Сенсорные системы, их значение и классификация. Взаимодействие сенсорных систем

СТРОЕНИЕ, ФУНКЦИИ И СВОЙСТВА АНАЛИЗАТОРОВ (СЕНСОРНЫХ СИСТЕМ)

Вопрос о процессе превращения сенсорных стимулов в ощущения, об их локализации, а также о механизме и месте образования общего представления о предмете (восприятия) в современной психофизиологии решается на основе учения И.П. Павлова об анализаторах (сенсорных системах).

Анализатор (сенсорная система) - это единая физиологическая система, которая приспособлена к восприятию раздражителей внешнего или внутреннего мира, их переработке в нервный импульс и формированию ощущения и восприятия.

Различают следующие анализаторы (сенсорные системы): болевой, вестибулярный, двигательный, зрительный, интроцептивный, кожный, обонятельный, слуховой, температурный и другие.

Любой анализатор имеет принципиально одинаковое строение (рис. 14.1). Он состоит из трех частей:

1. Начальная - воспринимающая часть анализатора представлена рецепторами. Они развились в процессе эволюции в результате повышенной чувствительности некоторых клеток к определенному виду энергии (тепловой, химической, механической и т.д.). Тот раздражитель, к которому рецептор специально приспособлен, называется адекватным, все остальные будут неадекватными.

Рис. 14.1.

В зависимости от локализации выделяют следующие рецепторы:

А) Экстерорецепторы (зрительные, слуховые, обонятельные, вкусовые, осязательные), которые лежат на поверхности тела и реагируют на внешние воздействия, обеспечивая приток сенсорной информации из внешней среды. Б) Интерорецепторы располагаются в тканях внутренних органов в просвете крупных сосудов (например, хеморецепторы, барорецепторы) и чувствительны к тем или иным параметрам внутренней среды (концентрации химически активных веществ, давлению крови и т.д.); они важны для получения информации о функциональном состоянии организма и его внутренней среды. В) Проприорецепторы лежат в мышцах, сухожилиях и воспринимают информацию о степени растяжения и сокращения мышц, благодаря которой формируются «чувство тела» (ощущение собственного тела и относительного расположения его частей).

Воспринимающая часть анализатора иногда представлена соответствующим органом чувства (глазом, ухом, и т.д.). Под органом чувства понимается структура, содержащая рецепторы и вспомогательные образования, обеспечивающие восприятие специфической энергии. Например, глаз содержит зрительные рецепторы и такие образования, как глазное яблоко, оболочки глазного яблока, глазные мышцы, зрачок, хрусталик, стекловидное тело, которые обеспечивают воздействие света на зрительные рецепторы.

Функция рецепторов состоит в том, чтобы воспринять энергию раздражителя и преобразовать ее в нервные импульсы определенной частоты (сенсорный код).

2. Проводниковый отдел каждого анализатора представлен чувствительным нервом, по которому возбуждение идет от рецепторов к подкорковым и корковым центрам данного анализатора. При этом различают два пути, связанных между собой: первый, так называемый специфический путь анализатора, идет через специфические ядра ствола головного мозга и играет основную роль в передаче сенсорной информации и возникновении ощущений определенного вида; второй, неспецифический путь, представлен нейронами рети- куляторной формации. Поток импульсов, идущих по нему, изменяет функциональное состояние структур спинного и головного мозга, т.е. оказывает активирующее влияние на нервные центры. Роль проводникового отдела каждого анализатора не сводится лишь к передаче возбуждения от рецепторов к коре: он принимает участие и в возникновении ощущений. Например, подкорковые центры зрительного анализатора, расположенные в среднем мозге (в верхних буграх четверохолмия), получают информацию от зрительных рецепторов и настраивают орган зрения на более точное восприятие визуальной информации. Кроме того, уже на уровне промежуточного мозга возникают неясные, грубые ощущения (например, света и тени, светлых и темных объектов). Рассматривая в целом проводниковую часть анализаторов, следует обратить внимание на таламус. В этом отделе промежуточного мозга сходятся афферентные (чувствительные) пути всех анализаторов (за исключением обонятельного). Это значит, что таламус получает информацию от экс- теро-, проприо- и интерорецепторов об окружающей обстановке и состоянии организма.

Таким образом, в таламусе собирается и анализируется вся сенсорная информация. Здесь она частично перерабатывается и в таком обработанном виде передается в различные области коры. Большая часть сенсорной информации не доходит до высшего отдела ЦНС (а следовательно, не вызывает четких и осознанных ощущений), но становится компонентом двигательных и эмоциональных ответных реакций и, возможно, «материалом» для интуиции.

  • 3. Центральный отдел каждого анализатора расположен в определенной зоне коры больших полушарий. Например:
    • зрительный анализатор - в затылочная доле коры;
    • слуховой и вестибулярный анализаторы - в височной доле;
    • обонятельный анализатор - в гиппокампе и височной доле;
    • вкусовой анализатор - в теменной доле;
    • тактильный анализатор (соматосенсорная система) - в задней центральной извилине теменной доли (соматосенсорная зона);
    • двигательный анализатор - в передней центральной извилине лобной доли (моторная зона) (рис. 14.2).

Рис. 14.2.

В составе каждого анализатора есть нисходящие, эфферентные нейроны, «включающие» двигательные реакции. Например, зрительная информация, приходящая в верхние бугры четверохолмия, вызывает «местные» рефлексы-непроизвольные движения глаз за движущимся объектом, один из элементов ориентировочного рефлекса. В коре центральные концы всех анализаторов связаны с моторной зоной, которая является центральным отделом двигательного анализатора. Таким образом, двигательная зона получает информацию от всех сенсорных систем организма и служит связующим звеном в межанализаторных отношениях, тем самым обеспечивая связь ощущений и движений.

Структурные элементы анализаторов не изолированы в нервной системе, а анатомически и функционально связаны с центрами речи, с лимбической системой, подкорковыми отделами, с вегетативными центрами ствола и т.д., что обеспечивает взаимосвязь ощущений с эмоциями, движениями, поведением, речью, и объясняет влияние сенсорной информации на организм человека.

Принципы функционирования анализаторов (сенсорных систем)

Анализаторы образно называют окнами в мир, или каналами связи человека с внешним миром и собственным организмом. Уже «на входе» происходит анализ информации, что достигается избирательным реагированием рецепторов.

В пределах одной модальности существует огромное разнообразие сигналов: так, звуки варьируют по высоте, тембру, происхождению; визуальная информация - по цвету, яркости, формам, размерам и т.д. Способность ощущать разницу между ними обусловлена тем, что в анализаторах на разные раздражители возникают различные сенсорные сигналы. Эта функция получила название различение сигналов. Она достигается формированием на уровне рецепторов нервных импульсов разной частоты (сенсорный код) и включением процессов дифференцировки на всех уровнях сенсорной системы - от рецепторов до коры. По существу различение сигнала - неотъемлемая часть процесса анализа.

По мере развития ребенка и усложнения его взаимодействия с внешним миром дифференцировки становятся все более тонкими благодаря развитию дифференцировочного торможения в коре. Этому способствует также развитие как каждого анализатора в отдельности, так и усложнение их взаимодействия. Большую роль в этом процессе играют движения: двигательные дифференцировки помогают сенсорным. Так, для различения визуальной информации необходимы движения глаз, которые неизбежно сопровождают процесс рассматривания объекта, а также различные положения рук, возникающие при его ощупывании. Тот же принцип имеет место и при формировании фонематического слуха. Чтобы хорошо различать речевые звуки - фонемы, - мало слышать речь другого человека (даже при отличной дикции говорящего), необходимо также хорошо почувствовать собственный артикуляционный аппарат (губы, язык, небо, гортань, щеки), ощутить различия в его позициях при воспроизведении звуков. Многие методы обучения детей дошкольного и младшего школьного возраста, а также коррекционные техники опираются на этот механизм.

Тонкий анализ раздражителей требует активности самого субъекта познания. Если сам человек хочет участвовать в той или иной деятельности, и она вызывает положительные эмоции (интерес, радость), то его сенсорная чувствительность к различным сигналам значительно повышается. Активную роль в этом процессе играет произвольное внимание. Этот результат достигается вследствие контроля со стороны коры больших полушарий и ближайшей подкорки нижележащих отделов анализаторов с помощью эфферентных нейронов (см. рис. 14.1).

Таким образом, сенсорные процессы нельзя рассматривать только как физиологическое отражение объективных свойств объектов, поскольку в них отражается и субъективный фактор -потребности, эмоции и связанное с ними поведение субъекта, которые оказывают влияние на возникающие сенсорные образы.

Один из вопросов, который возникает при изучении сенсорных систем, состоит в том, каким образом передается информация в анализаторах. В рецепторах под влиянием раздражителя формируются нервные импульсы определенной частоты, которые распространяются по афферентным путям группами -«залпами», или «пачками» (сенсорный частотный код). Считается, что количество импульсов и их частота - это тот язык, с помощью которого рецепторы передают информацию в мозг о свойствах отражаемого объекта.

На современном этапе невозможно установить четкое соответствие между тем или иным свойством раздражителя и способом его фиксации в нервной системе. Существующие научные сведения описывают лишь некоторые общие принципы передачи информации в нервной системе (рис. 14.3).


Рис. 14.3.

Схема этого процесса такова. Сенсорный код в форме нервных импульсов, поступает от рецепторов в подкорковые центры мозга, где частично декодируются, отфильтровываются, а затем направляются в специфические центры коры - центры анализатора, где рождаются ощущения. Затем происходит синтез различных ощущений, откуда импульсы направляются к гиппокампу (память) и структурам лимбической системы (эмоции), а затем возвращаются в кору, в том числе в двигательный центр лобной доли. Возбуждение суммируется и строится сенсорный образ.

Таким образом, в построении целостного образа объекта и его опознании участвуют не только ощущения, но и движения, память и эмоции. В памяти хранятся ранее встречавшиеся впечатления (сенсорные образы), а эмоции сигнализируют о значимости полученной информации.

Восприятие не возникает механически или сугубо физиологически. Активное участие в его формировании принимает сам субъект, его сознание, его внимание. Иными словами, сам человек должен обратить внимание на объект, вычленить его, произвольно переключать внимание с целого на части и иметь для этого желание, какую-то цель. Вот почему обучение детей может быть успешным только тогда, когда оно вызывает у них желание познать то, что им предлагается, если оно представляет для них интерес.

Сенсорная система (анализатор) – сложная система, состоящая из периферического рецепторного образования – орган чувств, проводящего пути - черепно-мозговые и спинномозговые нервы и центрального отдела – корковый отдел анализатора, т.е. определенная зона коры головного мозга, в которой происходит обработка полученной от органов чувств информации. Выделяют следующие сенсорные системы: зрительная, слуховая, вкусовая, обонятельная, соматосенсорная, вестибулярная.

Зрительная сенсорная система представлена воспринимающим отделом – рецепторами сетчатой оболочки глаза, проводящей системой - зрительными нервами, и соответствующими участками коры в затылочных долях мозга.

Строение органа зрения: основу органа зрения составляет глазное яблоко, которое помещается в глазнице и имеет не совсем правильную шаровидную форму. Большую часть глаза составляют вспомогательные структуры, назначение которых – проецировать поле зрения на сетчатку. Стенка глаза состоит из трех слоев:

    склеры (белковой оболочки). Она самая толстая, прочная и обеспечивает глазному яблоку определенную форму. Эта оболочка непрозрачна и лишь в переднем отделе склера переходит в роговицу;

    сосудистой оболочки. Она обильно снабжена кровеносными сосудами и пигментом, содержащим красящее вещество. Часть сосудистой оболочки, находящейся за роговицей, образует радужную оболочку, или радужку. В центре радужки есть небольшое отверстие – зрачок, который, суживаясь или расширяясь, пропускает то больше, то меньше света. Радужка отделяется от собственно сосудистой оболочки ресничным телом. В толще его находится ресничная мышца, на тонких упругих нитях которой подвешен хрусталик –двояковыпуклая линза диаметром 10мм.

    сетчатки. Это самая внутренняя оболочка глаза. Она содержит фоторецепторы палочки и колбочки. Глаз человека содержит примерно 125 миллионов таких палочек, которые позволяют ему хорошо видеть при сумеречном свете. Сетчатка человеческого глаза содержит 6-7 миллионов колбочек; лучше всего они функционируют при ярком свете. Считается, что существует три типа колбочек, каждый из которых воспринимает свет определенной длины волны - красный, зеленый или синий. Другие цвета получаются в результате сочетания этих трех основных цветов.

Вся внутренняя полость глаза заполнена желеобразной массой – стекловидным телом. От палочек и колбочек сетчатки отходят нервные волокна, образующие затем зрительный нерв. Зрительный нерв проникает через глазницы в полость черепа и заканчивается в затылочной доле больших полушарий головного мозга – зрительная кора.

Вспомогательный аппарат глаза включает защитные приспособления и мышцы глаза. К защитным приспособлениям относятся веки с ресницами, конъюнктива и слезный аппарат. Веки представляют собой парные кожно-конъюктивные складки, прикрывающие спереди глазное яблоко. Передняя поверхность века покрыта тонкой, легко собирающейся в складки кожей, под которой лежит мышца века и которая на периферии переходит в кожу лба и лица. Задняя поверхность века выстлана конъюнктивой. Веки имеют передние края век, несущие ресницы и задние края век, переходящие в конъюнктиву. Брови и ресницы защищают глаз от попадания пыли. Конъюнктива покрывает заднюю поверхность век и переднюю поверхность глазного яблока. Различают конъюнктиву века и конъюнктиву глазного яблока. Слезная железа расположена в одноименной ямке верхне-наружного угла глазницы, ее выводные протоки (в количестве 5-12) открываются в области верхнего свода конъюнктивального мешка. Слезная железа выделяет прозрачную бесцветную жидкость слезу, которая предохраняет глаз от высыхания. Нижний конец слезного мешка переходит в носо-слезный проток, открывающийся в нижний носовой ход.

Глаз - самый подвижный из всех органов организма. Различные движения глаза, повороты в стороны, вверх, вниз обеспечивают глазодвигательные мышцы, расположенные в глазнице. Всего их 6, 4 прямые мышцы крепятся к передней части склеры (сверху, внизу, справа, слева) и каждая из них поворачивает глаз в свою сторону. А 2 косые мышцы, верхняя и нижняя, прикрепляются к задней части склеры.

Слуховая сенсорная система – совокупность структур, обеспечивающих восприятие звуковой информации, преобразовывать ее в нервные импульсы, последующую ее передачу и обработку в центральной нервной системе. В слуховом анализаторе: - периферический отдел образуют слуховые рецепторы, находящиеся в кортиевом органе внутреннего уха; - проводниковый отдел – преддверно-улитковые нервы; - центральный отдел – слуховая зона височной доли коры больших полушарий.

Орган слуха представлен: наружным, средним и внутренним ухом.

Наружное ухо состоит из ушной раковины и наружного слухового прохода. Оба образования выполняют функцию улавливания звуковых колебаний. Границей между наружным и средним ухом является барабанная перепонка – первый элемент аппарата механической передачи колебаний звуковых волн.

Среднее ухо состоит из барабанной полости и слуховой (евстахиевой) трубы.

Барабанная полость лежит в толще пирамиды височной кости. Ее емкость приблизительно равна 1 куб. см. Стенки барабанной полости выстланы слизистой оболочкой. В полости содержатся три слуховые косточки (молоточек, наковальня и стремечко), соединенные между собой суставами. Цепь слуховых косточек передает механические колебания барабанной перепонки на мембрану овального окна и структуры внутреннего уха.

Слуховая (евстахиева) труба соединяет барабанную полость с носоглоткой. Ее стенки выстланы слизистой оболочкой. Труба служит для выравнивания внутреннего и наружного давления воздуха на барабанную перепонку.

Внутреннее ухо представлено костным и перепончатым лабиринтом. Костный лабиринт включает в себя: улитку, преддверие, полукружные каналы, причем два последних образования к органу слуха не относятся. Они представляют собой вестибулярный аппарат, регулирующий положение тела в пространстве и сохранение равновесия.

Улитка является вместилищем органа слуха. Она имеет вид костного канала, имеющего 2.5 оборота и постоянно расширяющегося. Костный канал улитки за счет вестибулярной и базальной пластинок разделяются на три узких хода: верхний (лестница преддверия), средний (улитковый проток), нижний (барабанная лестница). Обе лестницы заполнены жидкостью – (перилимфой), а улитковый проток содержит в себе эндолимфу. На базальной мембране улиткового протока находится орган слуха (кортиев орган), состоящий из волосковых рецепторных клеточек. Эти клетки преобразуют механические звуковые колебания в биоэлектрические импульсы той же частоты, идущие затем по волокнам слухового нерва в слуховую зону коры мозга.

Вестибулярный орган (орган равновесия) располагается в преддверии и полукружных каналах внутреннего уха. Полукружные каналы – это костные узкие ходы, расположенные в трех взаимно перпендикулярных плоскостях. Концы каналов несколько расширены и называются ампулами. В каналах лежат полукружные протоки перепончатого лабиринта.

Преддверие содержит в себе два мешочка: эллиптический (маточка, утрикулюс) и сферический (саккулюс). В обоих мешочках преддверия имеются возвышения, называемые пятнами. В пятнах сосредоточены рецепторные волосковые клетки. Волоски обращены внутрь мешочков и прикреплены к кристаллическим камешкам – отолитам и желеобразной отолитовой мембране.

В ампулах полукружных протоков рецепторные клетки образуют скопление – ампулярные кристы. Возбуждение рецепторов здесь происходит за счет перемещения эндолимфы в протоках.

Раздражение отолитовых рецепторов или рецепторов полукружных протоков происходит в зависимости от характера движения. Отолитовый аппарат возбуждается при ускоряющихся и замедляющихся прямолинейных движениях, тряске, качке, наклоне тела или головы в сторону, при которых изменяется давление отолитов на рецепторные клетки. Вестибулярный аппарат участвует в регуляции и перераспределении мышечного тонуса, чем обеспечивается сохранение позы, компенсация состояния неустойчивого равновесия при вертикальном положении тела (стоя).

Вкусовая сенсорная система - совокупность сенсорных структур, обеспечивающих восприятие и анализ химических раздражителей и стимулов при воздействии их на рецепторы языка, а также формирующих вкусовые ощущения. Периферические отделы вкусового анализатора находятся на вкусовых сосочках языка, мягком небе, задней стенке глотки и надгортаннике. Проводниковым отделом вкусового анализатора служат вкусовые волокна лицевого и языкоглоточного нерва, по которым вкусовые раздражения следуют через продолговатый мозг и зрительные бугры на нижнюю поверхность лобной доли коры больших полушарий головного мозга (центральный отдел).

Обонятельная сенсорная система – совокупность сенсорных структур, обеспечивающая восприятие и анализ информации о веществах, соприкасающихся со слизистой оболочкой носовой полости, и формирующая обонятельные ощущения. В обонятельном анализаторе: периферический отдел - рецепторы верхнего носового хода слизистой оболочки носовой полости; проводниковый отдел – обонятельный нерв; центральный отдел – корковый обонятельный центр, расположенный на нижней поверхности височной и лобной долей коры больших полушарий. Обонятельные рецепторы расположены в слизистой оболочке, занимающей верхнюю часть носовой раковины. В слизистой оболочке, или обонятельной оболочке, выделяют три слоя клеток: структурные клетки, обонятельные клетки и базальные клетки. Обонятельные клетки передают нервный импульс в обонятельную луковицу, а оттуда в обонятельные центры коры головного мозга, где ощущение оценивается и расшифровывается.

Соматосенсорная система – совокупность сенсорных систем, обеспечивающих кодирование температурных, болевых, тактильных раздражителей, воздействующих непосредственно на тело человека. Рецепторным отделом служат рецепторы кожи, проводниковым – спинномозговые нервы, а мозговой отдел соматосенсорной системы сосредоточен в коре теменных долей головного мозга.

Строение и функции кожи человека. Площадь поверхности кожи у взрослого человека - 1,5-2 м2. Кожа богата мышечными и эластичными волокнами, обладающими способностью растягиваться, придавать ей упругость и противостоять давлению. Благодаря этим волокнам кожа может после растяжения возвращаться к исходному состоянию. Кожа состоит из двух отделов: верхнего - эпидермиса, или наружного слоя, и нижнего - дермы, или собственно кожи. Оба отдела обособлены друг от друга и в то же время тесно связаны между собой. Дерма (или собственно кожа) в нижнем отделе непосредственно переходит в подкожную жировую клетчатку. Эпидермис состоит из 5 слоев: базального слоя, шиловидного, зернистого, блестящего, или стекловидного, и самого поверхностного - рогового. Последний, роговой слой эпидермиса, непосредственно соприкасающийся с внешней средой. Толщина его различна на различных участках кожи. Наиболее мощный - на коже ладоней и подошв, наиболее тонкий - на коже век. Роговой слой состоит из ороговевших безъядерных клеток, напоминающих плоские чешуйки, тесно спаянные между собой в глубине рогового слоя и менее компактные на его поверхности. Отжившие эпителиальные элементы постоянно отделяются от рогового слоя (так называемое физиологическое шелушение). Роговые пластинки состоят из рогового вещества - кератина.

Дерма (собственно кожа) состоит из соединительной ткани и разделяется на два слоя: подэпителиальный (сосочковый) и сетчатый. Наличие сосочков намного увеличивает площадь соприкосновения эпидермиса с дермой и таким образом обеспечивает лучшие условия питания эпидермиса. Сетчатый слой дермы без резких границ переходит в подкожную жировую клетчатку. Сетчатый слой несколько отличается от сосочкового по характеру волокнистости. От его структуры в основном зависит прочность кожи. Чрезвычайно важная функциональная особенность дермы - наличие в ней эластических и других волокон, которые, обладая большой упругостью, поддерживают нормальную форму кожи и защищают кожу от травм. С возрастом, когда эластические волокна перерождаются, появляются складки кожи на лице и шее, морщины. В дерме расположены волосяные луковицы, сальные и потовые железы, а также мышцы, сосуды, нервы и нервные окончания. Почти на всем протяжении кожа покрыта волосами. Свободны от волос ладони и подошвы, боковые поверхности и ногтевые фаланги пальцев, кайма губ и еще некоторые участки.

Волосы – ороговевшие нитевидные придатки кожи толщиной 0,005-0,6 мм и длинной от нескольких миллиметров до 1,5 м, их цвет, размеры и распределение связаны с возрастом, полом, расовой принадлежностью и участком тела. Из 2 млн волос, имеющихся на теле человека, около 100 000 находится на волосистой части головы. Они разделяются на три вида:

    длинные – толстые, длинные, пигментированные, покрывают волосистую часть головы, а после полового созревания – лобок, подмышечные впадины, у мужчин – также усы, бороду и другие части тела;

    щетинистые – толстые, короткие, пигментированные, образуют брови, ресницы, обнаруживаются в наружном слуховом проходе и преддверии носовой полости;

    пушковые – тонкие, короткие, бесцветные, покрывают остальные части тела (численно преобладают); под влиянием гормонов при половом созревании в некоторых частях тела могут превращаться в длинные.

Волос состоит из стержня, выступающего над кожей, и корня, погруженного в нее до уровня подкожной жировой клетчатки. Корень окружен волосяным фолликулом – цилиндрическим эпителиальным образованием, вдающимся в дерму и гиподерму и оплетенным соединительнотканной волосяной сумкой. Вблизи поверхности эпидермиса фолликул образует расширение – воронку, куда впадают протоки потовых и сальных желез. На дистальном конце фолликула имеется волосяная луковица, в которую врастает соединительнотканный волосяной сосочек с большим количеством кровеносных сосудов, осуществляющих питание луковицы. В луковице находятся и меланоциты, обуславливающие пигментацию волоса.

Ноготь представляет собой образование в виде пластинки, лежащей на дорсальной поверхности дистальной фаланги пальцев. Он состоит из ногтевой пластинки и ногтевого ложа. Ногтевая пластинка состоит из твердого кератина, образована многими слоями роговых чешуек, прочно связанных друг с другом, и лежит на ногтевом ложе. Проксимальная ее часть – корень ногтя, находится в задней ногтевой щели и покрыта надкожицей, за исключением небольшой светлой зоны полулунной формы (луночки). Дистально пластинка заканчивается свободным краем, лежащим над подногтевой пластинкой.

Железы кожи. Потовые железы участвуют в терморегуляции, а также в экскреции продуктов обмена, солей, лекарственных веществ, тяжелых металлов. Потовые железы имеют простое трубчатое строение и подразделяются на: эккринные и апокринные. Эккринные потовые железы встречаются в коже всех участков тела. Их число составляет 3-5 млн (особенно многочисленны на ладонях, подошвах, лбу), а совокупная масса примерно 150 г. Они секретируют прозрачный пот с низким содержанием органических компонентов и по выводным протокам он попадает на поверхность кожи, охлаждая ее. Апокринные потовые железы, в отличие от эккринных, располагаются лишь в определенных участках тела: коже подмышечных впадин, промежности. Окончательное развитие претерпевают в период полового созревания. Образуют пот молочного цвета с высоким содержанием органических веществ. По строению – простые трубчато-альвеолярные. Активность желез регулируется нервной системой и половыми гормонами. Выводные протоки открываются в устья волосяных фолликулов или на поверхность кожи.

Сальные железы вырабатывают смесь липидов – кожное сало, которое покрывает поверхность кожи, смягчая ее и усиливая ее барьерные и антимикробные свойства. Они присутствуют в коже повсеместно, кроме ладоней, подошв и тыльной стороны стопы. Обычно связаны с волосяными фолликулами, развиваются в юности в ходе полового созревания под влиянием андрогенов (у обоих полов). Сальные железы располагаются у корня волоса на границе сетчатого и сосочкового слоя дермы. Они относятся к простым альвеолярным железам. Они состоят из концевых отделов и выводных протоков. Выделение секрета сальных желез (20 г в сутки) происходит при сокращении мышцы, поднимающей волос. Гиперпродукция кожного сала характерна для заболевания, называемого себореей.

Все сенсорные системы построены по единому принципу и состоят из трех отделов: периферического, проводникового и центрального.

Периферический отдел представлен органом чувства. В его состав входят рецепторы - окончания чувствительных нервных волокон или специализированные клетки. Они обеспечивают преобразование энергии раздражителя в нервные импульсы.

Рецепторы различаются по месту расположения (внутренние и наружные), строению и особенностям восприятия энергии раздражителя (одни воспринимают механические, другие - химические, третьи - световые стимулы).

Помимо рецепторов органы чувств включают в себя вспомогательные структуры, выполняющие защитную, опорную и некоторые другие функции. Например, вспомогательный аппарат глаза представлен глазодвигательными мышцами, веками и слезными железами.

Проводниковый отдел сенсорной системы состоит из чувствительных нервных волокон, образующих в большинстве случаев специализированный нерв. Он доставляет информацию от рецепторов в центральный отдел сенсорной системы.

И наконец, центральный отдел расположен в коре больших полушарий головного мозга. Здесь находятся высшие сенсорные центры, обеспечивающие окончательный анализ поступившей информации и формирование соответствующих ощущений.

Таким образом, сенсорная система - это совокупность специализированных структур нервной системы, которые осуществляют процессы приема и обработки информации из внешней и внутренней среды, а также формируют ощущения.

Различают зрительную, слуховую, вестибулярную, вкусовую, обонятельную и другие сенсорные системы.

Зрительная сенсорная система

Ее периферическая часть представлена органом зрения (глазом), проводниковая - зрительным нервом, а центральная - зрительной зоной, расположенной в затылочной доле коры больших полушарий.

Световые лучи от рассматриваемых предметов действуют на светочувствительные клетки глаза и вызывают в них возбуждение. Оно передается по зрительному нерву в кору больших полушарий. Здесь в затылочных долях возникают зрительные ощущения формы, окраски, величины, расположения и направления движения предметов.

Слуховая сенсорная система играет очень важную роль. Ее деятельность лежит в основе обучения речи. Она представлена ухом - органом слуха (периферический отдел), слуховым нервом (проводниковый отдел) и слуховой зоной, расположенной в височной доле коры больших полушарий (центральный отдел).

Вестибулярная сенсорная система обеспечивает пространственную ориентацию человека. С ее помощью мы получаем информацию об ускорениях и замедлениях, возникающих при движении. Она представлена органом равновесия, вестибулярным нервом и соответствующей зоной в височных долях коры больших полушарий.

Ощущение положения тела в пространстве особенно необходимо летчикам, аквалангистам, акробатам и др. При повреждении органа равновесия человек не может уверенно стоять и ходить.

Вкусовая сенсорная система осуществляет анализ действующих на орган вкуса (язык) растворимых химических раздражителей. С ее помощью определяется пригодность пищи.

Наш язык покрыт слизистой оболочкой, складки которой содержат вкусовые почки (рис.). Внутри каждой почки расположены рецепторные клетки с микроворсинками.

Рецепторы связаны с нервными волокнами, которые входят в мозг в составе черепных нервов. По ним импульсы достигают задней части центральной извилины коры головного мозга, где и формируются вкусовые ощущения.

Различают четыре основных вкусовых ощущения: горькое, сладкое, кислое и соленое. Кончик языка проявляет наиболее высокую чувствительность к сладкому, края - соленому и кислому, а корень - к горьким веществам.

Обонятельная сенсорная система осуществляет восприятие и анализ химических раздражителей, находящихся во внешней среде.

Периферический отдел обонятельной сенсорной системы представлен эпителием носовой полости, в котором имеются рецепторные клетки с микроворсинками. Аксоны этих чувствительных клеток образуют обонятельный нерв, который направляется в полость черепа (рис.).

По нему возбуждение проводится к обонятельным центрам коры больших полушарий, где и осуществляется распознавание запахов.

Существенную роль в познании внешнего мира у человека играет осязание. Оно обеспечивает способность воспринимать и различать форму, размер и характер поверхности предмета. Рецепторы, участвующие в процессах восприятия раздражителей, действующих на кожу, весьма разнообразны. Они реагируют не только на прикосновения, но также на тепло, холод и болевые воздействия. Больше всего тактильных рецепторов на губах и ладонной поверхности пальцев рук, меньше всего - на туловище. Возбуждение от рецепторов по чувствительным нейронам передается в зону кожной чувствительности коры больших полушарий, где возникают соответствующие ощущения.

1) Сенсорные системы

«Сенс» - переводится как «чувство», «ощущение».

Сенсорные системы - это воспринимающие системы организма (зрительная, слуховая, обонятельная, осязательная, вкусовая, болевая, тактильная, вестибулярный аппарат, проприоцептивная, интероцептивная).

Можно сказать, что сенсорные системы -- это «информационные входы» организма для восприятия им характеристик окружающей среды, а также характеристик внутренней среды самого организма. В физиологии принято делать ударение на букву «о», тогда как в технике -- на букву «е». Поэтому технические воспринимающие системы -- сЕнсорные, а физиологические -- сенсОрные.

Восприятие -- это перевод характеристик внешнего раздражения во внутренние нервные коды, доступные для обработки и анализа нервной системой (кодирование), и построение нервной модели раздражителя (сенсорного образа).

Восприятие позволяет строить внутренний образ, отражающий существенные характеристики внешнего раздражителя. Внутренний сенсорный образ раздражителя -- это нервная модель, состоящая из системы нервных клеток. Важно понять, что эта нервная модель не может полностью соответствовать реальному раздражителю и всегда будет отличаться от него хотя бы в некоторых деталях.

К примеру, кубики на картинке справа образуют модель, близкую к реальности, но не способную в реальности существовать...

2) Анализаторы и сенсорные системы

Анализаторами называют часть нервной системы, состоящую из множества специализированных воспринимающих рецепторов, а также промежуточных и центральных нервных клеток и связывающих их нервных волокон.

И.П. Павлов создал учение об анализаторах. Это упрощённое представление о восприятии. Он делил анализатор на 3 звена.

Строение анализатора

· Периферическая часть (отдаленная) - это рецепторы, воспринимающие раздражение и превращающие его в нервное возбуждение.

· Проводниковый отдел (афферентные или чувствительные нервы) - это проводящие пути, передающие сенсорное возбуждение, рождённое в рецепторах.

· Центральный отдел - это участок коры больших полушарий головного мозга, анализирующий поступившее к нему сенсорное возбуждение и строящий за счёт синтеза возбуждений сенсорный образ.

Таким образом, например, окончательное зрительное восприятие происходит в мозге, а не в глазу.

Понятие сенсорная система шире, чем анализатор. Она включает в себя дополнительные приспособления, системы настройки и системы саморегуляции. Сенсорная система предусматривает обратную связь между мозговыми анализирующими структурами и воспринимающим рецептивным аппаратом. Для сенсорных систем характерен процесс адаптации к раздражению.

Адаптация - это процесс приспособления сенсорной системы и ее отдельных элементов к действию раздражителя.

Отличия между понятиями «сенсорная система» и «анализатор»

1) Сенсорная система активна, а не пассивна в передаче возбуждения.

2) В состав сенсорной системы входят вспомогательные структуры, обеспечивающие оптимальную настройку и работу рецепторов.

3) В состав сенсорной системы входят вспомогательные низшие нервные центры, которые не просто передают сенсорное возбуждение дальше, а меняют его характеристики и разделяют на несколько потоков, посылая их по разным направлениям.

4) Сенсорная система имеет обратные связи между последующими и предшествующими структурами, передающими сенсорное возбуждение.

5) Обработка и переработка сенсорного возбуждения происходит не только в коре головного мозга, но и в нижележащих структурах.

6) Сенсорная система активно подстраивается под восприятие раздражителя и приспосабливается к нему, т. е. происходит её адаптация.

7) Сенсорная система сложнее, чем анализатор.

Вывод: Сенсорная система = анализатор + система регуляции.

3) Сенсорные рецепторы

Сенсорные рецепторы - специфические клетки, настроенные на восприятие различных раздражителей внешней и внутренней среды организма и обладающие высокой чувствительностью к адекватному раздражителю. Адекватный раздражитель - это раздражитель, дающий максимальную ответную реакцию, при минимальной силе раздражения.

Деятельность сенсорных рецепторов является необходимым условием для осуществления всех функций ЦНС. Сенсорные рецепторы являются первым звеном в рефлекторном пути и периферической частью более сложной структуры - анализаторов. Совокупность рецепторов, стимуляция которых приводит к изменению активности каких-либо нервных структур, называют рецептивным полем.

Классификация рецепторов

Нервная система отличается большим разнообразием рецепторов, различные типы которых представлены на рисунке:


Рис.

Рецепторы классифицируются по нескольким признакам:

А. Центральное место занимает подразделение в зависимости от вида воспринимаемого раздражителя. Выделяют 5 таких типов рецепторов:

Ш Механорецепторы возбуждаются при механической деформации. Они расположены в коже, сосудах, внутренних органах, опорно-двигательном аппарате, слуховой и вестибулярной системах.

Ш Хеморецепторы воспринимают химические изменения внешней и внутренней среды организма. К ним относятся вкусовые и обонятельные рецепторы, а также рецепторы, реагирующие на изменение состава крови, лимфы, межклеточной и цереброспинальной жидкости. Такие рецепторы есть в слизистой оболочке языка и носа, каротидном и аортальном тельцах, гипоталамусе и продолговатом мозге.

Ш Терморецепторы воспринимают изменения температуры. Они подразделяются на тепловые и холодовые рецепторы и находятся в коже, сосудах, внутренних органах, гипоталамусе, среднем, продолговатом и спинном мозге.

Ш Фоторецепторы в сетчатке глаза воспринимают световую (электромагнитную) энергию.

Ш Ноцицепторы (болевые рецепторы) - их возбуждение сопровождается болевыми ощущениями. Раздражителями для них являются механические, термические и химические факторы. Болевые стимулы воспринимаются свободными нервными окончаниями, которые имеются в коже, мышцах, внутренних органах, дентине, сосудах.

Б. С психофизиологической точки зрения рецепторы подразделяют в соответствии с органами чувств и формируемыми ощущениями на зрительные, слуховые, вкусовые, обонятельные и тактильные.

В. По расположению в организме рецепторы делят на экстеро- и интерорецепторы. К экстерорецепторам относят рецепторы кожи, видимых слизистых оболочек и органов чувств: зрительные, слуховые, вкусовые, обонятельные тактильные, кожные, болевые и температурные. К интерорецепторам принадлежат рецепторы внутренних органов (висцерорецепторы), сосудов и ЦНС, а также рецепторы опорно-двигательного аппарата (проприорецепторы) и вестибулярные рецепторы. Если одна и та же разновидность рецепторов локализованы как в ЦНС, так и в других местах (сосуды), то такие сосуды подразделяют на центральные и периферические.

Г. В зависимости от степени специфичности рецепторов , т.е. от их способности отвечать на один или более видов раздражителей выделяют мономодальные и полимодальные рецепторы. В принципе каждый рецептор может отвечать не только на адекватный, но и на неадекватный раздражитель, однако, чувствительность к ним разная. Если чувствительность к адекватному намного превосходит таковую к неадекватным раздражителям, то это мономодальные рецепторы. Мономодальность особенно характерна для экстрерорецепторов. Полимодальные рецепторы приспособлены к воприятию нескольких адекватных раздражителей, например механического и температурного или механического, химического и болевого. К ним относятся ирритальные рецепторы легких.

Д. По структурно-функциональной организации различают первичные и вторичные рецепторы. В первичном рецепторе раздражитель действует непосредственно на окончание сенсорного нейрона: обонятельные, тактильные, температурные, болевые рецепторы, проприорецепторы, рецепторы внутренних органов. Во вторичных рецепторах имеется специальная клетка, синаптически связанная с окончание дендрита сенсорного нейрона, она и передает сигнал через окончание дендрита к проводящим путям: слуховые, вестибулярные, вкусовые рецепторы, фоторецепторы сетчатки.

Е. По скорости адаптации рецепторы делятся на 3 группы: фазные (быстро адаптирующиеся): рецепторы вибрации и прикосновения кожи, тонические (медленно адаптирующиеся): проприорецепторы, рецепторы растяжения легких, часть болевых рецепторов, фазно-тонические (смешанные, адаптирующиеся со средней скоростью): фоторецепторы сетчатки, терморецепторы кожи.

СВОЙСТВА РЕЦЕПТОРОВ

Высокая возбудимость рецепторов. Например, для возбуждения сетчатки достаточно 1 кванта света, для обонятельного рецептора одной молекулы пахучего вещества. Данное свойство позволяет быстро передать информацию в ЦНС обо всех изменениях внешней и внутренней среды. При этом возбудимость у разных видов рецепторов неодинакова. У экстерорецептеров она выше, чем у интеро. У болевых рецепторов низкая возбудимость, они эволюционно приспособлены к ответу на действие чрезвычайных по силе раздражителей.

Адаптация рецепторов - уменьшение их возбудимости при длительном действии раздражителя. Исключением является применение термина «темновая адаптация» для фоторецепторов, возбудимость которых в темноте повышается. Значение адаптации в том, что она уменьшает восприятие раздражителей, обладающих свойствами (длительное действие, малая динамика силы), которые уменьшают их значение для жизнедеятельности организма.

Спонтанная активность рецепторов. Многие виды рецепторов способны генерировать в нейроне импульсацию без действия на них раздражителя. Это называется фоновой активностью и возбудимость таких рецепторов выше, чем не имеющих таковой активности. Фоновая активность рецепторов участвует в поддержании тонуса нервных центров в условиях физиологического покоя.

Возбудимость рецепторов находится под нейрогуморальным контролем целостного организма. Нервная система может влиять на возбудимость рецепторов разными путями. Установлено, что нервные центры осуществляют эфферентный (нисходящий) контроль над многими рецепторами - вестибулярными, слуховыми, обонятельными, мышечными.

Среди эфферентных лучше изучены тормозные эффекты (отрицательная обратная связь). Таким образом, ограничиваются эффекты сильных раздражителей. Через эфферентные пути может оказываться и активирующий эффект на рецепторы.

Также нервная система регулирует активность рецепторов через изменение концентрации гормонов (например, повышение чувствительности зрительных и слуховых рецепторов под влиянием адреналина, тироксина); через регуляцию кровотока в рецепторной зоне и через дорецепторное влияние, т.е. изменяющее силу раздражителя на рецептор (например, изменение потока света с помощью зрачкового рефлекса).

Значение для организма регуляции активности рецепторов заключается в наилучшем согласовании их возбудимости с силой раздражения.

4) Общие принципы устройства сенсорных систем

1. Принцип многоэтажности

В каждой сенсорной системе существует несколько передаточных промежуточных инстанций на пути от рецепторов к коре больших полушарий головного мозга. В этих промежуточных низших нервных центрах происходит частичная переработка возбуждения (информации). Уже на уровне низших нервных центров формируются безусловные рефлексы, т. е. ответные реакции на раздражение, они не требуют участия коры головного мозга и осуществляются очень быстро.

Например: Мошка летит прямо в глаз - глаз моргнул в ответ, и мошка в него не попала. Для ответной реакции в виде моргания не требуется создавать полноценный образ мошки, достаточно простой детекции того, что объект быстро приближается к глазу.

Одна из вершин многоэтажного устройства сенсорной системы - это слуховая сенсорная система. В ней можно насчитать 6 этажей. Существуют также дополнительные обходные пути к высшим корковым структурам, которые минуют несколько низших этажей. Таким способом кора получает предварительный сигнал для повышения её готовности до основного потока сенсорного возбуждения.

Иллюстрация принципа многоэтажности:

2. Принцип многоканальности

Возбуждение передается от рецепторов в кору всегда по нескольким параллельным путям. Потоки возбуждения частично дублируются, и частично разделяются. По ним передается информация о различных свойствах раздражителя.

Пример параллельных путей зрительной системы:

1-й путь: сетчатка -- таламус - зрительная кора.

2-й путь: сетчатка - четверохолмие (верхние холмы) среднего мозга (ядра глазодвигательных нервов).

3-й путь: сетчатка -- таламус - подушка таламуса - теменная ассоциативная кора.

При повреждении разных путей и результаты получаются различные.

Например: если разрушить наружное коленчатое тело таламуса (НКТ) в зрительном пути 1, то наступает полная слепота; если разрушить верхнее двухолмие среднего мозга в пути 2, то нарушается восприятие движения предметов в поле зрения; если разрушить подушку таламуса в пути 3, то пропадает узнавание предметов и зрительное запоминание.

Во всех сенсорных системах обязательно существуют три пути (канала) передачи возбуждения:

1) специфический путь: он ведет в первичную сенсорную проекционную зону коры,

2) неспецифический путь: он обеспечивает общую активность и тонус коркового отдела анализатора,

3) ассоциативный путь: он определяет биологическую значимость раздражителя и управляет вниманием.

Иллюстрация принципа многоканальности:


В эволюционном процессе усиливается многоэтажность и многоканальность в структуре сенсорных путей.

3. Принцип конвергенции

Конвергенция -- это схождение нервных путей в виде воронки. За счёт конвергенции нейрон верхнего уровня получает возбуждение от нескольких нейронов нижележащего уровня.

Например: в сетчатке глаза существует большая конвергенция. Фоторецепторов несколько десятков млн., а ганглиозных клеток - не более одного млн. Т.е. нервных волокон, передающих возбуждение от сетчатки во много раз меньше, чем фоторецепторов.

4. Принцип дивергенции

Дивергенция - это расхождение потока возбуждения на несколько потоков от низшего этажа к высшему (напоминает расходящуюся воронку).

5. Принцип обратной связи

Обратная связь обычно означает влияние управляемого элемента на управляющий. Для этого существуют соответствующие пути возбуждения от низших и высших центров обратно к рецепторам.

5) Работа анализаторов и сенсорных систем

В работе сенсорных систем определенным рецепторам соответствуют свои участки корковых клеток.

Специализация каждого органа чувств основана не только на особенности строения рецепторов анализаторов, но и на специализации нейронов, входящих в состав центральных нервных аппаратов до которых доходят сигналы, воспринимаемые периферическими органами чувств. Анализатор является не пассивным приемником энергии, он рефлекторно перестраивается под воздействием раздражителей.

Согласно когнитивному подходу движение стимула при его переходе из внешнего мира во внутренний, происходит следующим образом:

1) стимул вызывает определенные изменения энергии в рецепторе,

2) энергия преобразуется в нервные импульсы,

3) информация о нервных импульсах передается соответствующим структурам коры головного мозга.

Ощущения зависят не только от возможности мозга и сенсорных систем человека, но также и от особенностей самого человека, его развития и состояния. При заболевании или утомлении у человека меняется чувствительность к некоторым воздействиям.

Имеют место и случаи патологий, когда человек лишен, например, слуха или зрения. Если эта беда врожденная, то происходит нарушение притока информации, что может привести к задержкам психического развития. Если же эти дети были обучены специальным приемам, компенсирующим их недостатки, то возможно некоторое перераспределение внутри сенсорных систем, благодаря которому они смогут нормально развиваться.

Свойства ощущений

Каждый вид ощущения характеризуется не только специфичностью, но и имеет общие свойства с другими видами:

ь качество,

ь интенсивность,

ь длительность,

ь пространственная локализация.

Но не всякое раздражение вызывает ощущение. Минимальная величина раздражителя, при которой появляется ощущение -- абсолютный порог ощущения. Величина этого порога характеризует абсолютную чувствительность, которая численно равна величине, обратно пропорциональной абсолютному порогу ощущений. А чувствительность к изменению раздражителя называется относительной или разностной чувствительностью. Минимальное различие между двумя раздражителями, которое вызывает чуть заметное различие ощущений, называется разностным порогом.

Исходя из этого, можно сделать заключение, что возможно измерение ощущений.

Общие принципы работы сенсорных систем:

1. Преобразование силы раздражения в частотный код импульсов - универсальный принцип действия любого сенсорного рецептора.

Причём во всех сенсорных рецепторах преобразование начинается с вызванного стимулом изменения свойств клеточной мембраны. Под действием стимула (раздражителя) в мембране клеточного рецептора должны открыться (а в фоторецепторах, наоборот, закрыться) стимул-управляемые ионные каналы. Через них начинается поток ионов и развивается состояние деполяризации мембраны.

2. Топическое соответствие - поток возбуждения (информационный поток) во всех передаточных структурах соответствует значимым характеристикам раздражителя. Это означает, что важные признаки раздражителя будут закодированы в виде потока нервных импульсов и нервной системой будет построен внутренний сенсорный образ, похожий на раздражитель - нервная модель стимула.

3. Детекция - это выделение качественных признаков. Нейроны-детекторы реагируют на определенные признаки объекта и не реагируют на все остальное. Нейроны-детекторы отмечают контрастные переходы. Детекторы придают сложному сигналу осмысленность и уникальность. В разных сигналах они выделяют одинаковые параметры. К примеру, только детекция поможет вам отделить контуры маскирующейся камбалы от окружающего её фона.

4. Искажение информации об исходном объекте на каждом уровне передачи возбуждения.

5. Специфичность рецепторов и органов чувств. Их чувствительность максимальна к определенному типу раздражителя с определенной интенсивностью.

6. Закон специфичности сенсорных энергий: ощущение определяется не стимулом, а раздражаемым сенсорным органом. Ещё точнее можно сказать так: ощущение определяется не раздражителем, а тем сенсорным образом, который строится в высших нервных центрах в ответ на действие раздражителя. Например, источник болевого раздражения может находиться в одном месте тела, а ощущение боли может проецироваться на совсем другой участок. Или же: один и тот же раздражитель может вызывать очень разные ощущения в зависимости от адаптации к нему нервной системы и/или органа чувств.

7. Обратная связь между последующими и предшествующими структурами. Последующие структуры могут менять состояние предшествующих и менять таким способом характеристики приходящего к ним потока возбуждения.

Специфичность сенсорных систем предопределяется их структурой. Структура ограничивает их реакции на один раздражитель и способствует восприятию других.

Представление о сенсорных системах было сформулировано И.П. Павловым в учении об анализаторах в 1909 г. при исследовании им высшей нервной деятельности. Анализатор - совокупность центральных и периферических образований, воспринимающих и анализирующих изменения внешней и внутренней сред организма. Понятие сенсорная система, появившееся позже, заменило понятие анализатор, включив механизмы регуляции различных его отделов с помощью прямых и обратных связей. Наряду с этим по-прежнему бытует понятие орган чувств как периферическое образование, воспринимающее и частично анализирующего факторы окружающей среды. Главной частью органа чувств являются рецепторы, снабженные вспомогательными структурами, обеспечивающими оптимальное восприятие. Так, орган зрения состоит из глазного яблока, сетчатой оболочки, в составе которой имеются зрительные рецепторы, и ряда вспомогательных структур: век, мышц, слезного аппарата. Орган слуха состоит из наружного, среднего и внутреннего уха, где кроме спирального (кортиева) органа и его волосковых (рецепторных) клеток имеется также ряд вспомогательных структур. Органом вкуса можно считать язык. При непосредственном воздействии различных факторов окружающей среды с участием анализаторов в организме возникают ощущения, которые представляют собой отражения свойств предметов объективного мира. Особенностью ощущений является их модальность, т.е. совокупность ощущений, обеспечиваемых каким-либо одним анализатором. Внутри каждой модальности в соответствии с видом (качеством) сенсорного впечатления можно выделить разные качества, или валентности. Модальностями являются, например, зрение, слух, вкус. Качественные типы модальности (валентности) для зрения - это различные цвета, для вкуса - ощущение кислого, сладкого, соленого, горького.

Деятельность анализаторов обычно связывают с возникновением пяти чувств - зрения, слуха, вкуса, обоняния и осязания, с помощью которых осуществляется связь организма с внешней средой. Однако в реальной действительности их значительно больше. Например, чувство осязания в широком понимании кроме тактильных ощущений, возникающих от прикосновения, включает чувство давления и вибрации. Температурное чувство включает ощущения тепла или холода, но существуют также и более сложные ощущения, такие как ощущения голода, жажды, половой потребности (либидо), обусловленные особым (мотивационным) состоянием организма. Ощущение положения тела в пространстве связано с деятельностью вестибулярного, двигательного анализаторов и их взаимодействием со зрительным анализатором. Особое место в сенсорной функции занимает ощущение боли. Кроме того, мы можем, хотя и «смутно», воспринимать и другие изменения, причем не только внешней, но и внутренней сред организма, при этом формируются эмоционально окрашенные ощущения. Так, коронароспазм в начальной стадии заболевания, когда еще не возникают болевые ощущения, может вызвать чувство тоски, уныния. Таким образом, структур, воспринимающих раздражение из среды обитания и внутренней среды организма, в действительности значительно больше, чем принято считать.

В основу классификации анализаторов могут быть положены различные признаки: природа действующего раздражителя, характер возникающих ощущений, уровень чувствительности рецепторов, скорость адаптации и многое другое.

Но наиболее существенной является классификация анализаторов, в основе которой лежит их назначение (роль). В связи с этим выделяют несколько видов анализаторов.

Внешние анализаторы воспринимают и анализируют изменения внешней среды. Сюда следует включить зрительный, слуховой, обонятельный, вкусовой, тактильный и температурный анализаторы, возбуждение которых воспринимается субъективно в виде ощущений.

Внутренние (висцеральные) анализаторы, воспринимающие и анализирующие изменения внутренней среды организма, показателей гомеостазиса. Колебания показателей внутренней среды в пределах физиологической нормы у здорового человека обычно не воспринимается субъективно в виде ощущений. Так, мы не можем субъективно определить величину артериального давления, особенно если оно нормальное, состояние сфинктеров и пр. Однако информация, идущая из внутренней среды, играет важную роль в регуляции функций внутренних органов, обеспечивая приспособление организма к различным условиям его жизнедеятельности. Значение этих анализаторов изучается в рамках курса физиологии (приспособительная регуляция деятельности внутренних органов). Но в то же время изменение некоторых констант внутренней среды организма может восприниматься субъективно в виде ощущений (жажда, голод, половое влечение), формирующихся на основе биологических потребностей. Для удовлетворения этих потребностей включаются поведенческие реакции. Например, при возникновении чувства жажды вследствие возбуждения осмо- или волюморецепторов формируется поведение, направленное на поиск и прием воды.

Анализаторы положения тела воспринимают и анализируют изменения положения тела в пространстве и частей тела друг относительно друга. К ним следует отнести вестибулярный и двигательный (кинестетический) анализаторы. Поскольку мы оцениваем положение нашего тела или его частей друг относительно друга, эта импульсация доходит до нашего сознания. Об этом свидетельствует, в частности, опыт Д. Маклоски, который он поставил на самом себе. Первичные афферентные волокна от мышечных рецепторов раздражались пороговыми электрическими стимулами. Увеличение частоты импульсации этих нервных волокон вызывало у испытуемого субъективные ощущения изменения положения соответствующей конечности, хотя ее положение в действительности не изменялось.

Болевой анализатор отдельно следует выделить в связи с его особым значением для организма - он несет информацию о повреждающих действиях. Болевые ощущения могут возникать при раздражении как экстеро-, так и интерорецепторов.

Структурно-функциональная организация анализаторов

Согласно представлению И.П. Павлова (1909), любой анализатор имеет три отдела: периферический, проводниковый и центральный, или корковый. Периферический отдел анализатора представлен рецепторами. Его назначение - восприятие и первичный анализ изменений внешней и внутренней сред организма. В рецепторах происходит трансформация энергии раздражителя в нервный импульс, а также усиление сигнала за счет внутренней энергии метаболических процессов. Для рецепторов характерна специфичность (модальность), т.е. способность воспринимать определенный вид раздражителя, к которому они приспособились в процессе эволюции (адекватные раздражители), на чем основан первичный анализ. Так, рецепторы зрительного анализатора приспособлены к восприятию света, а слуховые рецепторы - звука и т.д. Та часть рцепторной поверхности, от которой сигнал получает одно афферентное волокно, называется его рецептивным полем. Рецептивные поля могут иметь различное количество рецепторных образований (от 2 до 30 и более), среди которых есть рецептор-лидер, и перекрывать друг друга. Последнее обеспечивает большую надежность выполнения функции и играет существенную роль в механизмах компенсации.

Рецепторы характеризуются большим разнообразием.

В классификации рецепторов центральное место занимает их деление в зависимости от вида воспринимаемого раздражителя. Существует пять типов таких рецепторов.

1. Механорецепторы возбуждаются при их механической деформации, расположены в коже, сосудах, внутренних органах, опорно-двигательном аппарате, слуховой и вестибулярной системах.

2. Хеморецепторы воспринимают химические изменения внешней и внутренней среды организма. К ним относятся вкусовые и обонятельные рецепторы, а также рецепторы, реагирующие на изменение состава крови, лимфы, межклеточной и цереброспинальной жидкости (изменение напряжения О 2 и СО 2 , осмолярности и рН, уровня глюкозы и других веществ). Такие рецепторы есть в слизистой оболочке языка и носа, каротидном и аортальном тельцах, гипоталамусе и продолговатом мозге.

3. Терморецепторы воспринимают изменения температуры. Они подразделяются на тепловые и холодовые рецепторы и находятся в коже, слизистых оболочках, сосудах, внутренних органах, гипоталамусе, среднем, продолговатом и спинном мозге.

4. Фоторецепторы в сетчатке глаза воспринимают световую (электромагнитную) энергию.

5. Ноцицепторы, возбуждение которых сопровождается болевыми ощущениями (болевые рецепторы). Раздражителями этих рецепторов являются механические, термические и химические (гистамин, брадикинин, К + , Н+ и др.) факторы. Болевые стимулы воспринимаются свободными нервными окончаниями, которые имеются в коже, мышцах, внутренних органах, дентине, сосудах.

С психофизиологической точки зрения рецепторы подразделяют в соответствии с органами чувств и формируемыми ощущениями на зрительные, слуховые, вкусовые, обонятельные и тактильные.

По расположению в организме рецепторы делят на экстеро- и интерорецепторы.

К экстерорецепторам относятся рецепторы кожи, видимых слизистых оболочек и органов чувств: зрительные, слуховые, вкусовые, обонятельные, тактильные, болевые и температурные. К ин-терорецепторам относятся рецепторы внутренних органов (висцерорецепторы), сосудов и ЦНС. Разновидностью интерорецепторов являются рецепторы опорно-двигательного аппарата (проприорецепторы) и вестибулярные рецепторы. Если одна и та же разновидность рецепторов (например, хеморецепторы, чувствительные к СО 3) локализована как в ЦНС (в продолговатом мозге), так и в других местах (сосудах), то такие рецепторы подразделяют на центральные и периферические.

По скорости адаптации рецепторы делят на три группы: быстро адаптирующиеся (фазные), медленно адаптирующиеся (тонические) и смешанные (фазнотонические), адаптирующиеся со средней скоростью. Примером быстро адаптирующихся рецепторов являются рецепторы вибрации (тельца Пачини) и прикосновения (тельца Мейснера) к коже. К медленно адаптирующимся рецепторам относятся проприорецепторы, рецепторы растяжения легких, болевые рецепторы. Со средней скоростью адаптируются фоторецепторы сетчатки, терморецепторы кожи.

По структурно-функциональной организации различают первичные и вторичные рецепторы. Первичные рецепторы представляют собой чувствительные окончания дендрита афферентного нейрона. Тело нейрона расположено в спинно-мозговом ганглии или в ганглии черепных нервов. В первичном рецепторе раздражитель действует непосредственно на окончания сенсорного нейрона. Первичные рецепторы являются филогенетически более древними структурами, к ним относятся обонятельные, тактильные, температурные, болевые рецепторы и проприорецепторы.

Во вторичных рецепторах имеется специальная клетка, синаптически связанная с окончанием дендрита сенсорного нейрона. Это клетка, например фоторецептор, эпителиальной природы или нейроэктодермального происхождения.

Данная классификация позволяет понять, как возникает возбуждение рецепторов.

Механизм возбуждения рецепторов. При действии стимула на рецепторную клетку в белково-липидном слое мембраны происходит изменение пространственной конфигурации белковых рецепторных молекул. Это приводит к изменению проницаемости мембраны для определенных ионов, чаще всего для ионов натрия, но в последние годы открыта еще и роль калия в этом процессе. Возникают ионные токи, изменяется заряд мембраны и происходит генерация рецепторного потенциала (PП). А далее процесс возбуждения протекает в разных рецепторах по-разному. В первично чувствующих рецепторах, которые являются свободными голыми окончаниями чувствительного нейрона (обонятельных, тактильных, проприоцептивных), РП воздействует на соседние, наиболее чувствительные участки мембраны, где генерируется потенциал действия (ПД), который далее в виде импульсов распространяется по нервному волокну. Преобразование энергии внешнего стимула в ПД в первичных рецепторах может происходить как непосредственно на мембране, так и при участии некоторых вспомогательных структур. Так, например, происходит в тельце Пачини. Рецептор здесь представлен голым окончанием аксона, которое окружено соединительнотканной капсулой. При сдавливании тельца Пачини регистрируется РП, который далее преобразуется в импульсный ответ афферентного волокна. Во вторично чувствующих рецепторах, которые представлены специализированными клетками (зрительные, слуховые, вкусовые, вестибулярные), РП приводит к образованию и выделению медиатора из пресинаптического отдела рецепторной клетки в синаптическую щель рецепторно-афферентного синапса. Этот медиатор воздействует на постсинаптическую мембрану чувствительного нейрона, вызывает ее деполяризацию и образование постсинаптического потенциала, который называют генераторным потенциалом (ГП). ГП, воздействуя на внесинаптические участки мембраны чувствительного нейрона, обусловливает генерацию ПД. ГП может быть как де-, так и гиперполяризационным и соответственно вызывать возбуждение или тормозить импульсный ответ афферентного волокна.

Свойства и особенности рецепторного и генераторного потенциалов

Рецепторный и генераторный потенциалы - это биоэлектрические процессы, которые обладают свойствами местного или локального ответа: распространяются с декрементом, т.е. с затуханием; величина зависит от силы раздражения, так как подчиняются «закону силы»; величина зависит от скорости нарастания амплитуды стимула во времени; способны суммироваться при применении быстро следующих друг за другом раздражений.

Итак, в рецепторах происходит преобразование энергии стимула в нервный импульс, т.е. первичное кодирование информации, преобразование информации в сенсорный код.

Большая часть рецепторов обладает так называемой фоновой активностью, т.е. в них возникает возбуждение в отсутствии каких-либо раздражителей.

Проводниковый отдел анализатора включает афферентные (периферические) и промежуточные нейроны стволовых и подкорковых структур центральной нервной системы (ЦНС), которые составляют как бы цепь нейронов, находящихся в разных слоях на каждом уровне ЦНС. Проводниковый отдел обеспечивает проведение возбуждения от рецепторов в кору большого мозга и частичную переработку информации. Проведение возбуждения по проводниковому отделу осуществляется двумя афферентными путями:

1) специфическим проекционным путем (прямые афферентные пути) от рецептора по строго обозначенным специфическим путям с переключением на различных уровнях ЦНС (на уровне спинного и продолговатого мозга, в зрительных буграх и в соответствующей проекционной зоне коры большого мозга);

2) неспецифическим путем, с участием ретикулярной формации. На уровне ствола мозга от специфического пути отходят коллатерали к клеткам ретикулярной формации, к которым могут конвергировать различные афферентные возбуждения, обеспечивая взаимодействие анализаторов. При этом афферентные возбуждения теряют свои специфические свойства (сенсорную модальность) и изменяют возбудимость корковых нейронов. Возбуждение проводится медленно через большое число синапсов. За счет коллатералей в процесс возбуждения включаются гипоталамус и другие отделы лимбической системы мозга, а также двигательные центры. Все это обеспечивает вегетативный, двигательный и эмоциональный компоненты сенсорных реакций.

Центральный, или корковый, отдел анализатора, согласно И.П. Павлову, состоит из двух частей: центральной части, т.е. «ядра», представленной специфическими нейронами, перерабатывающими афферентную импульсацию от рецепторов, и периферической части, т.е. «рассеянных элементов» - нейронов, рассредоточенных по коре большого мозга. Корковые концы анализаторов называют также «сенсорными зонами», которые не являются строго ограниченными участками, они перекрывают друг друга. В настоящее время в соответствии с цитоархитектоническими и нейрофизиологическими данными выделяют проекционные (первичные и вторичные) и ассоциативные третичные зоны коры. Возбуждение от соответствующих рецепторов в первичные зоны направляется по быстропроводяшим специфическим путям, тогда как активация вторичных и третичных (ассоциативных) зон происходит по полисинаптическим неспецифическим путям. Кроме того, корковые зоны связаны между собой многочисленными ассоциативными волокнами. Нейроны по толщине коры распределены неравномерно и обычно образуют шесть слоев. Основные афферентные пути в кору заканчиваются на нейронах верхних слоев (III - IV). Эти слои наиболее сильно развиты в центральных отделах зрительного, слухового и кожного анализаторов. Афферентные импульсы с участием звездчатых клеток коры (IV слой) передаются пирамидным нейронам (III слой), отсюда обработанный сигнал уходит из коры к другим структурам мозга.

В коре входные и выходные элементы вместе со звездчатыми клетками образуют так называемые колонки - функциональные единицы коры, организованные в вертикальном направлении. Колонка имеет диаметр около 500 мкм и определяется зоной распределения коллатералей восходящего афферентного таламокортикального волокна. Соседние колонки имеют взаимосвязи, организующие участие множества колонок для осуществления той или иной реакции. Возбуждение одной из колонок приводит к торможению соседних.

Корковые проекции сенсорных систем имеют топический принцип организации. Объем корковой проекции пропорционален плотности рецепторов. Благодаря этому, например, центральная ямка сетчатки в корковой проекции представлена большей площадью, чем периферия сетчатки.

Для определения коркового представительства различных сенсорных систем используют метод регистрации вызванных потенциалов (ВП). ВП представляет собой один из видов вызываемой электрической активности мозга. Сенсорные ВП регистрируются при стимуляции рецепторных образований и используются для характеристики такой важной функции как восприятие.

Из общих принципов организации анализаторов следует выделить многоуровневостъ и многоканалъностъ.

Многоуровневость обеспечивает возможность специализации разных уровней и слоев ЦНС по переработке отдельных видов информации. Это позволяет организму более быстро реагировать на простые сигналы, анализируемые уже на отдельных промежуточных уровнях.

Существующая многоканальность анализаторных систем проявляется в наличии параллельных нейронных каналов, т.е. в наличии в каждом из слоев и уровней множества нервных элементов, связанных со множеством нервных элементов следующего слоя и уровня, которые в свою очередь передают нервные импульсы к элементам более высокого уровня, обеспечивая тем самым надежность и точность анализа воздействующего фактора.

В то же время существующий иерархический принцип построения сенсорных систем создает условия для тонкого регулирования процессов восприятия посредством влияний из более высоких уровней на более низкие.

Данные особенности строения центрального отдела обеспечивают взаимодействие различных анализаторов и процесс компенсации нарушенных функций. На уровне коркового отдела осуществляется высший анализ и синтез афферентных возбуждений, обеспечивающие полное представление об окружающей среде.

Основными свойствами анализаторов являются следующие.

1. Высокая чувствительность к адекватному раздражителю. Все отделы анализатора, и прежде всего рецепторы, обладают высокой возбудимостью. Так, фоторецепторы сетчатки могут возбуждаться при действии лишь нескольких квантов света, обонятельные рецепторы информируют организм о появлении единичных молекул пахучих веществ. Однако при рассмотрении этого свойства анализаторов предпочтительнее использовать термин «чувствительность», а не «возбудимость», поскольку у человека оно определяется по возникновению ощущений.

Оценка чувствительности осуществляется с помощью ряда критериев.

Порог ощущения (абсолютный порог) - минимальная сила раздражения, вызывающая такое возбуждение анализатора, которое воспринимается субъективно в виде ощущения.

Порог различения (дифференциальный порог) - минимальное изменение силы действующего раздражителя, воспринимаемое субъективно в виде изменения интенсивности ощущения. Эту закономерность установил Э. Вебер в опыте с определением по ощущению испытуемым силы давления на ладонь. Оказалось, что при действии груза в 100 г необходимо было для ощущения прироста давления добавить груз 3 г, при действии груза в 200 г необходимо добавить 6 г, 400 г - 12 г и т.д. При этом отношение прироста силы раздражения (L) к силе действующего раздражителя (L) есть величина постоянная (С):

У разных анализаторов эта величина различна, в данном случае она равна примерно 1/30 силы действующего раздражителя. Подобная закономерность наблюдается и при уменьшении силы действующего раздражителя.

Интенсивность ощущений при одной и той же силе раздражителя может быть различной, поскольку это зависит от уровня возбудимости различных структур анализатора на всех его уровнях. Эту закономерность изучил Г. Фехнер, показавший, что интенсивность ощущения прямо пропорциональна логарифму силы раздражения. Это положение выражено формулой:

где Е - интенсивность ощущений,

К - константа,

L - сила действующего раздражителя,

L 0 - порог ощущения (абсолютный порог).

Законы Вебера и Фехнера недостаточно точны, особенно при малой силе раздражения. Психофизические методы исследования, хотя и страдают некоторой неточностью, широко используются при исследованиях анализаторов в практической медицине, например при определении остроты зрения, слуха, обоняния, тактильной чувствительности, вкуса.

2. Инерционность - сравнительно медленное возникновение и исчезновение ощущений. Латентное время возникновения ощущений определяется латентным периодом возбуждения рецепторов и временем, необходимым для перехода возбуждения в синапсах с одного нейрона на другой, временем возбуждения ретикулярной формации и генерализации возбуждения в коре больших полушарий. Сохранение на некоторый период ощущений после выключения раздражителя объясняется явлением последействия в ЦНС - в основном циркуляцией возбуждения. Так, зрительное ощущение не возникает и не исчезает мгновенно. Латентный период зрительного ощущения равен 0,1 с, время последействия -0,05 с. Быстро следующие одно за другим световые раздражения (мелькания) могут давать ощущение непрерывного света (феномен «слияния мельканий»). Максимальная частота вспышек света, которые воспринимаются еще раздельно, называется критической частотой мельканий, которая тем больше, чем сильнее яркость стимула и выше возбудимость ЦНС, и составляет около 20 мельканий в секунду. Наряду с этим, если два неподвижных стимула последовательно с интервалом в 20-200 мс проецировать на разные участки сетчатки, возникает ощущение движения объекта. Это явление получило название «Фи-феномена». Такой эффект наблюдается даже в том случае, когда один стимул несколько отличается по форме от другого. Эти два феномена: «слияние мельканий» и «Фи-феномен» - лежат в основе кинематографии. В силу инерционности восприятия зрительное ощущение от одного кадра длится до появления другого, отчего и возникает иллюзия непрерывного движения. Обычно такой эффект возникает при быстром последовательном предъявлении неподвижных изображений на экране со скоростью 18-24 кадра в секунду.

3. Способность сенсорной системы к адаптации при постоянной силе длительно действующего раздражителя заключается в основном в понижении абсолютной и повышении дифференциальной чувствительности. Это свойство присуще всем отделам анализатора, но наиболее ярко оно проявляется на уровне рецепторов и заключается в изменении не только их возбудимости и импульсации, но и показателей функциональной мобильности, т.е. в изменении числа функционирующих рецепторных структур (П.Г. Снякин). По скорости адаптации все рецепторы делят на быстро и медленно адаптирующиеся, иногда выделяют и среднюю по скорости адаптации группу рецепторов. В проводниковом и корковом отделах анализаторов адаптация проявляется в уменьшении числа активированных волокон и нервных клеток.

Важную роль в сенсорной адаптации играет эфферентная регуляция, которая осуществляется путем нисходящих влияний, изменяющих деятельность нижерасположенных структур сенсорной системы. Благодаря этому возникает феномен «настройки» сенсорных систем на оптимальное восприятие раздражителей в условиях изменившейся среды.

4. Взаимодействие анализаторов. С помощью анализаторов организм познает свойства предметов и явлений окружающей среды, полезные и негативные стороны их воздействия на организм. Поэтому нарушения функции внешних анализаторов, особенно зрительного и слухового, чрезвычайно сильно затрудняют познание внешнего мира (очень беден окружающий мир для слепого или глухого). Однако только аналитические процессы в ЦНС не могут создать реального представления об окружающей среде. Способность анализаторов взаимодействовать между собой обеспечивает образное и целостное представление о предметах внешнего мира. Например, качество дольки лимона мы оцениваем с помощью зрительного, обонятельного, тактильного и вкусового анализаторов. При этом формируется представление как об отдельных качествах - цвете, консистенции, запахе, вкусе, так и о свойствах объекта в целом, т.е. создается определенный целостный образ воспринимаемого объекта. Взаимодействие анализаторов при оценке явлений и предметов лежит также в основе компенсации нарушенных функций при утрате одного из анализаторов. Так, у слепых повышается чувствительность слухового анализатора. Такие люди могут определить местоположение крупных предметов и обойти их, если нет посторонних шумов. Это осуществляется за счет отражения звуковых волн от находящегося впереди предмета. Американские исследователи наблюдали за слепым человеком, который достаточно точно определял местоположение большой картонной пластинки. Когда испытуемому залепили уши воском, он не смог больше определять местоположение картона.

Взаимодействия сенсорных систем могут проявляться в виде влияния возбуждения одной системы на состояние возбудимости другой по доминантному принципу. Так, прослушивание музыки может вызвать обезболивание при стоматологических процедурах (аудиоаналгезия). Шум ухудшает зрительное восприятие, яркий свет повышает восприятие громкости звука. Процесс взаимодействия сенсорных систем может проявляться на различных уровнях. Особенно большую роль в этом играет ретикулярная формация ствола мозга, кора большого мозга. Многие нейроны коры обладают способностью отвечать на сложные комбинации сигналов разной модальности (мультисенсорная конвергенция), что очень важно для познания окружающей среды и оценки новых раздражителей.

Кодирование информации в анализаторах

Понятия. Кодирование - процесс преобразования информации в условную форму (код), удобную для передачи по каналу связи. Любое преобразование информации в отделах анализатора является кодированием. В слуховом анализаторе механическое колебание перепонки и других звукопроводящих элементов на первом этапе преобразуется в рецепторный потенциал, последний обеспечивает выделение медиатора в синаптическую щель и возникновение генераторного потенциала, в результате действия которого в афферентном волокне возникает нервный импульс. Потенциал действия достигает следующего нейрона, в синапсе которого электрический сигнал снова превращается в химический, т. е. многократно меняется код. Следует отметить, что на всех уровнях анализаторов не происходит восстановления стимула в его первоначальной форме. Этим физиологическое кодирование отличается от большинства технических систем связи, где сообщение, как правило, восстанавливается в первоначальном виде.

Коды нервной системы. В вычислительной технике используется двоичный код, когда для образования комбинаций всегда используются два символа - 0 и 1, которые представляют собой два состояния. Кодирование информации в организме осуществляется на основе недвоичных кодов, что позволяет при той же длине кода получить большее число комбинаций. Универсальным кодом нервной системы являются нервные импульсы, которые распространяются по нервным волокнам. При этом содержание информации определяется не амплитудой импульсов (они подчиняются закону «Все или ничего»), а частотой импульсов (интервалами времени между отдельными импульсами), объединением их в пачки, числом импульсов в пачке, интервалами между пачками. Передача сигнала от одной клетки к другой во всех отделах анализатора осуществляется с помощью химического кода, т.е. различных медиаторов. Для хранения информации в ЦНС кодирование осуществляется с помощью структурных изменений в нейронах (механизмы памяти).

Кодируемые характеристики раздражителя. В анализаторах кодируются качественная характеристика раздражителя (например, свет, звук), сила раздражителя, время его действия, а также пространство, т.е. место действия раздражителя и локализация его в окружающей среде. В кодировании всех характеристик раздражителя принимают участие все отделы анализатора.

В периферическом отделе анализатора кодирование качества раздражителя (вид) осуществляется за счет специфичности рецепторов, т.е. способности воспринимать раздражитель определенного вида, к которому он приспособлен в процессе эволюции, т.е. к адекватному раздражителю. Так, световой луч возбуждает только рецепторы сетчатки, другие рецепторы (обоняния, вкуса, тактильные и т.д.) на него обычно не реагируют.

Сила раздражителя может кодироваться изменением частоты импульсов в генерируемых рецепторами при изменении силы раздражителя, что определяется общим количеством импульсов в единицу времени. Это так называемое частотное кодирование. При этом с увеличением силы стимула обычно возрастает число импульсов, возникающих в рецепторах, и наоборот. При изменении силы раздражителя может изменяться и число возбужденных рецепторов, кроме того, кодирование силы раздражителя может осуществляться различной величиной латентного периода и временем реакции. Сильный раздражитель уменьшает латентный период, увеличивает число импульсов и удлиняет время реакции. Пространство кодируется величиной площади, на которой возбуждаются рецепторы, это пространственное кодирование (например, мы легко определяем, острым или тупым концом карандаш касается поверхности кожи). Некоторые рецепторы легче возбуждаются при действии на них раздражителя под определенным углом (тельца Пачини, рецепторы сетчатки), что является оценкой направления действия раздражителя на рецептор. Локализация действия раздражителя кодируется тем, что рецепторы различных участков тела посылают импульсы в определенные зоны коры большого мозга.

Время действия раздражителя на рецептор кодируется тем, что он начинает возбуждаться с началом действия раздражителя и прекращает возбуждаться сразу после выключения раздражителя (временное кодирование). Следует заметить, что время действия раздражителя во многих рецепторах кодируется недостаточно точно вследствие быстрой их адаптации и прекращения возбуждения при постоянно действующей силе раздражителя. Эта неточность частично компенсируется за счет наличия on-, off- и on-off-рецепторов, возбуждающихся соответственно при включении, выключении, а также при включении и выключении раздражителя. При длительно действующем раздражителе, когда происходит адаптация рецепторов, теряется некоторое количество информации о стимуле (его силе и продолжительности), но при этом повышается чувствительность, т. е. развивается сенситизация рецептора к изменению этого стимула. Усиление стимула действует на адаптированный рецептор как новый раздражитель, что также отражается в изменении частоты импульсов, идущих от рецептора.

В проводниковом отделе анализатора кодирование осуществляется только на «станциях переключения», т. е. при передаче сигнала от одного нейрона к другому, где происходит смена кода. В нервных волокнах информация не кодируется, они исполняют роль проводов, по которым передается информация, закодированная в рецепторах и переработанная в центрах нервной системы.

Между импульсами в отдельном нервном волокне могут быть различные интервалы, импульсы формируются в пачки с различным числом, между отдельными пачками могут быть также различные интервалы. Все это отражает характер закодированной в рецепторах информации. В нервном стволе при этом может изменяться также число возбужденных нервных волокон, что определяется изменением числа возбужденных рецепторов или нейронов на предыдущем переходе сигнала с одного нейрона на другой. На станциях переключения, например в зрительном бугре, информация кодируется, во-первых, за счет изменения объема импульсации на входе и на выходе, а во-вторых, за счет пространственного кодирования, т.е. за счет связи определенных нейронов с определенными рецепторами. В обоих случаях чем сильнее раздражитель, тем большее число нейронов возбуждается.

В вышележащих отделах ЦНС наблюдаются уменьшение частоты разрядов нейронов и превращение длительной импульсации в короткие пачки импульсов. Имеются нейроны, возбуждающиеся не только при появлении стимула, но и при его выключении, что также связано с активностью рецепторов и взаимодействием самих нейронов. Нейроны, получившие название «детекторов», избирательно реагируют на тот или иной параметр стимула, например на стимул, движущийся в пространстве, или на светлую либо темную полоску, расположенную в определенной части поля зрения. Количество таких нейронов, которые лишь частично отражают свойства стимула, возрастает на каждом последующем уровне анализатора. Но в то же время на каждом последующем уровне анализатора имеются нейроны, дублирующие свойства нейронов предыдущего отдела, что создает основу надежности функции анализаторов. В сенсорных ядрах происходят тормозные процессы, которые осуществляют фильтрацию и дифференциацию сенсорной информации. Эти процессы обеспечивают контроль сенсорной информации. При этом снижается шум и изменяется соотношение спонтанной и вызванной активности нейронов. Такой механизм реализуется за счет разновидностей торможения (латерального, возвратного) в процессе восходящих и нисходящих влияний.

В корковом конце анализатора происходит частотно-пространственное кодирование, нейрофизиологической основой которого является пространственное распределение ансамблей специализированных нейронов и их связей с определенными видами рецепторов. Импульсы поступают от рецепторов в определенные зоны коры с различными временными интервалами. Поступающая в виде нервных импульсов информация перекодируется в структурные и биохимические изменения в нейронах (механизмы памяти). В коре мозга осуществляется высший анализ и синтез поступившей информации.

Анализ заключается в том, что с помощью возникающих ощущений мы различаем действующие раздражители (качественно - свет, звук и т.д.) и определяем силу, время и место, т.е. пространство, на которое действует раздражитель, а также его локализацию (источник звука, света, запаха).

Синтез реализуется в узнавании известного предмета, явления или в формировании образа, впервые встречаемого предмета, явления.

Известны случаи, когда у слепых от рождения зрение появлялось только в подростковом возрасте. Так, девушка, которая обрела зрение лишь в 16 лет, не могла с помощью зрения узнать предметы, которыми она многократно пользовалась ранее. Но стоило ей взять предмет в руки, как она с радостью называла его. Ей пришлось, таким образом, практически заново изучать окружающий ее мир с участием зрительного анализатора, подкреплением информацией от других анализаторов, в частности от тактильного. При этом тактильные ощущения оказались решающими. Об этом свидетельствует, например, и давний опыт Стратона. Известно, что изображение на сетчатке глаза является уменьшенным и перевернутым. Новорожденный видит мир именно таким. Однако в раннем онтогенезе ребенок все трогает руками, сопоставляет и сличает зрительные ощущения с тактильными. Постепенно взаимодействие тактильных и зрительных ощущений ведет к восприятию расположения предметов, каким оно является в реальной действительности, хотя на сетчатке изображение остается перевернутым. Стратон надел очки с линзами, которые перевернули изображение на сетчатке в положение, соответствующее реальной действительности. Наблюдаемый окружающий мир перевернулся «вверх ногами». Однако в течение 8 дней он с помощью сравнения тактильных и зрительных ощущений снова стал воспринимать все вещи и предметы как обычно. Когда экспериментатор снял очки-линзы, мир снова «перевернулся», нормальное восприятие вернулось через 4 дня.

Если информация о предмете или явлении поступает в корковый отдел анализатора впервые, то формируется образ нового предмета, явления благодаря взаимодействию нескольких анализаторов. Но и при этом идет сличение поступающей информации со следами памяти о других подобных предметах или явлениях. Поступившая в виде нервных импульсов информация кодируется с помощью механизмов долговременной памяти.

Итак, процесс передачи сенсорного сообщения сопровождается многократным перекодированием и завершается высшим анализом и синтезом, который происходит в корковом отделе анализаторов. После этого уже происходит выбор или разработка программы ответной реакции организма.

сенсорный рецепторный зрительный анализатор

Общий план строения сенсорных систем

Название анализатора

Природа раздражителя

Периферический отдел

Проводниковый отдел

Центральный отел

зрительный

Электромагнитные колебания, отраженные или излученные объектами внешнего мира и воспринимаемые органами зрения.

Палочковые и колбочковые нейросенсорные клетки, наружные сегменты которых имеют соответственно палочковидную («палочки») и колбочковидную («колбочки») формы. Палочки являются рецепторами, воспринимающими световые лучи в условиях слабой освещенности, т.е. бесцветное, или ахроматическое, зрение. Колбочки же функционируют в условиях яркой освещенности и характеризуются разной чувствительностью к спектральным свойствам света (цветное или хроматическое зрение)

Первый нейрон проводникового отдела зрительного анализатора представлен биполярными клетками сетчатки. Аксоны биполярных клеток в свою очередь конвергируют на ганглиозные клетки (второй нейрон). Биполярные и ганглиозные клетки взаимодействуют между собой за счет многочисленных латеральных связей, образованных коллатералями дендритов и аксонов самих клеток, а также с помощью амакриновых клеток

Расположен в затылочной доле. Имеются сложные и сверхсложные рецептивные поля детекторного типа. Эта особенность позволяет выделять из цельного изображения лишь отдельные части линий с различным расположением и ориентацией, при этом проявляется способность избирательно реагировать на эти фрагменты.

слуховой

Звуки, т. е. колебательные движения частиц упругих тел, распространяющихся в виде волн в самых различных средах, включая воздушную среду, и воспринимающиеся ухом

Превращающий энергию звуковых волн в энергию нервного возбуждения, представлен рецепторными волосковыми клетками кортиева органа (орган Корти), находящимися в улитке. Внутреннее ухо (звуковоспринимающий аппарат), а также среднее ухо (звукопередающий аппарат) и наружное ухо (звукоулавливающий аппарат) объединяются в понятие орган слуха

Представлен периферическим биполярным нейроном, расположенным в спиральном ганглии улитки (первый нейрон). Волокна слухового (или кохлеарного) нерва, образованные аксонами нейронов спирального ганглия, заканчиваются на клетках ядер кохлеарного комплекса продолговатого мозга (второй нейрон). Затем после частичного перекреста волокна идут в медиальное коленчатое тело метаталамуса, где опять происходит переключение (третий нейрон), отсюда возбуждение поступает в кору (четвертый нейрон). В медиальных (внутренних) коленчатых телах, а также в нижних буграх четверохолмия располагаются центры рефлекторных двигательных реакций, возникающих при действии звука.

Находится в верхней части височной доли большого мозга. Важное значение для функции слухового анализатора имеют поперечные височные извилины (извилины Гешля).

Вестибулярный

Обеспечивает так называемое акселерационное чувство, т.е. ощущение, возникающее при прямолинейном и вращательном ускорении движения тела, а также при изменениях положения головы. Вестибулярному анализатору принадлежит ведущая роль в пространственной ориентации человека, сохранении его позы.

Представлен волосковыми клетками вестибулярного органа, расположенного, как и улитка, в лабиринте пирамиды височной кости. Вестибулярный орган (орган равновесия, орган гравитации) состоит из трех полукружных каналов и преддверия. Преддверие состоит из двух мешочков: круглого (саккулюс), расположенного ближе к улитке, и овального (утрикулюс), расположенного ближе к полукружным каналам. Для волосковых клеток преддверия адекватными раздражителями являются ускорение или замедление прямолинейного движения тела, а также наклоны головы. Для волосковых клеток полукружных каналов адекватным раздражителем является ускорение или замедление вращательного движения в какой-либо плоскости

К рецепторам подходят периферические волокна биполярных нейронов вестибулярного ганглия, расположенного во внутреннем слуховом проходе (первый нейрон). Аксоны этих нейронов в составе вестибулярного нерва направляются к вестибулярным ядрам продолговатого мозга (второй нейрон). Вестибулярные ядра продолговатого мозга (верхнее - ядро Бехтерева, медиальное - ядро Швальбе, латеральное - ядро Дейтерса и нижнее - ядро Роллера) получают дополнительную информацию по афферентным нейронам от проприорецепторов мышц или от суставных сочленений шейного отдела позвоночника. Эти ядра вестибулярного анализатора тесно связаны с различными отделами центральной нервной системы. Благодаря этому обеспечиваются контроль и управление эффекторными реакциями соматического, вегетативного и сенсорного характера. Третий нейрон расположен в ядрах зрительного бугра, откуда возбуждение направляется в кору полушарий.

Центральный отдел вестибулярного анализатора локализуется в височной области коры большого мозга, несколько кпереди от слуховой проекционной зоны (21 - 22 поля по Бродману, четвертый нейрон).

Двигательный

Обеспечивает формирование так называемого мышечного чувства при изменении напряжения мышц, их оболочек, суставных сумок, связок, сухожилий. В мышечном чувстве можно выделить три составляющих: чувство положения, когда человек может определить положение своих конечностей и их частей относительно друг друга; чувство движения, когда, изменяя угол сгибания в суставе, человек осознает скорость и направление движения; чувство силы, когда человек может оценить мышечную силу, нужную для движения или удерживания суставов в определенном положении при подъеме или перемещении груза. Наряду с кожным, зрительным, вестибулярным двигательный анализатор оценивает положение тела в пространстве, позу, участвует в координации мышечной деятельности

Представлен проприорецепторами, расположенными в мышцах, связках, сухожилиях, суставных сумках, фасциях. К ним относятся мышечные веретена, тельца Гольджи, тельца Пачини, свободные нервные окончания. Мышечное веретено представляет собой скопление тонких коротких поперечно-полосатых мышечных волокон, которые окружены соединительнотканной капсулой. Мышечное веретено с интрафузальными волокнами расположено параллельно экстрафузальным, поэтому возбуждаются при расслаблении (удлинении) скелетной мышцы.

Тельца Гольджи находятся в сухожилиях. Это гроздевидные чувствительные окончания. Тельца Гольджи, располагаясь в сухожилиях, включены относительно скелетной мышцы последовательно, поэтому они возбуждаются при ее сокращении вследствие натяжения сухожилия мышцы. Рецепторы Гольджи контролируют силу мышечнюго сокращения, т.е. напряжения.

Тельца Панины представляют собой инкапсулированные нервные окончания, локализуются в глубоких слоях кожи, в сухожилиях и связках, реагируют на изменения давления, которое возникает при сокращении мышц и натяжении сухожилий, связок и кожи.

Представлен нейронами, которые располагаются в спинальных ганглиях (первый нейрон). Отростки этих клеток в составе пучков Голля и Бурдаха (задние столбы спинного мозга) достигают нежного и клиновидного ядер продолговатого мозга, где располагаются вторые нейроны. От этих нейронов волокна мышечно-суставной чувствительности, совершив перекрест, в составе медиальной петли доходят до зрительного бугра, где в вентральных заднелатеральном и заднемедиальном ядрах располагаются третьи нейроны.

Центральным отделом двигательного анализатора являются нейроны передней центральной извилины.

Внутренние (висцеральные)

Осуществляют анализ и синтез информации о состоянии внутренней среды организма и участвуют в регуляции работы внутренних органов. Можно выделить:

1) внутренний анализатор давления в кровеносных сосудах и давления (наполнений) во внутренних полых органах (периферическим отделом этого анализатора являются механорецепторы);

2) анализатор температуры;

3) анализатор химизма внутренней среды организма;

4) анализатор осмотического давления внутренней среды.

К механорецепторам относятся все рецепторы, для которых адекватными стимулами являются давление, а также растяжение, деформация стенок органов (сосуды, сердце, легкие, желудочно-кишечный тракт и другие внутренние полые органы). К хеморецедторам относят всю массу рецепторов, реагирующих на различные химические вещества: это рецепторы аортального и каротидного клубочков, рецепторы слизистых оболочек пищеварительного тракта и органов дыхания, рецепторы серозных оболочек, а также хеморецепторы головного мозга. Осморецепторы локализованы в аортальном и каротидном синусах, в других сосудах артериального русла, в интерстициальной ткани вблизи капилляров, в печени и других органах. Часть осморецепторов является механорецепторами, часть - хеморецепторами. Терморецепторы локализованы в слизистых оболочках пищеварительного тракта, органов дыхания, мочевого пузыря, серозных оболочках, в стенках артерий и вен, в каротидном синусе, а также в ядрах гипоталамуса.

От интерорецепторов возбуждение в основном проходит в одних стволах с волокнами вегетативной нервной системы. Первые нейроны находятся в соответствующих чувствительных ганглиях, вторые нейроны - в спинном или продолговатом мозге. Восходящие пути от них достигают заднемедиальное ядро таламуса (третий нейрон) и затем поднимаются в кору больших полушарий (четвертый нейрон).

Корковый отдел локализуется в зонах С 1 и С 2 соматосенсорной области коры и в орбитальной области коры большого мозга.

Восприятие некоторых интероцептивных стимулов может сопровождаться возникновением четких, локализованных ощущений, например при растяжении стенок мочевого пузыря или прямой кишки. Но висцеральная импульсация (от интерорецепторов сердца, сосудов, печени, почек и др.) может и не вызывать ясно осознаваемых ощущений. Обусловлено это тем, что такие ощущения возникают в результате раздражения различных рецепторов, входящих в ту или иную систему органов. В любом случае изменения внутренних органов оказывают значительное влияние на эмоциональное состояние и характер поведения человека

Температурный

Обеспечивает информацию о температуре внешней среды и формирование температурных ощущений

Представлен двумя видами рецепторов: одни реагируют на холодовые стимулы, другие - на тепловые. Тепловые рецепторы - это тельца Руффини, а холодовые - колбы Краузе. Рецепторы холода расположены в эпидермисе и непосредственно под ним, а рецепторы тепла - преимущественно в нижнем и верхнем слоях собственно кожи и слизистой оболочки.

От рецепторов холода отходят миелинизированные волокна типа А, а от рецепторов тепла - немиелинизированные волокна типа С, поэтому информация от холодовых рецепторов распространяется с большей скоростью, чем от тепловых. Первый нейрон локализуется в спинальных ганглиях. Клетки задних рогов спинного мозга представляют второй нейрон. Нервные волокна, отходящие от вторых нейронов температурного анализатора, переходят через переднюю комиссуру на противоположную сторону в боковые столбы и в составе латерального спинно-таламического тракта доходят до зрительного бугра, где находится третий нейрон. Отсюда возбуждение поступает в кору полушарий большого мозга.

Центральный отдел температурного анализатора локализуется в области задней центральной извилины коры большого мозга.

Тактильный

Обеспечивает ощущения прикосновения, давления, вибрации и щекотки.

Представлен различными рецепторными образованиями, раздражение которых приводит к формированию специфических ощущений. На поверхности кожи, лишенной волос, а также на слизистых оболочках на прикосновение реагируют специальные рецепторные клетки (тельца Мейснера), расположенные в сосочковом слое кожи. На коже, покрытой волосами, на прикосновение реагируют рецепторы волосяного фолликула, обладающие умеренной адаптацией.

От большинства механорецепторов в спинной мозг информация поступает в центральную нервную систему по А-волокнам и лишь от рецепторов щекотки - по С-волокнам. Первый нейрон находится в спинальных ганглиях. В заднем роге спинного мозга происходит первое переключение на интернейроны (второй нейрон), от них восходящий путь в составе заднего столба достигает ядер заднего столба в продолговатом мозге (третий нейрон), где происходит второе переключение, далее через медиальную петлю путь следует к вентро-базальным ядрам зрительного бугра (четвертый нейрон), центральные отростки нейронов зрительного бугра идут в кору больших полушарий.

Локализуется в 1 и II зонах соматосенсорной области коры большого мозга (задняя центральная извилина).

Вкусовой

Возникающее чувство вкуса связано с раздражением не только химических, но и механических, температурных и даже болевых рецепторов слизистой оболочки полости рта, а также обонятельных рецепторов. Вкусовой анализатор определяет формирование вкусовых ощущений, является рефлексогенной зоной.

Рецепторы вкуса (вкусовые клетки с микроворсинками) - это вторичные рецепторы, они являются элементом вкусовых почек, в состав которых входят также опорные и базальные клетки. Во вкусовых почках обнаружены клетки, содержащие серотонин, и клетки, образующие гистамин. Эти и другие вещества играют определенную роль в формировании чувства вкуса. Отдельные вкусовые почки являются полимодальными образованиями, так как могут воспринимать различные виды вкусовых раздражителей. Вкусовые почки в виде отдельных включений находятся на задней стенке глотки, мягком нёбе, миндалинах, гортани, надгортаннике и входят также в состав вкусовых сосочков языка как органа вкуса.

Внутрь вкусовой почки входят нервные волокна, которые образуют рецепторно-афферентные синапсы. Вкусовые почки различных областей полости рта получают нервные волокна от разных нервов: вкусовые почки передних двух третей языка - от барабанной струны, входящей в состав лицевого нерва; почки задней трети языка, а также мягкого и твердого нёба, миндалин - от языкоглоточного нерва; вкусовые почки, расположенные в области глотки, надгортанника и гортани, - от верхне-гортанного нерва, являющегося частью блуждающего нерва

Локализуется в нижней части соматосенсорной зоны коры в области представительства языка. Большая часть нейронов этой области мультимодальна, т.е. реагирует не только на вкусовые, но и на температурные, механические и ноцицептивные раздражители. Для вкусовой сенсорной системы характерно то, что каждая вкусовая почка имеет не только афферентные, но и эфферентные нервные волокна, которые подходят к вкусовым клеткам из ЦНС, благодаря чему обеспечивается включение вкусового анализатора в целостную деятельность организма.

Обонятельный

Первично-чувствующие рецепторы, которые являются окончаниями дендрита так называемой нейросекреторной клетки. Верхняя часть дендрита каждой клетки несет 6-12 ресничек, а от основания клетки отходит аксон. Реснички, или обонятельные волоски, погружены в жидкую среду - слой слизи, вырабатываемой боуменовыми железами. Наличие обонятельных волосков значительно увеличивает площадь контакта рецептора с молекулами пахучих веществ. Движение волосков обеспечивает активный процесс захвата молекул пахучего вещества и контакта с ним, что лежит в основе целенаправленного восприятия запахов. Рецепторные клетки обонятельного анализатора погружены в обонятельный эпителий, выстилающий полость носа, в котором кроме них имеются опорные клетки, выполняющие механическую функцию и активно участвующие в метаболизме обонятельного эпителия. Часть опорных клеток, располагающихся вблизи базальной мембраны, носит название базальных

Первым нейроном обонятельного анализатора следует считать нейросенсорную или нейрорецепторную клетку. Аксон этой клетки образует синапсы, называемые гломерулами, с главным дендритом митральных клеток обонятельной луковицы, которые представляют второй нейрон. Аксоны митральных клеток обонятельных луковиц образуют обонятельный тракт, который имеет треугольное расширение (обонятельный треугольник) и состоит из нескольких пучков. Волокна обонятельного тракта отдельными пучками идут в передние ядра зрительного бугра. Некоторые исследователи считают, что отростки второго нейрона идут прямо в кору большого мозга, минуя зрительные бугры.

Локализуется в передней части грушевидной доли коры в области извилины морского коня.

Боль - это «сенсорная модальность» подобно слуху, вкусу, зрению и пр., она выполняет сигнальную функцию, которая заключается в информации о нарушении таких жизненно важных констант организма, как целостность покровных оболочек и определенный уровень окислительных процессов в тканях, обеспечивающих их нормальную жизнедеятельность.

В то же время боль можно рассматривать как психофизиологическое состояние, сопровождаемое изменениями деятельности различных органов и систем, а также возникновением эмоций и мотиваций.

Представлен рецепторами боли, которые по предложению Ч. Шеррингтона называют ноцицепторами. Это высокопороговые рецепторы, реагирующие на разрушающие воздействия. По механизму возбуждения ноцицепторы делят на механоноцицепторы и хемоноцицепторы. Механоноцицепторы расположены преимущественно в коже, фасциях, сухожилиях, суставных сумках и слизистых оболочках пищеварительного тракта. Хемоноцицепторы расположены также на коже и в слизистых оболочках, но превалируют во внутренних органах, где локализуются в стенках мелких артерий.

Проведение болевого возбуждения от рецепторов осуществляется по дендритам первого нейрона, расположенного в чувствительных ганглиях соответствующих нервов, иннервирующих определенные участки организма. Аксоны этих нейронов поступают в спинной мозг к вставочным нейронам заднего рога (второй нейрон). Далее проведение возбуждения в центральной нервной системе осуществляется двумя путями: специфическим (лемнисковым) и неспецифическим (экстралемнисковым). Специфический путь начинается от вставочных нейронов спинного мозга, аксоны которых в составе спиноталамического тракта поступают к специфическим ядрам таламуса (в частности, в вентробазальное ядро), которые представляют третьи нейроны. Отростки этих нейронов достигают коры.

Неспецифический путь начинается также от вставочного нейрона спинного мозга и по коллатералям идет к различным структурам мозга. В зависимости от места окончания выделяют три основных тракта - неоспиноталамический, спиноретикулярный, спиномезенцефалический.

Последние два тракта объединяются в спиноталамический. Возбуждение по этим трактам поступает в неспецифические ядра таламуса и оттуда во все отделы коры больших полушарий.

Специфический путь заканчивается в соматосенсорной области коры большого мозга. Согласно современным представлениям выделяют две соматосенсорные зоны. Первичная проекционная зона находится в области заднецентральной извилины. Здесь происходит анализ ноцицептивных воздействий, формирование ощущения острой, точно локализованной боли. Кроме того, за счет тесных связей с моторной зоной коры осуществляются моторные акты при воздействии повреждающих стимулов. Вторичная проекционная зона, которая находится в глубине сильвиевой борозды, участвует в процессах осознания и выработке программы поведения при болевом воздействии.

Неспецифический путь распространяется на все области коры. Значительную роль в формировании болевой чувствительности играет орбитофронтальная область коры, которая участвует в организации эмоционального и вегетативного компонентов боли.