережения и снижение цены на нефть, так и катастрофа на Чернобыльской станции, которая имела негативные последствия не только для Украины.

После некоторые страны вообще прекратили сооружение и эксплуатацию атомных электростанций.

Атомная энергия для полетов в космос

В космос слетало более трех десятков ядерных реакторов, они использовались для получения энергии.

Впервые ядерный реактор в космосе применили американцы в 1965 году. В качестве топлива использовался уран-235. Проработал он 43 дня.

В Советском Союзе реактор «Ромашка» был запущен в Институте атомной энергии. Его предполагалось использовать на космических аппаратах вместе с Но после всех испытаний он так и не был запущен в космос.

Следующая ядерная установка «Бук» была применена на спутнике радиолокационной разведки. Первый аппарат был запущен в 1970 году с космодрома Байконур.

Сегодня «Роскосмос» и «Росатом» предлагают сконструировать космический корабль, который будет оснащен ядерным ракетным двигателем и сможет добраться до Луны и Марса. Но пока что это все на стадии предложения.

Применение ядерной энергии в промышленности

Атомная энергия применяется для повышения чувствительности химического анализа и производства аммиака, водорода и других химических реагентов, которые используются для производства удобрений.

Ядерная энергия, применение которой в химической промышленности позволяет получать новые химические элементы, помогает воссоздавать процессы, которые происходят в земной коре.

Для опреснения соленых вод также применяется ядерная энергия. Применение в черной металлургии позволяет восстанавливать железо из железной руды. В цветной - применяется для производства алюминия.

Использование ядерной энергии в сельском хозяйстве

Применение ядерной энергии в сельском хозяйстве решает задачи селекции и помогает в борьбе с вредителями.

Ядерную энергию применяют для появления мутаций в семенах. Делается это для получения новых сортов, которые приносят больше урожая и устойчивы к болезням сельскохозяйственных культур. Так, больше половины пшеницы, выращиваемой в Италии для изготовления макарон, было выведено с помощью мутаций.

Также с помощью радиоизотопов определяют лучшие способы внесения удобрений. Например, с их помощью определили, что при выращивании риса можно уменьшить внесение азотных удобрений. Это не только сэкономило деньги, но и сохранило экологию.

Немного странное использование ядерной энергии - это облучение личинок насекомых. Делается это для того, чтобы выводить их безвредно для окружающей среды. В таком случае насекомые, появившееся из облученных личинок, не имеют потомства, но в остальных отношениях вполне нормальны.

Ядерная медицина

Медицина использует радиоактивные изотопы для постановки точного диагноза. Медицинские изотопы имеют малый период полураспада и не представляет особой опасности как для окружающих, так и для пациента.

Еще одно применение ядерной энергии в медицине было открыто совсем недавно. Это позитронно-эмиссионная томография. С ее помощью можно обнаружить рак на ранних стадиях.

Применение ядерной энергии на транспорте

В начале 50-х годов прошлого века были предприняты попытки создать танк на ядерной тяге. Разработки начались в США, но проект так и не был воплощен в жизнь. В основном из-за того, что в этих танках так и не смогли решить проблему экранирования экипажа.

Известная компания Ford трудилась над автомобилем, который бы работал на ядерной энергии. Но дальше макета производство такой машины не зашло.

Все дело в том, что ядерная установка занимала очень много места, и автомобиль получался очень габаритным. Компактные реакторы так и не появились, поэтому амбициозный проект свернули.

Наверное, самый известный транспорт, который работает на ядерной энергии - это различные суда как военного, так и гражданского назначения:

  • Транспортные суда.
  • Авианосцы.
  • Подводные лодки.
  • Крейсеры.
  • Атомные подводные лодки.

Плюсы и минусы использования ядерной энергии

Сегодня доля в мировом производстве энергии составляет примерно 17 процентов. Хотя человечество использует но его запасы не бесконечны.

Поэтому, как альтернативный вариант, используется Но процесс его получения и использования связан с большим риском для жизни и окружающей среды.

Конечно, постоянно совершенствуются ядерные реакторы, предпринимаются все возможные меры безопасности, но иногда этого недостаточно. Примером могут служить аварии на Чернобыльской и Фукусиме.

С одной стороны, исправно работающий реактор не выбрасывает в окружающую среду никакой радиации, тогда как из тепловых электростанций в атмосферу попадает большое количество вредных веществ.

Самую большую опасность представляет отработанное топливо, его переработка и хранение. Потому что на сегодняшний день не изобретен полностью безопасный способ утилизации ядерных отходов.

Курсовая работа студента группы НП1_2 Еровиченкова А.С.

Финансовая Академия при Правительстве Российской Федерации

Кафедра “Экономическая география и региональная экономика”

Москва - 1997

Предпосылки развития атомной энергетики

Россия была, есть и будет одной из ведущих энергетических держав мира. И это не только потому, что в недрах страны находится 12% мировых запасов угля, 13% нефти и 36% мировых запасов природного газа, которых достаточно для полного обеспечения собственных потребностей и для экспорта в сопредельные государства. Россия вошла в число ведущих мировых энергетических держав, прежде всего, благодаря созданию уникального производственного, научно-технического и кадрового потенциала топливно-энергетического комплекса (ТЭК).

Но экономический кризис последних лет существенным образом затронул и этот комплекс. Производство первичных энергоресурсов в 1993 г. составило 82% от уровня 1990 и продолжало падать. Уменьшение потребления топлива и энергии, обусловленное общим экономическим спадом, временно облегчило задачу энергообеспечения страны, хотя в ряде регионов пришлось вынужденно ограничивать потребление энергии. Отсутствие необходимых инвестиций не позволило в 90-х годах компенсировать естественное выбытие производственных мощностей и обновлять основные фонды, износ которых в отраслях ТЭК колеблется в пределах 30-80%. В соответствии с нормами безопасности требуют реконструкции и до половины АЭС.

Следует заметить, что в 1981-1985 гг. среднегодовой ввод мощностей в электроэнергетике был 6 млн. кВт в год, а в 1995 г. - только 0,3 млн. кВт. В 1995 году в России произведено 860 млрд. кВт\час, а в 1996 г. в связи со снижением спроса и износом установленного на электростанциях оборудования - 840 млрд.. кВт\час.

Производство электроэнергии на электростанциях России (млрд. Квт-ч)

1990 1995 2000 2005
ВСЕГО 1082 860 922 1020
ГЭС и ГАС 167 177 166 180
КЭС 397 252 242 249
ТЭЦ 400 332 392 457
АЭС 118 99 122 134

Таблица 1

Доля России в объёме мирового производства электроэнергии составляла в 1990 г 8,2%, а в 1995 г сократилась до 7,6%.

В 1993 году по производству электроэнергии на душу населения Россия занимала 13-е место в мире (6297 кВт\ч).

В 1991-1996 гг. электропотребление в России снизилось более чем на 20%, в том числе в 1996 г - на 1%. В 1997 г впервые в 90-е годы ожидается рост производства электроэнергии.

В начале 90-х годов установленные энергетические мощности России превышали 7% мировых. В 1995 г установленная мощность электроэнергетики России составляла 215,3 млн. кВт, в том числе доля мощностей ТЭС - 70%, ГЭС - 20% и АЭС - 10%.

В 1992-1995 гг. было введено 66 млн. кВт генерирующих мощностей. В настоящее время 15 млн. кВт оборудования ТЭС выработали ресурс. В 2000 году таких мощностей будет уже 35 млн. кВт и в 2005 году - 55 млн. кВт. К 2005 году предельного срока эксплуатации достигнут агрегаты ГЭС мощностью 21 млн. кВт (50% мощностей ГЭС России). На АЭС в 2001-2005 гг. будут выведены из эксплуатации 6 энергоблоков общей мощностью 3,8 млн. кВт.

По оценкам экспертов в настоящее время на 40% электростанций России используется устаревшее оборудование.Если не будут приняты меры по обновлению генерирующего оборудования, то динамика его старения к 2010 году будет выглядеть следующим образом: (тыс. млн. кВт)

1995 г 2000 г 2005 г 20010 г
ВСЕГО 17,0 49,3 83,3 108,5
ТЭС 14,2 35,3 55,1 75,1
ГЭС 2,8 14,0 24,0 25,0
АЭС - - 3,8 8,4

Таблица 2

В этих условиях для обеспечения прогнозируемого спроса на электрическую энергию и мощность потребуется значительная реконструкция действующих, а затем и строительство новых электростанций. Но какой вид энергии самый экономичный, безопасный и экологически чистый? На развитие какой отрасли направить основные средства? На сегодняшний день при выборе источника электроэнергии нельзя не отметить актуальность такого фактора, как ограниченность источников энергии.

Ограниченность источников энергии.

Современные темпы энергопотребления составляют примерно 0,5 Q в год, однако они растут в геометрической прогрессии. Так, в первой четверти следующего тысячелетия энергопотребление, по прогнозам, составит 1 Q в год. Следовательно, если даже учесть, что темпы роста потребления электроэнергии несколько сократятся из-за совершенствования энергосберегающих технологий, запасов энергетического сырья хватит максимум на 100 лет.

Однако положение усугубляется еще и несоответствием структуры запасов и потребления органического сырья. Так, 80% запасов органического топлива приходится на уголь и лигниты и лишь 20% на нефть и газ, в то время как 8/10 современного энергопотребления приходится на нефть и газ. Следовательно, временные рамки еще более сужаются.

Альтернативой органическому топливу и возобновляемым источником энергии является гидроэнергетика. Однако и здесь источник энергии достаточно сильно ограничен. Это связано с тем, что крупные реки, как правило, сильно удалены от промышленных центров либо их мощности практически полностью использованы. Таким образом, гидроэнергетика, в настоящий момент обеспечивающая около 10% производства энергии в мире, не сможет существенно увеличить эту цифру.

Огромный потенциал энергии Солнца (порядка 10 Q в среднем в сутки) мог бы теоретически обеспечить все мировые потребности энергетики. Но если отнести эту энергию на один квадратный метр поверхности Земли, то средняя тепловая мощность получится не более 200 Вт/м, или около 20 Вт/м электрической мощности при кпд преобразования в электроэнергию 10%. Это, очевидно, ограничивает возможности солнечной энергетики при создании электростанций большой мощности (для станции мощностью 1 млн. кВт площадь солнечных преобразователей должна быть около 100 км). Принципиальные трудности возникают и при анализе возможностей создания генераторов большой мощности, использующих энергию ветра, приливы и отливы в океане, геотермальную энергию, биогаз, растительное топливо и т.д. Все это приводит к выводу об ограниченности возможностей рассмотренных так называемых “воспроизводимых” и относительно экологически чистых ресурсов энергетики, по крайней мере, в относительно близком будущем. Хотя эффект от их использования при решении отдельных частных проблем энергообеспечения может быть уже сейчас весьма впечатляющим, суммарная доля воспроизводимых ресурсов в ближайшие 40 50 лет не превысит 15 20%.

Конечно, существует оптимизм по поводу возможностей термоядерной энергии и других эффективных способов получения энергии, интенсивно исследуемых наукой, но при современных масштабах энергопроизводства, при практическом освоении этих возможных источников потребуется несколько десятков лет из-за высокой капиталоемкости (до 30% всех капитальных затрат в промышленности требует энергетика) и соответствующей инерционности в реализации проектов. Так что в перспективе до середины следующего века можно ориентироваться на существенный вклад в мировую энергетику лишь тех новых источников, для которых уже сегодня решены принципиальные проблемы массового использования и создана техническая база для промышленного освоения. Единственным здесь конкурентом традиционному органическому топливу может быть только ядерная энергетика, обеспечивающая уже сейчас около 20% мирового производства электроэнергии с развитой сырьевой и производственной базой для дальнейшего развития отрасли.

Важнейшие факторы развития атомной энергетики

На все более конкурентном и многонациональном глобальном энергетическом рынке ряд важнейших факторов будет влиять не только на выбор вида энергии, но также и на степень и характер использования разных источников энергии. Эти факторы включают в себя:

оптимальное использование имеющихся ресурсов;

сокращение суммарных расходов;

сведение к минимуму экологических последствий;

убедительную демонстрацию безопасности;

удовлетворение потребностей национальной и международной политики.

Для ядерной энергии эти пять факторов определяют будущие стратегии в области топливного цикла и реакторов. Цель заключается в том, чтобы оптимизировать эти факторы.

Хотя достижение признания со стороны общественности не всегда включалось в качестве важнейшего фактора, в действительности этот фактор является жизненно важным для ядерной энергии. Необходимо открыто и достоверно ознакомить общественность и лиц, принимающих решения, с реальными выгодами ядерной энергетики. В следующем ниже обсуждении содержатся элементы убедительной аргументации. Растущее нежелание общественности, особенно в промышленно развитых странах, соглашаться с вводом новых промышленных установок сказывается на политике во всем энергетическом секторе и влияет на осуществление всех проектов энергетических установок.

Максимальное использование ресурсов

Известные и вероятные запасы урана должны обеспечить достаточное снабжение ядерным топливом в краткосрочном и среднесрочном плане, даже если реакторы будут работать главным образом с однократными циклами, предусматривающими захоронение отработавшего топлива. Проблемы в топливообеспечении атомной энергетики могут возникнуть лишь к 2030 году при условии развития и увеличения к этому времени атомных энергомощностей. Для их решения потребуются разведка и освоение новых месторождений урана на территории России, использование накопленных оружеййного и энергетического плутония и урана, развитие атомной энергетики на альтернативных видах ядерного топлива. Одна тонна оружейного плутония по теплотворному эквиваленту органического топлива при “сжигании” в тепловых реакторах в открытом топливном цикле соответствует 2,5 млрд. куб. м. природного газа. Приближенная оценка показывает, что общий энергетический потенциал оружейного сырья, с использованием в парке АЭС также реакторов на быстрых нейтронах, может соответствовать выработке 12-14 трлн. киловатт-часов электроэнергии, т.е 12-14 годовым её выработкам на уровне 1993 года, и сэкономить в электроэнергетике около 3,5 трлн.кубометров природного газа. Однако по мере роста спроса на уран и уменьшения его запасов, обусловленного необходимостью удовлетворять потребности растущих мощностей атомных станций, возникнет экономическая необходимость оптимального использования урана таким образом, чтобы вырабатывалась вся потенциально содержащаяся в нем энергия на единицу количества руды. Существуют разнообразные способы достижения этого в ходе процесса обогащения и на этапе эксплуатации. В долгосрочном плане потребуются повторное использование наработанных делящихся материалов в тепловых реакторах и внедрение быстрых реакторов-размножителей.

2. Достижение максимальной экономической выгоды

Поскольку затраты на топливо относительно низки, для общей экономической жизнеспособности ядерной энергии весьма важно сокращение суммарных расходов за счет снижения затрат на разработку, выбор площадки, сооружение, эксплуатацию и первоначальное финансирование. Устранение неопределенностей и изменчивости требований лицензирования, особенно перед вводом в эксплуатацию, позволило бы осуществить более прогнозируемые стратегии капиталовложений и финансовые стратегии.

Потребности в инвестициях согласно результатам СИАРЭ (млрд. долларов)(СИАРЭ - Совместное исследование альтернатив развития электроэнергетики)

Высокое энергопотребление Низкое электропотребление
Производство электроэнергии
1995-2000 гг 21-26 9-10
2001-2005 гг 25-32 14-20
Всего 46-58 23-30
Энерго сбережение
1995-2000 гг 3-4 2-3
2001-2005 гг 5-11 3-8
Всего 8-15 5-11
Передача энергии
1995-2000 гг 2-3 1-3
2001-2005 гг 5-5 3-5
Всего 7-8 4-8
Суммарные потребности
1995-2000 гг 26-34 12-16
2001-2005 гг 35-48 20-33
Всего 61-81 32-49

Таблица 3

3. Достижение максимальной экологической выгоды

Хотя ядерная энергия с точки зрения объемов потребляемого топлива, выбросов и образующихся отходов обладает явными преимуществами по сравнению с нынешними системами, использующими ископаемые виды топлива, дальнейшие меры по смягчению соответствующих экологических проблем могут оказать значительное влияние на отношение общественности.

Сравнительные данные по топливу и отходам (тонн в год для электростанции мощностью 1000 МВт)

Таблица 4

Поскольку общее влияние ядерного топливного цикла на здоровье людей и окружающую среду невелико, внимание будет направлено на улучшенные методы в области радиоактивных отходов. При этом была бы оказана поддержка целям устойчивого развития и в то же время повышена конкурентоспособность по сравнению с другими источниками энергии, для которых также должны надлежащим образом решаться вопросы отходов. В реакторные системы и в топливные циклы могут быть внесены изменения, сводящие к минимуму образование отходов. Будут вводиться проектные требования по уменьшению количеств отходов и такие методы сокращения объемов отходов, как компактирование.

4. Максимальное повышение безопасности реакторов

Ядерная энергетика в целом имеет отличные показатели безопасности: в эксплуатации находится 433 реактора, работающих в среднем более чем по 20 лет. Однако чернобыльская катастрофа показала, что весьма тяжелая ядерная авария может привести к радиоактивному загрязнению в масштабах страны и региона. Хотя вопросы безопасности и экологии становятся важнейшими для всех источников энергии, многие воспринимают ядерную энергетику как особенно и органически небезопасную. Обеспокоенность по поводу безопасности в сочетании с соответствующими регламентационными требованиями будет в ближайшее время по-прежнему оказывать сильное влияние на развитие ядерной энергетики. В целях снижения масштабов реальных и возможных аварий на установках будет осуществлен ряд подходов. Чрезвычайно эффективные барьеры (такие, как двойные защитные оболочки) снизят вероятность значительных радиологических последствий аварий за пределами площадок до крайне низкого уровня, устраняя необходимость в планах аварийных действий. Повышение характеристик целостности корпуса реактора и реакторных систем также позволит снизить вероятность возникновения последствий на площадке. Внутренняя безопасность конструкций и технологических процессов на станциях может быть повышена скорее путем включения пассивных функций безопасности, чем активных систем защиты. В качестве жизнеспособного варианта могут появиться высокотемпературные газоохлаждаемые реакторы, использующие керамическое графитное топливо с высокой теплостойкостью и целостностью, снижающее вероятность выброса радиоактивного материала.

Плюсы и минусы атомной энергетики

За 40 лет развития атомной энергетики в мире построено около 400 энергоблоков в 26 странах мира с суммарной энергетической модностью около 300 млн. кВт. Основными преимуществами атомной энергетики являются высокая конечная рентабельность и отсутствие выбросов в атмосферу продуктов сгорания (с этой точки зрения она может рассматриваться как экологически чистая), основными недостатками потенциальная опасность радиоактивного заражения окружающей среды продуктами деления ядерного топлива при аварии (типа Чернобыльской или на американской станции Тримайл Айленд) и проблема переработки использованного ядерного топлива.

Остановимся сначала на преимуществах. Рентабельность атомной энергетики складывается из нескольких составляющих. Одна из них независимость от транспортировки топлива. Если для электростанции мощностью 1 млн. кВт требуется в год около 2 млн. т.у.т. (или около 5 млн. низкосортного угля), то для блока ВВЭР-1000 понадобится доставить не более 30 т. обогащенного урана, что практически сводит к нулю расходы на перевозку топлива (на угольных станциях эти расходы составляют до 50% себестоимости). Использование ядерного топлива для производства энергии не требует кислорода и не сопровождается постоянным выбросом продуктов сгорания, что, соответственно, не потребует строительства сооружений для очистки выбросов в атмосферу. Города, находящиеся вблизи атомных станций, являются в основном экологически чистыми зелеными городами во всех странах мира, а если это не так, то это происходит из-за влияния других производств и объектов, расположенных на этой же территории. В этом отношении ТЭС дают совсем иную картину. Анализ экологической ситуации в России показывает, что на долю ТЭС приходится более 25% всех вредных выбросов в атмосферу. Около 60% выбросов ТЭС приходится на европейскую часть и Урал, где экологическая нагрузка существенно превышает предельную. Наиболее тяжелая экологическая ситуация сложилась в Уральском, Центральном и Поволжском районах, где нагрузки, создаваемые выпадением серы и азота, в некоторых местах превышают критические в 2-2,5 раза.

К недостаткам ядерной энергетики следует отнести потенциальную опасность радиоактивного заражения окружающей среды при тяжелых авариях типа Чернобыльской. Сейчас на АЭС, использующих реакторы типа Чернобыльского (РБМК), приняты меры дополнительной безопасности, которые, по заключению МАГАТЭ (Международного агентства по атомной энергии), полностью исключают аварию подобной тяжести: по мере выработки проектного ресурса такие реакторы должны быть заменены реакторами нового поколения повышенной безопасности. Тем не менее в общественном мнении перелом по отношению к безопасному использованию атомной энергии произойдет, по-видимому, не скоро. Проблема утилизации радиоактивных отходов стоит очень остро для всего мирового сообщества. Сейчас уже существуют методы остекловывания, битумирования и цементирования радиоактивных отходов АЭС, но требуются территории для сооружения могильников, куда будут помещаться эти отходы на вечное хранение. Страны с малой территорией и большой плотностью населения испытывают серьезные трудности при решении этой проблемы.

Ядерная топливно-энергетическая база России.

Пуск в 1954 году первой атомной электростанции мощностью всего лишь 5000 кВт стал событием мировой важности. Он ознаменовал начало развития атомной энергетики, которая может обеспечить человечество электрической и тепловой энергией на длительный период. Ныне мировая доля электрической энергии, вырабатываемой на АЭС, относительно невелика и составляет около 17 процентов, но в ряде стран она достигает 50-75 процентов. В Советском Союзе была создана мощная ядерно-энергетическая промышленность, которая обеспечивала топливом не только свои АЭС, но и АЭС ряда других стран. В настоящее время на АЭС России, стран СНГ и Восточной Европы эксплуатируются 20 блоков с реакторами ВВЭР-1000, 26 блоков с реакторами ВВЭР-440, 15 блоков с реакторами РБМК и 2 блока с реакторами на быстрых нейтронах. Обеспечение ядерным топливом этих реакторов и определяет объем промышленного производства твэлов и ТВС в России. Они изготавливаются на двух заводах: в г.Электросталь - для реакторов ВВЭР-440, РБМК и реакторов на быстрых нейтронах; в г-Новосибирске - для реакторов ВВЭР-1000.Таблетки для твэлов ВВЭР-1000 и РБМК поставляет завод, находящийся в Казахстане (г.Усть-Каменогорск).

В настоящее время из 15 атомных электростанций, построенных в СССР, 9 находятся на территории России; установленная мощность их 29 энергоблоков составляет 21242 мегаватта. Среди действующих энергоблоков 13 имеют корпусные реакторы ВВЭР (водо-водяной энергетический реактор, активная зона которого размещается в металлическом или из предварительно напряженного бетона корпусе, рассчитанном на полное давление теплоносителя), 11 блоков- канальные реакторы РМБК-1000(РМБК - графито-водяной реактор без прочного корпуса. Теплоноситель в этом реакторе протекает через трубы, внутри которых находятся тепловыделяющие элементы), 4 блока- ЭГП (водо-графитовый канальный реактор с кипящим теплоносителем) по 12 мегаватт каждый установлены на Билибинской АТЭС и еще один энергоблок снабжен реактором БН-600 на быстрых нейтронах. Следует заметить, что основной парк корпусных реакторов последнего поколения был размещен на Украине (10 блоков ВВЭР-1000 и 2 блока ВВЭР-440).

Новые энергоблоки.

Сооружение нового поколения энергоблоков с корпусными реакторами (с водой под давлением) начинается в этом десятилетии. Первыми из них станут блоки ВВЭР-640, конструкция и параметры которых учитывают отечественный и мировой опыт, а также блоки с усовершенствованным реактором ВВЭР-1000 с существенно повышенными показателями безопасности. Головные энергоблоки ВВЭР-640 размещаются на площадках г. Сосновый Бор Ленинградской области и Кольской АЭС, а на базе ВВЭР-1000 - на площадке Нововоронежской АЭС.

Разработан также проект корпусного реактора ВПБЭР-600 средней мощности с интегральной компоновкой. АЭС с такими реакторами смогут сооружаться несколько позже.

Названные типы оборудования при своевременном выполнении всех научно-исследовательских и опытных работ обеспечат основные потребности атомной энергетики на прогнозируемый 15-20-летний период.

Существуют предложения продолжать работы по графито-водяным канальным реакторам, перейти на электрическую мощность 800 мегаватт и создать реактор, не уступающий реактору ВВЭР по безопасности. Такие реакторы могли бы заменить действующие реакторы РБМК. В перспективе возможно строительство энергоблоков с современными безопасными реакторами БН-800 на быстрых нейтронах. Эти реакторы могут быть использованы и для вовлечения в топливный цикл энергетического и оружейного плутония, для освоения технологий выжигания актиноидов (радиоактивных элементов-металлов, все изотопы которых радиоактивны).

Перспективы развития атомной энергетики.

При рассмотрении вопроса о перспективах атомной энергетики в ближайшем (до конца века) и отдаленном будущем необходимо учитывать влияние многих факторов: ограничение запасов природного урана, высокая по сравнению с ТЭС стоимость капитального строительства АЭС, негативное общественное мнение, которое привело к принятию в ряде стран (США, ФРГ, Швеция, Италия) законов, ограничивающих атомную энергетику в праве использовать ряд технологий (например, с использованием Рu и др.), что привело к свертыванию строительства новых мощностей и постепенному выводу отработавших без замены на новые. В то же время наличие большого запаса уже добытого и обогащенного урана, а также высвобождаемого при демонтаже ядерных боеголовок урана и плутония, наличие технологий расширенного воспроизводства (где в выгружаемом из реактора топливе содержится больше делящихся изотопов, чем загружалось) снимают проблему ограничения запасов природного урана, увеличивая возможности атомной энергетики до 200-300 Q. Это превышает ресурсы органического топлива и позволяет сформировать фундамент мировой энергетики на 200-300 лет вперед.

Но технологии расширенного воспроизводства (в частности, реакторы-размножители на быстрых нейтронах) не перешли в стадию серийного производства из-за отставания в области переработки и рецикла (извлечения из отработанного топлива «полезного» урана и плутония). А наиболее распространенные в мире современные реакторы на тепловых нейтронах используют лишь 0,50,6% урана (в основном делящийся изотоп U238 , концентрация которого в природном уране 0,7%). При такой низкой эффективности использования урана энергетические возможности атомной энергетики оцениваются только в 35 Q. Хотя это может оказаться приемлемым для мирового сообщества на ближайшую перспективу, с учетом уже сложившегося соотношения между атомной и традиционной энергетикой и постановкой темпов роста мощностей АЭС во всем мире. Кроме того, технология расширенного воспроизводства дает значительную дополнительную экологическую нагрузку. .Сегодня специалистам вполне понятно, что ядерная анергия, в принципе, является единственным реальным и существенным источником обеспечения электроэнергией человечества в долгосрочном плане, не вызывающим такие отрицательные для планеты явления, как парниковый эффект, кислотные дожди и т.д. Как известно, сегодня энергетика, базирующаяся на органическом топливе, то есть на сжигании угля, нефти и газа, является основой производства электроэнергии в мире Стремление сохранить органические виды топлива, одновременно являющиеся ценным сырьем, обязательство установить пределы для выбросов СО; или снизить их уровень и ограниченные перспективы широкомасштабного использования возобновляемых источников энергии все это свидетельствует о необходимости увеличения вклада ядерной энергетики.

Учитывая все перечисленное выше, можно сделать вывод, что перспективы развития атомной энергетики в мире будут различны для разных регионов и отдельных стран, исходя из потребностей и электроэнергии, масштабов территории, наличия запасов органического топлива, возможности привлечения финансовых ресурсов для строительства и эксплуатации такой достаточно дорогой технологии, влияния общественного мнения в данной стране и ряда других причин.

Отдельно рассмотрим перспективы атомной энергетики в России. Созданный в России замкнутый научно-производственный комплекс технологически связанных предприятий охватывает все сферы, необходимые для функционирования атомной отрасли, включая добычу и переработку руды, металлургию, химию и радиохимию, машино- и приборостроение, строительный потенциал. Уникальным является научный и инженерно-технический потенциал отрасли. Промышленно-сырьевой потенциал отрасли позволяет уже в настоящее время обеспечить работу АЭС России и СНГ на много лет вперед, кроме того, планируются работы по вовлечению в топливный цикл накопленного оружейного урана и плутония. Россия может экспортировать природный и обогащенный уран на мировой рынок, учитывая, что уровень технологии добычи и переработки урана по некоторым направлениям превосходит мировой, что дает возможность в условиях мировой конкуренции удерживать позиции на мировом урановом рынке.

Но дальнейшее развитие отрасли без возврата к ней доверия населения невозможно. Для этого нужно на базе открытости отрасли формировать позитивное общественное мнение и обеспечить возможность безопасного функционирования АЭС под контролем МАГАТЭ. Учитывая экономические трудности России, отрасль сосредоточится в ближайшее время на безопасной эксплуатации существующих мощностей с постепенной заменой отработавших блоков первого поколения наиболее совершенными российскими реакторами (ВВЭР-1000, 500, 600), а небольшой рост мощностей произойдет за счет завершения строительства уже начатых станций. На длительную перспективу в России вероятен рост мощностей в переходом на АЭС новых поколений, уровень безопасности и экономические показатели которых обеспечат устойчивое развитие отрасли на перспективу.

В диалоге сторонников и противников атомной энергетики необходимы полная и точная информация по состоянию дел в отрасли как в отдельной стране, так и в мире, научно обоснованные прогнозы развития и потребности в атомной энергии. Только на пути гласности и информированности могут быть достигнуты приемлемые результаты. Более 400 блоков во всем мире (по данным, содержащимся в Информационной системе МАГАТЭ по энергетическим реакторам на конец 1994 года, в 30 странах эксплуатируется 432 АЭС общей мощностью приблизительно 340 ГВт) обеспечивают весомую долю потребностей общества в энергии. Миллионы людей в мире добывают уран, обогащают его, создают оборудование и строят атомные станции, десятки тысяч ученых работают в отрасли. Это одна из наиболее мощных отраслей современной индустрии, ставшая уже ее неотъемлемой частью. И хотя взлет атомной энергетики сейчас сменяется периодом стабилизации мощностей, учитывая позиции, завоеванные атомной энергетикой за 40 лет, есть надежда, что она сможет сохранить свою долю в мировом производстве электроэнергии на довольно длительную перспективу, пока не будет сформирован единый взгляд в мировом сообществе на необходимость и масштабы использования атомной энергетики в мире.

Список литературы :

1.”Ядерная энергетика в альтернативных энергетических сценариях” Энергия 1997 №4

2.”Некоторые экономические аспекты современного развития атомной энергетики”Вестник МГУ 1997 №1

3.”Положение и перспективы развития электроэнергетики России”БИКИ 1997 №8

4.Международная жизнь 1997 №5,№6

5.ВЕК 1996 №18, №13

6.Независимая газета 30.01.97

8.”Стратегия ядерной энергии” Международная жизнь 1997 №7

9 “О перспективах атомной энергетики в России” июнь 1995

География атомной энергетики мира: современные особенности, проблемы и перспективы развития

2.3 Перспективы развития атомной энергетики мира

Атомная энергетика, хоть и имеет трагическую историю развития, не лишена определенных преимуществ, чем и обусловлен интерес государств к этой отрасли. У АЭС есть как сторонники, поддерживающие развитие и дальнейшее строительство, так и противники, в основном экологические организации, вроде «Гринпис».

Сегодня примерно 17% мирового производства электроэнергии приходится на атомные электростанции (АЭС). В некоторых странах ее доля значительно больше. Например, в Швеции она составляет около половины всей электроэнергии, во Франции - около трех четвертей. Недавно согласно принятой в Китае программе вклад энергии атомных электростанций предусмотрено увеличить в пять - шесть раз. Заметную, хотя пока не определяющую, роль АЭС играют в США и России. Более сорока лет назад, когда дала ток первая атомная станция в Обнинске, многим казалось, что атомная энергетика - вполне безопасная и экологически чистая. Авария на одной из американской АЭС, а затем катастрофа в Чернобыле показали, что на самом деле атомная энергетика сопряжена с большой опасностью. Общественное сопротивление сегодня таково, что строительство новых АЭС в большинстве стран практически остановлено. Исключение составляют лишь восточноазиатские страны - Япония, Корея, Китай, где атомная энергетика продолжает развиваться.

Специалисты, хорошо знающие сильные и слабые стороны реакторов, смотрят на атомную опасность более спокойно. Накопленный опыт и новые технологии позволяют строить реакторы, вероятность выхода которых из-под контроля хотя и не равна нулю, но крайне мала. На современных атомных предприятиях обеспечен строжайший контроль радиации в помещениях и в каналах реакторов: сменные комбинезоны, специальная обувь, автоматические детекторы излучений, которые ни за что не откроют шлюзовые двери, если на вас есть хотя бы небольшие следы радиоактивной «грязи». Например, на атомной электростанции в Швеции, где чистейшие пластиковые полы и непрерывная очистка воздуха в просторных помещениях, казалось бы, исключают даже мысль о сколь-нибудь заметном радиоактивном заражении.

Атомной энергетике предшествовали испытания ядерного оружия. На земле и в атмосфере проводились испытания ядерных и термоядерных бомб, взрывы которых ужасали мир. В то же время инженеры разрабатывали и ядерные реакторы, предназначенные для получения электрической энергии. Приоритет получили военное направление - производство реакторов для кораблей военно-морского флота. Военным ведомствам особенно перспективным представлялось использование реакторов на подводных лодках: такие суда имели бы практически неограниченный радиус действия и могли бы годами находиться под водой. Американцы сосредоточили свои усилия на создании корпусных водо-водяных реакторов, в которых замедлителем нейтронов, и теплоносителем служила обычная («легкая») вода и которые обладали большой мощностью на единицу массы энергетической установки. Были сооружены полномасштабные наземные прототипы транспортных реакторов, на которых проверялись все конструктивные решения и отрабатывались системы управления и безопасности. В середине 50-х годов XX в. первая подводная лодка с атомным двигателем «Наутилиус» прошла подо льдами Ледовитого океана.

Реактор РБМК (реактор большой мощности, канальный), в котором вода, охлаждающая тепловыделяющие элементы, находится в состоянии кипения, появился как очередной этап последовательного развития канальных графитовых реакторов: промышленный графитовый реактор, реактор первой в мире АЭС, реакторы Белоярской АЭС. Ленинградская АЭС на РБМК проявила свой норов. Несмотря на наличие традиционной автоматической системы регулирования, оператор должен был по мере выгорания топлива все чаще и чаще вмешиваться в управление реактором (до 200 раз в смену). Это было связано с возникновением или усилением в процессе эксплуатации реактора положительных обратных связей, приводящих к развитию неустойчивости с периодом в 10 минут. Для нормального стабильного функционирования какого-либо устройства с положительной обратной связью необходима надежная система автоматического регулирования. Однако всегда существует опасность аварии из-за отказа подобной системы. С проблемой неустойчивости столкнулись и в Канаде, когда пустили в 1971 г. канальный реактор с тяжелой водой в качестве замедлителей нейтронов и кипящей легкой водой в качестве теплоносителя. Канадские специалисты тогда закрыли установку. Сравнительно быстро была разработана новая, приспособленная к РБМК, система автоматического регулирования. Ее внедрение обеспечило приемлемую устойчивость реактора. В СССР развернулось серийное строительство АЭС с реакторами РБМК (нигде в мире подобные установки не использовались).

В СССР накоплен многолетний опыт сооружения и эксплуатации АЭС с реакторами ВВЭР (аналогичными американским PWR), на базе которых может быть в относительно короткие сроки создан в большей степени безопасный энергетический реактор. Такой, что в случае аварийной ситуации все радиоактивные осколки деления ядер урана должны остаться в пределах защитной оболочки.

Развитые страны с большой численностью населения в обозримом будущем не смогут из-за приближающейся экологической катастрофы обойтись без атомной энергетики даже при некоторых запасах обычных видов топлива. Режим экономии энергии может лишь на некоторое время отодвинуть проблему, но не решить ее. Кроме того, многие специалисты считают, что в наших условиях даже временного эффекта добиться не удастся: эффективность предприятий по энергоснабжению зависит от уровня развития экономики. Даже США потребовалось 20-25 лет со дня внедрения в промышленность энергоемких производств.

Вынужденная пауза, возникшая в развитии атомной энергетики, должна быть использована для разработки достаточно безопасного энергетического реактора на базе реактора ВВЭР, а также для разработки альтернативных энергетических реакторов, безопасность которых должна находиться на том же уровне, а экономическая эффективность значительно выше. Целесообразно построить демонстрационную АЭС с подземным размещением реактора ВВЭР в наиболее удобном месте, чтобы проверить ее экономическую эффективность и безопасность.

В последнее время предлагаются различные конструктивные решения атомных станций. В частности, компактную АЭС разработали специалисты Санкт-Петербургского морского бюро машиностроения «Малахит». Предлагаемая станция предназначается для Калининградской области, где проблема энергоресурсов стоит достаточно остро. Разработчики предусмотрели использование в АЭС жидкометаллического теплоносителя (сплава свинца с висмутом) и исключают возможность возникновения на ней радиационно-опасных аварий, в том числе при любых внешних воздействиях. Станция отличается экологической чистотой и экономической эффективностью. Все ее основное оборудование предполагается разместить глубоко под землей - в проложенном среди скальных пород туннеле диаметром в 20 м. Это дает возможность свести к минимуму число наземных сооружений и площадь отчуждаемых земель. Структура проектируемой АЭС - модульная, что тоже очень существенно. Проектная мощность Калининградской АЭС - 220 МВт, но может быть по мере необходимости уменьшена или увеличена в несколько раз при помощи изменения числа модулей.

Перспективы атомной энергетики мира. Давно ведущаяся дискуссия по этому вопросу разделила всех ее участников на два больших лагеря - сторонников и противников развития этой отрасли. Первые доказывают, что без мощностей АЭС человечество не сможет обеспечить себя необходимым количеством электроэнергии. Вторые делают акцент на очень высокую капиталоемкость (строительство 1 энергоблока мощностью 1ГВт составляет 2 млрд. долларов) атомной энергетики и в еще большей степени - на ее недостаточную экологическую и радиационную безопасность. Поэтому и имеющиеся прогнозы, сценарии развития АЭС на будущее сильно различаются.

В развитии атомной энергетики выделяются этапы зарождения, становления развития, стагнации, возрождения и современный. I этап: Зарождение...

География атомной энергетики мира: современные особенности, проблемы и перспективы развития

Существование любой отрасли энергетики и атомной в том числе, невозможно без сырьевой базы. Для данной отрасли сырьевой базой являются руды урана, на основе которых изготавливаются сначала тепловыделяющие элементы (ТВЭЛы)...

География атомной энергетики мира: современные особенности, проблемы и перспективы развития

В России сегодня эксплуатируются 29 ядерных энергоблоков общей установленной электрической мощностью 21,2 ГВт. В их числе 13 энергоблоков с реакторами типа ВВЭР, 11 энергоблоков с реакторами типа РБМК...

Особенности размещения и развития атомной энергетики РФ: противоречия, перспективы

Мировые ресурсы урана в наиболее богатых месторождениях с концентрацией металла в рудах >=0,1% в настоящее время оцениваются следующим образом: разведанные - несколько более 5 млн. т, потенциальные - 10 млн. т...

Особенности размещения и развития атомной энергетики РФ: противоречия, перспективы

Развитие атомной энергетики в два этапа предполагает длительное сосуществование тепловых реакторов на 235U, пока есть дешёвый уран, и быстрых реакторов...

Понятие территориальной организации хозяйства

В перспективе ведущими отраслями промышленного сектора экономики будут машиностроение, ядерная энергетика, электрометаллургия. В машиностроении приоритет в большей мере следует отдавать наукоемким отраслям - приборостроению, электронике...

Основным производителем тепловой и электрической энергии в Республике Татарстан является ОАО «Татэнерго». На данном предприятии вырабатывается практически вся электроэнергия и значительная доля тепловой энергии...

Проблемы развития энергетики в Республике Татарстан

Северо-Запад России в мировой экономике

В современной ситуации все действия, претендующие на развитие макрорегиона "Северо-Запад", должны быть согласованы с концептом "нового освоения" и выстраиваться в логике комплиментарности (взаимодополняемости)...

Характеристика лесоперерабатывающей промышленности Северо-Запада России

При размещении предприятий по механической обработке древесины необходимо учитывать такие особенности лесной промышленности, как высокие удельные расходы сырья на изготовление продукции и огромные производственные отходы...

Экономико-географическая сравнительная характеристика Атырауской области и республики Дагестан

В начале ХХ в. свыше 2/3 мирового энергопотребления обеспечивалось за счет угля. В это же время в топливном балансе России дрова составляли 57%, солома -- 11%, на минеральное топливо (прежде всего уголь) приходилось 32%...

Авария на АЭС «Фукусима-1» обратила взоры всего мира на вопросы ядерной безопасности. В Европе поднялась волна протестов против использования атомных электростанций, в Германии, Франции и Италии прошли антиядерные демонстрации. Во многих странах приостановились проекты по разработке АЭС. Германия объявила о закрытии семи станций, которые были введены в эксплуатацию до 1980 года, а также временном приостановлении продления срока использования АЭС. Швейцария, Республика Корея, Индия и Китай решили вторично утвердить проекты по развитию собственных атомных электростанций.

Будучи серьезной ядерной катастрофой за последние 50 лет, уступающей только Чернобыльской аварии, инцидент на АЭС «Фукусима-1» бросил тень на развитие глобальной ядерной энергетики, а также заставил людей задуматься: как будет развиваться путь новых источников энергии в будущем?

Возрождение ядерной энергии с целью ослабления давления с мировыми поставками источников энергии и климатическими изменениями

В мировых масштабах на сегодня 13-15% поставок электроэнергии приходится на ядерную. Главные страны – энергетические потребители в большей степени зависят от ядерной энергии, доля которой составляет: Франция – 77%, Республика Корея – 38%, Германия – 32%, Япония – 30%, США – 20%, Великобритания – 20%, Россия – 16%. По сравнению с этими странами, доля ядерной энергии в общей энергетической структуре Китая мала. Вплоть до марта 2011 года всего 13 станций были введены в эксплуатацию на территории КНР, которые по установленной мощности составляют около 1,8% от общего показателя.

Главной движущей для развития ядерной энергии силой является гарантия энергетических поставок, ответ на климатические изменения, сокращение выбросов парниковых газов. Ядерная энергия рассматривается в качестве отличной альтернативы для ископаемых видов топлива, а также в качестве важного средства по масштабному сокращению выбросов парниковых газов.

В связи с этим, хотя аварии на Чернобыле и Три-Майл Айланде в свое время стали причиной остановки строительства АЭС по всему миру на несколько десятилетий, поскольку сейчас постоянно растут потребности в источниках энергии, неотложной задачей является сокращение эмиссии парниковых газов, сегодняшней тенденцией стало развитие новых источников энергии, в том числе и ядерной, и она не изменится из-за случайных несчастных случаев. После аварии на АЭС «Фукусима-1», США, Франция, Великобритания и другие страны отчетливо заявили, что не будут отказываться от развития ядерной энергии из-за произошедшего.

Возобновляемые источники энергии: еще нет хороших альтернатив ядерной энергии

Согласно докладу «Инвестиционные тенденции устойчивого развития источников энергии в 2010 году», опубликованному Программой ООН по окружающей среде, в 2009 году возобновляемые источники энергии составляли 18% от общего показателя в мире, в том числе гидроэлектроэнергия занимала 15%, энергия ветра, солнца и биомассы – 3%. В Китае в 2009 году энергия угля была равна 75%, гидроэлектроэнергия составляла 22,5%, а доля энергии ветра, солнца и биомассы не достигала и 1%. Развитие различных видов возобновляемых источников энергии имеет свои ограничения, пока не найдена хорошая альтернатива ядерной энергии.

Гидроэлектроэнергия – наиболее зрелая технология использования возобновляемых источников энергии, широко используется по всему миру. В настоящее время водно-энергетические ресурсы развитых стран в основном разведаны, роста гидроэнергетического потенциала не ожидается. Строительство гидроэнергостанций в основном сконцентрировано в развивающихся странах. План 12-й пятилетки Китая также ставит цель масштабного развития гидроэлектроэнергии. По оценкам экспертов области, в будущие пять лет КНР ежегодно будет завершать строительство одной подобной ГЭС «Санься» станции, лишь так стране удастся осуществить намеченные цели. При снижении темпов развития ядерной энергии необходимо будет ускорять освоение гидроэлектроэнергии, задача непростая. С точки зрения долгосрочной перспективы, встает вопрос с недостатком водных ресурсов развивающихся стран, большой спор вызывают проблемы, связанные с загрязнением окружающей среды и экологическим ущербом в результате строительства ГЭС.

Использование энергии ветра и солнца легко может подвергаться ограничениям, имеющим отношение к географическим факторам и климату. В некоторых странах с благоприятными географическими и климатическими условиями, где преобладает небольшой спрос на энергоносители, энергия ветра и солнца могут стать основными источниками энергии. Однако для крупных стран-энергопотребителей, ветряную и солнечную энергию целесообразнее использовать в отдельных районах с благоприятным географическим положением и климатом, таким образом, образуется система распределенного энергоснабжения.

Энергия биомассы не подвергается ограничениям, связанным с географией и климатом, но здесь существуют другие проблемы, касающиеся недостатка биологических ресурсов, плохого их качества.

Атомная энергетика: продвигать развитие новых стратегических отраслей

Кроме гарантии поставок энергоносителей, ядерная энергетика оказывает заметное стимулирующее воздействие на общий промышленный уровень государства. Мировые ядерные державы, без сомнений, являются промышленно развитыми странами. Для развития ядерной энергетики необходимы огромные капиталовложения и высокие технологии, которые свидетельствуют о комплексной силе и стратегических возможностях того или иного государства. В определенной степени, наличие масштабной и передовой индустрии ядерной энергетики означает вступление страны в клуб мировых держав.

Атомная энергетика – отрасль, которая сосредотачивает в себе технологии и денежные средства, затрагивает развитие нескольких десятков других отраслей, в том числе и механики, металлургии, электроники, химии, аппаратов, инструментов и материалов. В связи с этим, развитие передовой ядерной энергетики предполагает приведение в действие лучших технологий других индустрий, всесторонне поднимает технический и инновационный уровень государства, способствует повышению уровня промышленного производства, тем самым, стимулирует промышленную модернизацию и развитие новых стратегических отраслей.

В настоящее время мир уже вступил в эпоху инноваций и промышленного возрождения, по-новому оформляется производственная цепочка в глобальной экономике. С одной стороны, основные страны мира с целью скорейшего выхода из международного финансового кризиса развивают индустрии стратегического характера, ищут новые научно-технические опоры для продвижения экономического роста; с другой стороны, со вступлением в 21-й век, в ядерной энергетике также прослеживаются признаки крупных научно-технических инноваций, например, строительство АЭС третьего поколения, предполагается, что ядерные технологии четвертого поколения вступят в стадию коммерциализации к 2030 году. В связи с этим, основные страны мира продвигают развитие ядерной энергетики, тем самым, стимулируют научно-технические инновации в стране, повышают уровень производства оборудования, а также делают упор на достижение экономического роста в будущем.

Будущее направление: более безопасная ядерная энергия

Авария на АЭС «Фукусима-1» не изменит будущие тенденции развития ядерной энергетики. Одновременно с этим, человечество вынесло для себя урок из произошедшей трагедии: необходимо больше уделять внимания ядерной безопасности, а также способствовать обновлению технологий. Авария на АЭС «Фукусима-1» ускорила закрытие старых электростанций в разных странах, а также способствовала использованию передовых и безопасных ядерных технологий третьего поколения. Всесторонне были подняты нормы безопасности на АЭС. После катастрофы в Японии, атомным электростанциям в мире были предъявлены более высокие требования в безопасности. Кроме того, усилился контроль над безопасностью на АЭС, тщательно выбирается место для строительства станций. Например, проекты по созданию АЭС в Хунане, Чунцине, Шэньси, Ганьсу и других местах, которые расположены в сейсмически опасных зонах, будут пересмотрены. -о-