Получение углеродных нанотрубок. Углеродные нанотрубки и нановолкна

Еще одним классом кластеров были удлиненные цилиндрические углеродные образования, которые позднее, после выяснения их структуры, назвали "углеродными нанотрубками " (УНТ). УНТ являются большими, иногда даже сверхбольшими (свыше 10 6 атомов) молекулами, построенными из атомов углерода.

Типичная структурная схема однослойной УНТ и результат компьютерного расчета ее молекулярных орбиталей показаны на рис. 3.1. В вершинах всех шестиугольников и пятиугольников, изображенных белыми линиями, расположены атомы углерода в состоянии sp 2 -гибридизации. Для того, чтобы структура каркаса УНТ была хорошо видна, атомы углерода здесь не показаны. Но их не трудно себе представить. Серым тоном показан вид молекулярных орбиталей боковой поверхности УНТ.

Рис 3.1

Теория показывает, что структуру боковой поверхности однослойной УНТ можно представить себе как свернутый в трубку один слой графита. Понятно, что свертывать этот слой можно лишь в тех направлениях, при которых достигается совмещение гексагональной решетки самой с собой при замыкании цилиндрической поверхности. Поэтому УНТ имеют лишь определенный набор диаметров и классифицируются по векторам, указывающим направление свертывания гексагональной решетки. От этого зависят как внешний вид, так и вариации свойств УНТ. Три типичных варианта показаны на рис.3.2.

Набор возможных диаметров УНТ перекрывает диапазон от несколько меньше 1 нм до многих десятков нанометров. А длина УНТ может достигать десятков микрометров. Рекордные по длине УНТ уже превзошли границу в 1 мм.

Достаточно длинные УНТ (когда их длина намного больше диаметра) можно рассматривать как одномерный кристалл. На них можно выделить "элементарную ячейку", которая многократно повторяется вдоль оси трубки. И это отражается на некоторых свойствах длинных углеродных нанотрубок.

В зависимости от вектора свертывания графитового слоя (специалисты говорят: "от хиральности ") нанотрубки могут быть как проводниками, так и полупроводниками. УНТ так называемой "седловой" структуры всегда имеют довольно высокую, "металлическую" электропроводность.


Рис. 3.2

Разными могут быть и "крышки", замыкающие УНТ на торцах. Они имеют форму "половинок" разных фуллеренов. Основные их варианты показаны на рис. 3.3.

Рис. 3.3 Основные варианты "крышек" однослойной УНТ

Существуют также и многослойные УНТ . Некоторые из них похожи на графитовый слой, свернутый в свиток. Но большинство состоит из вставленных одна в другую однослойных трубок, связанных между собой силами ван дер Ваальса. Если однослойные УНТ практически всегда закрыты крышками, то многослойные УНТ бывают и частично открытыми. На них наблюдается обычно намного больше мелких дефектов структуры, чем на однослойных УНТ. Поэтому для применений в электронике преимущество пока отдают последним.

УНТ вырастают не только прямолинейными, но и криволинейными, согнутыми с образованием "колена", и даже полностью свернутыми в виде подобия тора. Нередко несколько УНТ прочно соединены между собой и образуют "жгуты".

Материалы, используемые для нанотрубок

Развитие методов синтеза углеродных нанотрубок (УНТ) шло по пути снижения температур синтеза. После создания технологии получения фуллеренов было обнаружено, что при электродуговом испарении графитовых электродов наряду с образованием фуллеренов образуются протяженные цилиндрические структуры. Микроскопист Сумио Ииджима, используя просвечивающий электронный микроскоп (ПЭМ), первым идентифицировал эти структуры как нанотрубки. К высокотемпературным методам получения УНТ относятся электродуговой метод. Если испарить графитовый стержень (анод) в электрической дуге, то на противоположном электроде (катоде) образуется жесткий углеродный нарост (депозит) в мягкой сердцевине которого содержатся многостенные УНТ с диаметром 15-20 нм и длиной более 1 мкм.

Формирование УНТ из фуллереновой сажи при высокотемпературном тепловом воздействии на сажу впервые наблюдали Оксфордская и Швейцарская группы. Установка для электродугового синтеза металлоемка, энергозатратна, но универсальна для получения различных типов углеродных наноматериалов. Существенной проблемой является неравновесность процесса при горении дуги. Электродуговой метод в свое время пришел на смену метода лазерного испарения (абляции) лучом лазера. Установка для абляции представляет собой обычную печь с резистивным нагревом, дающую температуру 1200°С. Чтобы получить в ней более высокие температуры, достаточно поместить в печь мишень из углерода и направить на нее лазерный луч, попеременно сканируя всю поверхность мишени. Так группа Смолли, используя дорогостоящие установки с короткоимпульсным лазером, получила в 1995 г. нанотрубки, «значительно упростив» технологию их синтеза.

Однако, выход УНТ оставался низким. Введение в графит небольших добавок никеля и кобальта (по 0.5 ат.%) позволило увеличить выход УНТ до 70-90%. С этого момента начался новый этап в представлении о механизме образования нанотрубок. Стало очевидным, что металл является катализатором роста. Так появились первые работы по получению нанотрубок низкотемпературным методом -- методом каталитического пиролиза углеводородов (CVD), где в качестве катализатораиспользовались частицы металла группы железа. Один из вариантов установки по получению нанотрубок и нановолокон CVD методом представляет собой реактор, в который подается инертный газ-носитель, уносящий катализатор и углеводород в зону высоких температур.

Упрощенно механизм роста УНТ заключается в следующем. Углерод, образующийся при термическом разложении углеводорода, растворяется в наночастице металла. При достижении высокой концентрации углерода в частице на одной из граней частицы-катализатора происходит энергетически выгодное «выделение» избыточного углерода в виде искаженной полуфулереновой шапочки. Так зарождается нанотрубка. Разложившийся углерод продолжает поступать в частицу катализатора, и для сброса избытка его концентрации в расплаве нужно постоянно избавляться от него. Поднимающаяся полусфера (полуфуллерен) с поверхности расплава увлекает за собой растворенный избыточный углерод, атомы которого вне расплава образуют связь С-С, представляющую собой цилиндрический каркас-нанотрубку.

Температура плавления частицы в наноразмерном состоянии зависит от ее радиуса. Чем меньше радиус, тем ниже температура плавления, вследствие эффекта Гиббса-Томпсона. Поэтому, наночастицы железа, с размером порядка 10 нм находятся в расплавленном состоянии ниже 600°С. На данный момент осуществлен низкотемпературный синтез УНТ методом каталитического пиролиза ацетилена в присутствии частиц Fe при 550°С. Снижение температуры синтеза имеет и негативные последствия. При более низких температурах получаются УНТ с большим диаметром (около 100 нм) и сильно дефектной структурой типа «бамбук» или «вложенные наноконусы». Полученные материалы состоят только из углерода, но к экстраординарным характеристикам (например, модуль Юнга) наблюдаемым у одностенных углеродных нанотрубок, получаемых методом лазерной абляции или электродуговым синтезом, они даже близко не приближаются.

Фуллерены и углеродные нанотрубки. Свойства и применение

В 1985 году Роберт Керл, Гарольд Крото и Ричард Смолли совершенно неожиданно открыли принципиально новое углеродное соединение – фуллерен , уникальные свойства которого вызвали целый шквал исследований. В 1996 году первооткрывателям фуллеренов присуждена Нобелевская премия.

Основой молекулы фуллерена является углерод - этот уникальнейший химический элемент, отличающийся способностью соединяться с большинством элементов и образовывать молекулы самого различного состава и строения. Из школьного курса химии вам, конечно же, известно, что углерод имеет два основных аллотропных состояния -графит и алмаз. Так вот, с открытием фуллерена, можно сказать, углерод приобрел еще одно аллотропное состояние.

Для начала рассмотрим структуры молекул графита, алмаза и фуллерена.

Графит обладает слоистой структурой (Рис.8) . Каждый его слой состоит из атомов углерода, ковалентно связанных друг с другом в правильные шестиугольники.

Рис. 8. Структура графита

Соседние слои удерживаются вместе слабыми Ван-дер-Ваальсовыми силами. Поэтому они легко скользят друг по другу. Примером этого может служить простой карандаш -когда вы проводите графитовым стержнем по бумаге, слои постепенно "отслаиваются" друг от друга, оставляя на ней след.

Алмаз имеет трехмерную тетраэдрическую структуру (Рис.9) . Каждый атом углерода ковалентно связан с четырьмя другими. Все атомы в кристаллической решетке расположены на одинаковом расстоянии (154 нм) друг от друга. Каждый из них связан с другими прямой ковалентной связью и образует в кристалле, каких бы размеров он ни был, одну гигантскую макромолекулу

Рис. 9. Структура алмаза

Благодаря высокой энергии ковалентных связей С-С, алмаз обладает высочайшей прочностью и используется не только как драгоценный камень, но и в качестве сырья для изготовления металлорежущего и шлифовального инструмента (возможно, читателям доводилось слышать об алмазной обработке различных металлов)

Фуллерены получили свое название в честь архитектора Бакминстера Фуллера, который придумал подобные структуры для использования их в архитектурном строительстве (поэтому их также называют бакиболами ). Фуллерен имеет каркасную структуру, очень напоминающую футбольный мяч, состоящий из “заплаток” 5-ти и 6-тиугольной формы. Если представить, что в вершинах этого многогранника находятся атомы углерода, то мы получим самый стабильный фуллерен С60. (Рис. 10)

Рис. 10. Структура фуллерена C 60

В молекуле С60, которая является наиболее известным, а также наиболее симметричным представителем семейства фуллеренов, число шестиугольников равно 20. При этом каждый пятиугольник граничит только с шестиугольниками, а каждый шестиугольник имеет три общие стороны с шестиугольниками и три -с пятиугольниками.

Структура молекулы фуллерена интересна тем, что внутри такого углеродного "мячика" образуется полость, в которую благодаря капиллярным свойствам можно ввести атомы и молекулы других веществ, что дает, например, возможность их безопасной транспортировки.

По мере исследования фуллеренов были синтезированы и изучены их молекулы, содержащие различное число атомов углерода -от 36 до 540. (Рис. 11)


а)б)в)

Рис. 11. Структура фуллеренов а) 36, б) 96, в) 540

Однако разнообразие углеродных каркасных структур на этом не заканчивается. В 1991 году японский профессор Сумио Иидзима обнаружил длинные углеродные цилиндры, получившие названия нанотрубок .

Нанотрубка – это молекула из более миллиона атомов углерода, представляющая собой трубку с диаметром около нанометра и длиной несколько десятков микрон . В стенках трубки атомы углерода расположены в вершинах правильных шестиугольников.



Рис. 13 Структура углеродной нанотрубки.

а) общий вид нанотрубки

б) нанотрубка разорванная с одного конца

Структуру нанотрубок можно представить себе так: берем графитовую плоскость, вырезаем из нее полоску и "склеиваем" ее в цилиндр (на самом деле, конечно, нанотрубки растут совсем по-другому). Казалось бы, что может быть проще – берешь графитовую плоскость и сворачиваешь в цилиндр! – однако до экспериментального открытия нанотрубок никто из теоретиков их не предсказывал. Так что ученым оставалось только изучать их и удивляться.

А удивляться было чему – ведь эти удивительные нанотрубки в 100 тыс.

раз тоньше человеческого волоса оказались на редкость прочным материалом. Нанотрубки в 50-100 раз прочнее стали и имеют в шесть раз меньшую плотность! Модуль Юнга – уровень сопротивления материала деформации – у нанотрубок вдвое выше, чем у обычных углеродных волокон. То есть трубки не только прочные, но и гибкие, и напоминают по своему поведению не ломкие соломинки, а жесткие резиновые трубки. Под действием механических напряжений, превышающих критические, нанотрубки ведут себя довольно экстравагантно: они не "рвутся", не "ломаются", а просто-напросто перестраиваются!

В настоящее время максимальная длина нанотрубок составляет десятки и сотни микрон – что, конечно, очень велико по атомным масштабам, но слишком мало для повседневного использования. Однако длина получаемых нанотрубок постепенно увеличивается -сейчас ученые уже вплотную подошли к сантиметровому рубежу. Получены многослойные нанотрубки длиной 4 мм.

Нанотрубки бывают самой разной формы: однослойные и многослойные, прямые и спиральные. Кроме того, они демонстрируют целый спектр самых неожиданных электрических, магнитных, оптических свойств.

Например, в зависимости от конкретной схемы сворачивания графитовой плоскости (хиральности ), нанотрубки могут быть как проводниками, так и полупроводниками электричества. Электронные свойства нанотрубок можно целенаправленно менять путем введения внутрь трубок атомов других веществ.

Пустоты внутри фуллеренов и нанотрубок давно привлекали внимание

ученых. Эксперименты показали, что если внутрь фуллерена внедрить атом какого-нибудь вещества (этот процесс носит название "интеркаляция", т.е. "внедрение"), то это может изменить его электрические свойства и даже превратить изолятор в сверхпроводник!

А можно ли таким же образом изменить свойства нанотрубок? Оказывается, да. Ученые смогли поместить внутрь нанотрубки целую цепочку из фуллеренов с уже внедренными в них атомами гадолиния. Электрические свойства такой необычной структуры сильно отличались как от свойств простой, полой нанотрубки, так и от свойств нанотрубки с пустыми фуллеренами внутри. Интересно отметить, что для таких соединений разработаны специальные химические обозначения. Описанная выше структура записывается как Gd@C60@SWNT, что означает "Gd внутри C60 внутри однослойной нанотрубки (Single Wall NanoTube)".

Провода для макроприборов на основе нанотрубок могут пропускать ток практически без выделения тепла и ток может достигать громадного значения – 10 7 А/см 2 . Классический проводник при таких значениях мгновенно бы испарился.

Разработано также несколько применений нанотрубок в компьютерной индустрии. Уже в 2006 году появятся эмиссионные мониторы с плоским экраном, работающие на матрице из нанотрубок. Под действием напряжения, прикладываемого к одному из концов нанотрубки, другой конец начинает испускаться электроны, которые попадают на фосфоресцирующий экран и вызывают свечение пикселя. Получающееся при этом зерно изображения будет фантастически малым: порядка микрона! (Данные мониторы изучаются в курсе периферийные устройства).

Другой пример – использование нанотрубки в качестве иглы сканирующего микроскопа. Обычно такое острие представляет собой остро заточенную вольфрамовую иглу, но по атомным меркам такая заточка все равно достаточно грубая. Нанотрубка же представляет собой идеальную иглу диаметром порядка нескольких атомов. Прикладывая определенное напряжение, можно подхватывать атомы и целые молекулы, находящиеся на подложке непосредственно под иглой, и переносить их с места на место.

Необычные электрические свойства нанотрубок сделают их одним из основных материалов наноэлектроники. На их основе изготовлены прототипы новых элементов для компьютеров. Эти элементы обеспечивают уменьшение устройств по сравнению с кремниевыми на несколько порядков. Сейчас активно обсуждается вопрос о том, в какую сторону пойдет развитие электроники после того, как возможности дальнейшей миниатюризации электронных схем на основе традиционных полупроводников будут полностью исчерпаны (это может произойти в ближайшие 5-6 лет). И нанотрубкам отводится бесспорно лидирующее положение среди перспективных претендентов на место кремния.

Еще одно применение нанотрубок в наноэлектронике – создание полупроводниковых гетероструктур, т.е. структур типа "металл/полупроводник" или стык двух разных полупроводников (нанотранзисторы).

Теперь для изготовления такой структуры не надо будет выращивать отдельно два материала и затем "сваривать" их друг с другом. Все, что требуется, это в процессе роста нанотрубки создать в ней структурный дефект (а именно, заменить один из углеродных шестиугольников пятиугольником) просто надломив его посередине особым образом. Тогда одна часть нанотрубки будет обладать металлическими свойствами, а другая -свойствами полупроводников!

Углеродные нанотрубки создают новую отрасль промышленности и материаловедения

Вещества категории «нано», то есть с частицами менее 100 нм, сегодня представлены техническим углеродом (сажа) и кремнегелем («белая сажа»). Объемы производства других наноматериалов несопоставимо ниже. Но сейчас ситуация меняется, на рынок вышли углеродные нанотрубки. Углеродные нанотрубки - это протяженные цилиндрические структуры, состоящие из одной или нескольких свернутых в трубку гексагональных (геометрически похожих на пчелиные соты) графитовых плоскостей

Углеродные микротрубки были запатентованы в конце XIX века, а нанотрубки впервые получены в московском Институте физической химии в 1950-х годах, затем в Японии в 1970-х и, наконец, «открыты» в Японии в 1991 году. С тех пор интерес к трубкам неуклонно рос.

По набору нужных свойств у нанотрубок нет аналогов

  • Связь атомов углерода друг с другом в нанотрубках имеет рекордную прочность. Модуль Юнга (величина размерности давления, характеризующая сопротивление вещества растяжению или сжатию) нанотрубок более 1 ТПа (около 1 млн атмосфер - выше, чем у алмаза). Теплопроводность нанотрубок в восемь раз выше, чем у меди, а электропроводность не подчиняется закону Ома. Плотность тока в трубках может в тысячу раз превышать плотность, при которой медный провод взрывается.

Мировое производство нанотрубок превысило 1 000 тонн в год. Использование материалов из углеродных нанотрубок или содержащих углеродные нанотрубки стало новым сектором экономики, который не был затронут мировым финансовым кризисом.

  • Общемировая потребность в нанотрубках в 2010 году оценена в 10 тысяч тонн. Их производит более 40 компаний. Немецкая Bayer планирует к 2012 году расширить производственные мощности до 3 000 т/г, французская Arkema имеет завод с годовой производительностью 400 т, китайская CNano - 500 т/г, а бельгийская Nanocyl - 400 т/г. До 500 т/г увеличивает производство углеродных нановолокон японская Showa Denko .
  • Наноструктурированные материалы делятся на две большие группы. Материалы одной на 95–100% состоят из нанотрубок. Материалы второй - нанокомпозиты - наоборот, нанотрубок содержат немного, до 5%.

Материалы из нанотрубок

Форма нанотрубок позволяет укладывать их двояко: хаотично или упорядоченно, - что влияет на свойства материалов. Нанотрубки можно модифицировать, присоединять к ним различные химические группы и наночастицы. Это также меняет свойства самих нанотрубок и материалов их них.

  • К материалам первой группы относятся «монолитные» структуры из нанотрубок; покрытия, пленки и нанобумага из трубок; волокна из трубок; «лес» - нанотрубки, расположенные параллельно друг другу и перпендикулярно подложке. «Монолитные» материалы не получили широкого распространения.

Из спутанных длинных нанотрубок выделена «резина», устойчивая к разрушению при циклических нагрузках и температурах от –140 до +900 оС. Ее показатели далеко превосходят силиконовую резину, которую считают лучшим вязкоэластичным материалом.

  • Покрытия, пленки и нанобумагу получают либо в ходе синтеза трубок, либо из их дисперсий (коллоидных растворов). Первая группа методов - высокотемпературная, вторая нагревания не требует. Простейший макроматериал из трубок - нанобумага - имеет толщину 10–30 нм и производится фильтрацией дисперсий.

.

Компания Nanocomp Technologies (США) продает листы нанобумаги площадью около 3 м2 и планирует создать производство мощностью 4–6 т/г. Реализованы методы получения рулонов нанобумаги.

  • Из нанобумаги делают фильтры (в том числе для удаления вирусов или обессоливания воды), защиту от электромагнитного излучения, детали нагревателей, сенсоры, актюаторы, полевые эмиттеры, электроды электрохимических устройств, носители катализаторов и др.

Прозрачные электропроводные пленки и покрытия конкурируют с твердым раствором оксидов индия и олова и способны заменять этот дорогой и хрупкий материал в приборах электроники, сенсорики и фотовольтаики.

  • Американская компания Eikos разработала и с 2005 года поставляет состав Invisicon ink для нанесения на подложки тонких пленок из нанотрубок.

Волокна из углеродных нанотрубок казались идеальным материалом троса «космического лифта» для экономичного подъема грузов на околоземную орбиту. Однако перенос свойств нанотрубок на макроматериалы оказался далеко не простой задачей.

  • Волокна получают разными способами. «Сухие» способы включают формирование из аэрогеля, образующегося в процессе пиролиза углеводородов, и прядение из «леса».

Технология вытягивания и скручивания волокон из аэрогеля - «мягкого дыма» - разработана в Кембриджском университете . В реакционную зону с высокой температурой подают углеводород, из которого образуется аэрогель (т.е. гель, в котором жидкая фаза полностью заменена газообразной). Из него, как в старину из кудели, прядут волокно. В Израиле в 2010 году создана компания для изготовления бронежилетов и защитных покрытий из гибридных композитов, содержащих кембриджские нанотрубки.

  • Прядение из «леса» напоминает получение шелковых нитей из коконов шелкопряда.

.

Растворные способы получения волокон - экструзия дисперсий в поток жидкости или вытягивание из коллоидных растворов в суперкислотах (кислотах сильнее серной).

  • Компания Nanocomp Technologies объявила о поставках прочных волокон длиной до 10 км, для изготовления которых используют длинные нанотрубки. Крученые нити имеют прочность 3 ГПа и по некоторым показателям уже превосходят кевлар.

«Лес» по набору свойств не имеет аналогов - это упругий, электро- и теплопроводный материал, способный принимать разные формы и подвергаться модифицированию. В 2004 году был описан высокопроизводительный процесс суперроста «леса»: получение очень чистых углеродных нанотрубок длиной до 15–18 мм, - который значительно снижает их себестоимость.

  • В Японии готовится пуск производства, основанного на процессе суперроста. Мощность его всего 600 г/ч однослойных нанотрубок, но вскоре ее планируют довести до 10 т/г.

«Лес» можно использовать для создания электродов суперконденсаторов, полевых эмиттеров и солнечных батарей, как компонент композитов на основе полимеров. Укладкой «леса» на поверхность подложки получены плотные ленты. По удельной электропроводности они могут превзойти металлы и найдут применение в авиакосмической отрасли.

  • Ленты для искусственных мускулов из параллельно расположенных нанотрубок действуют при температурах от 80 до 1900 К и при приложении электрического потенциала обеспечивают очень высокое удлинение. Такие преобразователи электричества в механическую энергию значительно эффективнее пьезокристаллов.

Материалы с примесью нанотрубок

Резко растет производство материалов второй группы - нанокомпозитов, главным образом полимерных

  • Введение даже небольших количеств углеродных нанотрубок заметно меняет свойства полимеров, придает электропроводность, повышает теплопроводность, улучшает механические характеристики, химическую и термическую устойчивость. Созданы нанокомпозиты на основе десятков различных полимеров, разработано много способов их получения.

Широкое применение могут найти созданные на основе полимеров с нанотрубками композитные волокна.

  • Практически все производимые компанией Bayer нанотрубки используют для композитов из полимеров. Компания Arkema поставляет свои нанотрубки для композитов из термопластов, а Nanocyl - для термоусадочных полимеров и препрегов с углеродными волокнами (препреги - композитные материалы-полуфабрикаты для дальнейшей обработки).

Американская компания Hyperion Catalysis Int. , пионер промышленного производства нанотрубок, выпускает концентраты для введения в эпоксидную смолу и полимеры.

Типы нанотрубок

  • Керамические композиты созданы на основе многих тугоплавких веществ, однако по промышленному освоению заметно уступают нанокомпозитам на основе полимеров. Как и в случае полимеров, добавки небольших количеств нанотрубок увеличивают электро- и теплопроводность, придают способность защищать от электромагнитного излучения, а главное - увеличивают трещиностойкость керамик.

Введение очень малых количеств нанотрубок в бетон повышает его марку, трещиностойкость, прочность и уменьшает усадку.

  • Металлические композиты созданы с распространенными цветными металлами и сплавами. Наибольшее внимание уделяется медным композитам, механические свойства которых в два-три раза выше, чем у меди. Многие составы имеют повышенную прочность и твердость, меньшие коэффициенты термического расширения и трения.

Гибридные композиты обычно содержат три компонента: полимерные или неорганические волокна (ткани), нанотрубки и связующее. К этому классу относятся препреги .

  • На производстве препрегов с нанотрубками специализируется американская компания Zyvex Performace Materials . Нанотрубки повышают прочность и жесткость препрегов на 30–50%. Препреги использованы для создания беспилотных морских разведывательных катеров «Пиранья» .

В США в 2009 году полетел первый самолет для воздушной акробатики с обтекателем двигателя из композита с нанотрубками. Некоторые элементы планера самолета F-35 компании Martin Lockheed изготовлены из таких композитов, примерно 100 деталей планера пассажирского Boeing 787 предполагается делать с применением нанотрубок.

  • Компания Nanocyl производит эпоксидную смолу с трубками Epocyl и препреги Pregcyl на основе стекловолокон, углеродных или арамидных волокон. Добавки повышают трещиностойкость на 100%, межслоевую прочность на сдвиг на 15% и уменьшают коэффициент термического расширения. Предполагается использовать композиты в автомобильной и авиационной промышленности, для бронежилетов. Они снижают массу 49-метровых лопастей ветроустановок с 7,3 до 5,8 т.

Финская компания Amroy Europe Oy , используя нанотрубки производства Bayer , выпускает эпоксидный концентрат Hybtonite для морских судов, ветрогенераторов, спортивного инвентаря и др.

  • Для препрегов канадская Nanoledge использует трубки компании Bayer , а Nanocomp Technologies выпускает большие по площади листы и рулоны нанобумаги.

Гибридные композиты могут проявлять свойства сенсора повреждений.

  • С различными матрицами созданы также биокомпозиты. Исследуются материалы для костных имплантатов, пленки для выращивания мышечных и костных тканей, сетчатки и эпителиальных клеток глаза, сетей нейронов, а также биофункциональные композиты и биосенсоры.

Примеры не исчерпывают всего разнообразия и свойств материалов с нанотрубками. Их области применения расширяются, они начинают определять уровень развития наноструктурного материаловедения, общее состояние науки и техники отдельных стран.

Эдуард Раков, доктор химических наук, заведующий кафедрой нанотехнологии и наноматериалов РХТУ им. Д.И. Менделеева

Углеродные нанотрубки– это материал, которым грезят многие ученые. Высокий коэффициент прочности, превосходная тепло- и электропроводность, огнестойкость и весовой коэффициент на порядок выше, чем у большинства известных материалов. Углеродные нанотрубки представляют свернутый в трубку лист графена. Русские ученые Константин Новоселов, а также Андрей Гейм за его открытие получили Нобелевскую премию в 2010 году.

Впервые же наблюдать за углеродными трубками на поверхности железного катализатора могли советские ученые еще в 1952 году. Однако потребовалось пятьдесят лет, чтобы ученые смогли увидеть в нанотрубках перспективный и полезный материал. Одним из поразительных свойств этих нанотрубок является то, что их свойства определяются геометрией. Так от угла скручивания зависят их электрические свойства — нанотрубки могут демонстрировать полупроводниковую и металлическую проводимость.

Что это

Многие перспективные направления в нанотехнологиях сегодня связывают именно с углеродными нанотрубками. Если просто, то углеродные нанотрубки представляют гигантские молекулы или каркасные структуры, которые состоят лишь из атомов углерода. Легко представить такую нанотрубку, если вообразить, что происходит сворачивание в трубку графена – это один из молекулярных слоев графита. Метод сворачивания нанотрубок во многом определяет конечные свойства данного материала.

Естественно, что никто не создает нанотрубки, специально сворачивая их из листа графита. Образуются нанотрубки сами, к примеру, на поверхности угольных электродов либо между ними при дуговом разряде. Атомы углерода при разряде испаряются с поверхности и соединяются между собой. В результате образуются нанотрубки различного вида – многослойные, однослойные и с различными углами закручивания.

Основная классификация нанотрубок как раз идет по числу составляющих их слоев:

  • однослойные нанотрубки – самый простой вид нанотрубок. Большая их часть из них имеют диаметр порядка 1 нм при длине, которая может получиться в тысячи раз больше;
  • многослойные нанотрубки, состоящих из нескольких слоев графена, они складываются в форме трубки. Между слоями образуется расстояние 0,34 нм, то есть идентичное расстоянию между слоями в кристалле графита.

Устройство

Нанотрубки представляют протяженные цилиндрические структуры углерода, которые могут иметь длину до нескольких сантиметров и диаметр от одного до нескольких десятков нанометров. В то же время сегодня имеются технологии, которые позволяют сплетать их в нити неограниченной длины. Они могут состоять из одной или нескольких графеновых плоскостей, свернутых в трубку, которые обычно заканчиваются полусферической головкой.

Диаметр нанотрубок составляет несколько нанометров, то есть несколько миллиардных долей метра. Стенки углеродных нанотрубок выполнены из шестиугольников, в вершинах которых находятся атомы углерода. Трубки могут иметь разный тип строения, именно он влияет на их механические, электронные и химические свойства. Однослойные трубки имеют меньше дефектов, в то же время после отжига при высокой температуре в инертной атмосфере удается получить и бездефектные варианты трубок. Многослойные нанотрубки отличаются от стандартных однослойных существенно более широким разнообразием конфигураций и форм.

Синтезировать углеродные нанотрубки можно разными способами, но наиболее распространенными являются:

  • Дуговой разряд . Метод обеспечивает получение нанотрубок на технологических установках для выработки фуллеренов в плазме дугового разряда, который горит в атмосфере гелия. Но здесь применяются иные режимы горения дуги: более высокое давление гелия и низкие плотности тока, а также катоды большего диаметра. В катодном осадке находятся нанотрубки длиной до 40 мкм, они растут перпендикулярно от катода и объединяются в цилиндрические пучки.
  • Метод лазерной абляции . Метод базируется на испарении мишени из графита в специальном высокотемпературном реакторе. Нанотрубки образуются на охлажденной поверхности реактора в виде конденсата испарения графита. Данный метод позволяет преимущественно получать однослойные нанотрубки с контролем необходимого диаметра посредством температуры. Но указанный метод существенно дороже других.
  • Химическое осаждение из газовой фазы . Данный метод предполагает подготовку подложки со слоем катализатора – это могут быть частицы железа, кобальта, никеля или их комбинаций. Диаметр нанотрубок, выращенных указанным способом, будет зависеть от размера используемых частиц. Подложка нагревается до 700 градусов. Для инициации роста нанотрубок вводятся в реактор углеродосодержащий газ и технологический газ (водород, азот или аммиак). Нанотрубки растут на участках катализаторов из металла.

Применения и особенности

  • Применения в фотонике и оптике . Подбирая диаметр нанотрубок можно обеспечить оптическое поглощение в большом спектральном диапазоне. Однослойные углеродные нанотрубки проявляют сильную нелинейность насыщающегося поглощения, то есть при достаточно интенсивном свете они становятся прозрачными. Поэтому они могут применяться для разных приложений в области фотоники, к примеру, в маршрутизаторах и коммутаторах, для создания ультракоротких лазерных импульсов и регенерации оптических сигналов.
  • Применение в электронике . На данный момент заявлено множество способов использования нанотрубок в электронике, однако реализовать удается лишь небольшую ее часть. Наибольший интерес вызывает применение нанотрубок в прозрачных проводниках в качестве термоустойчивого межфазного материала.

Актуальность попыток внедрения нанотрубок в электронике вызвано необходимостью замены индия в теплоотводах, которые применяются в транзисторах большой мощности, графических процессорах и центральных процессорах, ведь запасы этого материала уменьшаются, а цена на него растет.

  • Создание сенсоров . Углеродные нанотрубки для сенсоров – одно из наиболее интересных решений. Ультратонкие пленки из одностенных нанотрубок на данный момент могут стать наиболее лучшей основой для электронных сенсоров. Производить их можно с применением разных методов.
  • Создание биочипов, биосенсоров , контроля адресной доставки и действия лекарств в биотехнологической отрасли. Работы в данном направлении сегодня вовсю ведутся. Высокопроизводительный анализ, выполняемый с использованием нанотехнологий, позволит существенно уменьшить время, которое нужно для вывода технологии на рынок.
  • Сегодня резко растет производство нанокомпозитов , в основном полимерных. При введении в них даже небольшого количества углеродных нанотрубок обеспечивается существенное изменение свойств полимеров. Так у них повышается термическая и химическая устойчивость, теплопроводность, электропроводность, улучшаются механические характеристики. Усовершенствованы десятки материалов при помощи добавления в них углеродных нанотрубок;

Композитные волокна на основе полимеров с нанотрубками;
керамические композиты с добавками. Увеличивается трещиностойкость керамики, появляется защита электромагнитного излучения, увеличивается электро- и теплопроводность;
бетон с нанотрубками – повышается марка, прочность, трещиностойкость, уменьшается усадка;
металлические композиты. Особенно медные композиты, у которых механические свойства в несколько раз выше, чем у обычной меди;
гибридные композиты, в которых содержатся сразу три компонента: неорганические или полимерные волокна (ткани), связующее вещество и нанотрубки.

Достоинства и недостатки

Среди достоинств углеродных нанотрубок можно отметить:

  • Множество уникальных и по-настоящему полезных свойств, которые можно применять в области внедрения энергоэффективных решений, фотоники, электроники, и иных приложений.
  • Это наноматериал, который обладает высоким коэффициентом прочности, превосходной тепло- и электропроводностью, огнестойкостью.
  • Улучшение свойств других материалов при внедрении в них небольшого количества углеродных нанотрубок.
  • Углеродные нанотрубки с открытым концом проявляют капиллярный эффект, то есть они могут втягивать в себя расплавленные металлы и иные жидкие вещества;
  • Нанотрубки сочетают в себе свойства твердого тела и молекул, что открывает значительные перспективы.

Среди недостатков углеродных нанотрубок можно отметить:

  • Углеродные нанотрубки на данный момент не производятся в промышленных масштабах, поэтому их серийное применение ограничено.
  • Стоимость производства углеродных нанотрубок высока, что также ограничивает их применение. Тем не менее, ученные усиленно работают над снижением себестоимости их производства.
  • Необходимость совершенствования технологий производства для создания углеродных нанотрубок с точно заданными свойствами.

Перспективы

В ближайшем будущем углеродные нанотрубки будут применяться повсеместно, из них будут создаваться:

  • Нановесы, композитные материалы, сверхпрочные нити.
  • Топливные элементы, прозрачные проводящие поверхности, нанопровода, транзисторы.
  • Новейшие нейрокомпьютерные разработки.
  • Дисплеи, светодиоды.
  • Устройства для хранения металлов и газов, капсулы для активных молекул, нанопипетки.
  • Медицинские нанороботы для доставки лекарств и проведения операций.
  • Миниатюрные датчики с ультравысокой чувствительностью. Такие нанодатчики могут найти применение в биотехнологических, медицинских и военных применениях.
  • Трос для космического лифта.
  • Плоские прозрачные громкоговорители.
  • Искусственные мышцы. В будущем появятся киборги, роботы, инвалиды будут возвращаться к полноценной жизни.
  • Двигатели и генераторы энергии.
  • Умная, легкая и комфортная одежда, которая будет защищать от любых невзгод.
  • Безопасные суперконденсаторы с быстрой зарядкой.

Все это в будущем, ведь промышленные технологии создания и использования углеродных нанотрубок находятся на начальном этапе развития, а цена их крайне дорога. Но российские ученые уже заявили, что они нашли способ снизить стоимость создания этого материала в двести раз. Эта уникальная технология производства углеродных нанотрубок на данный момент держится в секрете, но она должна произвести революцию в промышленности и во многих иных областях.

Одностенные нанотрубки

Структура одностенных нанотрубок, наблюдаемых экспериментально, во многих отношениях отличается от представленной выше идеализированной картины. Прежде всего это касается вершин нанотрубки, форма которых, как следует из наблюдений, далека от идеальной полусферы.

Особое место среди одностенных нанотрубок занимают так называемые armchair-нанотрубки или нанотрубки с хиральностью (10, 10). В нанотрубках такого типа две из С-С связей, входящих в состав каждого шестичленного кольца, ориентированы параллельно продольной оси трубки. Нанотрубки с подобной структурой должны обладать чисто металлической структурой.

Многостенные нанотрубки

Многостенные (multi-walled) нанотрубки отличаются от одностенных значительно более широким разнообразием форм и конфигураций. Разнообразие структур проявляется как в продольном, так и в поперечном направлении.

Структура типа «русской матрёшки» (russian dolls) представляет собой совокупность коаксиально вложенных друг в друга цилиндрических трубок. Другая разновидность этой структуры представляет собой совокупность вложенных друг в друга коаксиальных призм. Наконец, последняя из приведённых структур напоминает свиток (scroll). Для всех структур характерно значение расстояния между соседними графитовыми слоями, близкое к величине 0,34 нм, присущей расстоянию между соседними плоскостями кристаллического графита.

Реализация той или иной структуры многостенных нанотрубок в конкретной экспериментальной ситуации зависит от условий синтеза. Анализ имеющихся экспериментальных данных указывает, что наиболее типичной структурой многостенных нанотрубок является структура с попеременно расположенными по длине участками типа «русской матрёшки» и «папье-маше». При этом «трубки» меньшего размера последовательно вложены в трубки большего размера.

Получение углеродных нанотрубок

Развитие методов синтеза углеродных нанотрубок (УНТ) шло по пути снижения температур синтеза. После создания технологии получения фуллеренов было обнаружено, что при электродуговом испарении графитовых электродов наряду с образованием фуллеренов образуются протяженные цилиндрические структуры. Микроскопист Сумио Ииджима, используя просвечивающий электронный микроскоп (ПЭМ) первым идентифицировал эти структуры, как нанотрубки. К высокотемпературным методам получения УНТ относятся электродуговой метод. Если испарить графитовый стержень (анод) в электрической дуге, то на противоположном электроде (катоде) образуется жесткий углеродный нарост (депозит) в мягкой сердцевине которого содержатся многостенные УНТ с диаметром 15-20 нм и длиной более 1 мкм. Формирование УНТ из фуллереновой сажи при высокотемпературном тепловом воздействии на сажу впервые наблюдали Оксфордская и Швейцарская группа. Установка для электродугового синтеза металлоемка, энергозатратна, но универсальна для получения различных типов углеродных наноматериалов. При этом существенной проблемой является неравновесность процесса при горении дуги. Электродуговой метод в свое время пришел на смену метода лазерного испарения (абляции) лучем лазера. Установка для абляции представляет собой обычную печь с резистивным нагревом, дающую температуру 1200С. Чтобы получить в ней более высокие температуры, достаточно поместить в печь мишень из углерода и направить на нее лазерный луч, попеременно сканируя всю поверхность мишени.

Т.о. группа Смолли, используя дорогостоящие установки с короткоимпульсным лазером, получила в 1995 г. нанотрубки, "значительно упростив" технологию их синтеза. Однако, выход УНТ оставался низким. Введение в графит небольших добавок никеля и кобальта позволило увеличить выход УНТ до 70-90%. С этого момента начался новый этап в представлении о механизме образования нанотрубок. Стало очевидным, что металл является катализатором роста. Так появились первые работы по получению нанотрубок низкотемпературным методом - методом каталитического пиролиза углеводородов (CVD), где в качестве катализатора использовались частицы металла группы железа. Один из варианов установки по получению нанотрубок и нановолокон CVD методом представляет собой реактор, в который подается инертный газ-носитель, уносящий катализатор и углеводород в зону высоких температур. Упрощенно механизм роста УНТ заключается в следующем. Углерод, образующийся при термическом разложении углеводорода, растворяется в наночастице металла.

При достижении высокой концентрации углерода в частице на одной из граней частицы-катализатора происходит энергетически выгодное "выделение" избыточного углерода в виде искаженной полуфулереновой шапочки. Так зарождается нанотрубка. Разложившийся углерод продолжает поступать в частицу катализатора, и для сброса избытка его концентрации в расплаве нужно постоянно избавляться от него. Поднимающаяся полусфера (полуфуллерен) с поверхности расплава, увлекает за собой растворенный избыточный углерод, атомы которого вне расплава образуют связь С-С представляющую собой цилиндрический каркас-нанотрубку. Температура плавления частицы в наноразмерном состоянии зависит от ее радиуса. Чем меньше радиус, тем ниже температура плавления. Поэтому, наночастицы железа, с размером порядка 10 нм находятся в расплавленном состоянии ниже 600С. На данный момент осуществлен низкотемпературный синтез УНТ методом каталитического пиролиза ацетилена в присутствии частиц Fe при 550С. Снижение температуры синтеза имеет и негативные последствия. При более низких температурах получаются УНТ с большим диаметром (около 100 нм) и сильно дефектной структурой типа "бамбук" или вложенные наноконусы. Полученные материалы только состоят из углерода, но к экстраординарным характеристикам (например, модуль Юнга) наблюдаемым у одностенных углеродных нанотрубок, получаемых методом лазерной абляции или электродуговым синтезом, они даже близко не приближаются.