Сердечная недостаточность кровообращения. Компенсаторные механизмы при сердечной недостаточности

Кровообращение (circulatio sanguinis) - непрерывное движение крови по замкнутой системе полостей сердца и кровеносных сосудов, обеспечивающее все жизненно важные функции организма.

Направленный ток крови обусловлен градиентом давления, который определяется активной (насосной) работой сердца , объемом (массой) циркулирующей крови, ее вязкостью, сопротивлением сосудов току крови и другими факторами. Величина градиента давления имеет пульсирующий характер, обусловливаемый периодическими сокращениями сердца и изменениями тонуса кровеносных сосудов.

По строению, биофизическим особенностям и функции кровеносные сосуды подразделяют на магистральные сосуды (аорта и крупные артерии), по которым осуществляется поступательный кровоток за счет потенциальной энергии растянутых в систолу стенок; сосуды сопротивления (мелкие артерии и артериолы), определяющие величину общего периферического сосудистого сопротивления; обменные сосуды (капилляры), обеспечивающие обмен веществ между кровью и тканями; шунтирующие сосуды (артериовенозные анастомозы), по которым осуществляется сброс крови из артерий в вены, минуя капилляры; емкостные сосуды (вены), обладающие большой растяжимостью и низкой эластичностью (содержат до 70-80% объема циркулирующей крови).

Условно выделяют большой и малый круг кровообращения. По большому кругу кровь из левого желудочка сердца поступает в аорту и отходящие от нее кровеносные сосуды, пронизывающие все ткани и органы тела, а затем в правое предсердие; по малому - из правого желудочка сердца в легкие, где обогащается кислородом и освобождается от избытка углекислого газа, затем попадает в левое предсердие. У взрослого человека приблизительно 84% всего объема крови содержится в большом круге кровообращения, около 10% - в малом и около 7% - в сердце. Объем (масса) циркулирующей крови (т.е. общий объем крови за вычетом объема крови, находящегося в кровяных депо) у взрослого человека составляет 4-6 л , что соответствует 6-8% веса (массы) тела. Кровяными депо называют органы, которые могут задерживать в своих сосудах значительное количество крови (как правило, в концентрированном виде). Основными органами, выполняющими такую функцию, являются печень, селезенка, субпапиллярное сосудистое сплетение кожи, почки, легкие, костный мозг. Мобилизация их функции как депо крови возникает в условиях повышения потребности организма в кислородной емкости крови (интенсивная мышечная работа, стресс-реакции и др.).

Кровообращение характеризуется следующими основными показателями.

Систолический (ударный) объем крови (СОК), выбрасываемой сердцем за одно сокращение. В покое он равен 60-70 мл , при физической нагрузке может возрастать в 3-5 раз. СОК левого и правого желудочков одинаков.

Минутный объем крови (МОК), выбрасываемой сердцем за 1 мин. В покое составляет 5,0-5,5 л , при физической работе увеличивается в 2-4 раза, у тренированных - в 6-7 раз. При заболеваниях, например при декомпенсированных пороках сердца или первичной гипертензии малого круга, МОК снижается до 2,5-1,5 л.

Объем (масса) циркулирующей крови (ОЦК) составляет 75-80 мл на 1 кг массы тела. При физических нагрузках, декомпенсированных пороках сердца ОЦК увеличивается (гиперволемия) из-за выхода крови из кровяных депо, достигая 140-190 мл/кг . При кровопотере, коллапсе, шоке, обезвоживании организма ОЦК уменьшается (гиповолемия).

Частота сердечных сокращений (ЧСС) в одну минуту (ударов в 1 мин ) колеблется от 60 до 80 ударов в 1 мин ; у тренированных людей - в пределах 40-60 ударов в 1 мин. Максимальная частота при тяжелой физической нагрузке может достигать 180-240 ударов в 1 мин . При различных видах патологии сердечно-сосудистой системы ЧСС меняется в сторону учащения или урежения (см. Пульс ).

Время кругооборота крови - это время, в течение которого единица объема крови проходит оба круга кровообращения . В норме оно составляет 20-25 с . Уменьшается при физической нагрузке и увеличивается при нарушениях кровообращения, например при декомпенсированных пороках сердца оно достигает 50-60 с .

Давление крови (кровяное давление) обеспечивает кровоток по системе кровеносных сосудов. Его величина зависит от многих факторов и существенно отличается в различных областях тела (см. Кровяное давление ).

Регуляция кровообращения обеспечивается взаимодействием местных гуморальных механизмов при активном участии нервной системы и направлена на оптимизацию соотношения кровотока в органах и тканях с уровнем функциональной активности организма.

В процессе обмена веществ в органах и тканях постоянно образуются метаболиты, влияющие на тонус кровеносных сосудов. Интенсивность образования метаболитов (СО 2 или Н + ; лактата, пирувата, АТФ, АДФ, АМФ и др.), определяемая функциональной активностью органов и тканей, является одновременно и регулятором их кровоснабжения. Этот тип саморегуляции называется метаболическим.

Местные саморегуляторные механизмы генетически обусловлены и заложены в структурах сердца и кровеносных сосудов. Их можно рассматривать и как местные миогенные ауторегуляторные реакции, суть которых состоит в сокращении мышц в ответ на их растяжение объемом или давлением.

Гуморальная регуляция кровообращения осуществляется с участием гормонов, ренин-ангиотензиновой системы, кининов, простагландинов, вазоактивных пептидов, регуляторных пептидов, отдельных метаболитов, электролитов и других биологически активных веществ. Характер и степень их влияния определяются дозой действующего вещества, реактивными свойствами организма, его отдельных органов и тканей, состоянием нервной системы и другими факторами. Так, разнонаправленное действие катехоламинов крови на тонус сосудов и сердечной мышцы связано с наличием в них a - и b -адренорецепторов. При возбуждении a -адренорецепторов происходит сужение, а при возбуждении b -адренорецепторов - расширение кровеносных сосудов. Количество a - и b -рецепторов в разных сосудах неодинаково. При преобладании в сосудах a -рецепторов адреналин крови вызывает их сужение, а при преобладании b -рецепторов - расширение. При низких концентрациях адреналина в плазме первыми возбуждаются как более возбудимые b -рецепторы. При одновременном возбуждении a - и b -рецепторов преобладает вазоконстрикторный эффект.

В основе нервной регуляции кровообращения лежит взаимодействие безусловных и условных сердечно-сосудистых рефлексов. Их подразделяют на собственные и сопряженные рефлексы. Афферентное звено собственных рефлексов К. представлено ангиоцепторами (баро- и хеморецепторами), расположенными в различных участках сосудистого русла и в сердце. Местами они собраны в скопления, образующие рефлексогенные зоны. Главными из них являются зоны дуги аорты, каротидного синуса, позвоночной артерии. Афферентное звено сопряженных рефлексов кровообращения располагается за пределами сосудистого русла, его центральная часть включает различные структуры коры головного мозга, гипоталамуса, продолговатого и спинного мозга. В продолговатом мозге располагаются жизненно важные ядра сердечно-сосудистого центра: нейроны латеральной части продолговатого мозга через симпатические нейроны спинного мозга оказывают тоническое активирующее влияние на сердце и кровеносные сосуды; нейроны медиальной части продолговатого мозга тормозят симпатические нейроны спинного мозга; моторное ядро блуждающего нерва угнетает деятельность сердца; нейроны вентральной поверхности продолговатого мозга стимулируют деятельность симпатической нервной системы. Через гипоталамус осуществляется связь нервного и гуморального звеньев регуляции К. Эфферентное звено регуляции кровообращения представлено симпатическими пре- и постганглионарными нейронами, пре- и постганглионарными нейронами парасимпатической нервной системы (см. Вегетативная нервная система ). Вегетативная иннервация охватывает все кровеносные сосуды кроме капилляров.

Симпатические адренергические нервы вызывают сужение периферических сосудов. В окончаниях постганглионарных симпатических нейронов выделяется норадреналин (см. Медиаторы ). Степень сокращения гладких мышц сосудов зависит от количества выделившегося медиатора, а оно связано с частотой эфферентной импульсации. В покое по вазоконстрикторным нейронам поступают импульсы с частотой 1-3 импульса в 1 с. Максимальное сужение сосудов наступает при частоте 10 импульсов в 1 с . Изменение частоты импульсации приводит или к увеличению сосудистого тонуса (при учащении импульсов), или к его уменьшению (при урежении импульсов), т.е. происходит относительное сужение или расширение сосудов.

В нормальных условиях все механизмы регуляции К. взаимодействуют друг с другом по принципам, описываемым теорией функциональных систем (см. Функциональные системы ), влияя на сердечный выброс, общее периферическое сосудистое сопротивление, емкость сосудов и объем циркулирующей крови.

Взаимосвязь различных параметров кровообращения , закономерности их взаимодействия рассматриваются гемодинамикой - специальным разделом физиологии К. , занимающимся изучением общих и частных случаев нарушений кровообращения применительно к клинической практике.

Общие механизмы нарушений кровообращения . Нарушения кровообращения могут быть вызваны изменениями функции сердца, сосудов, а также реологических свойств текущей по ним крови. Поскольку отдельные части кровеносной системы тесно связаны между собой, нарушение функции каждой из них всегда оказывает влияние на функцию других. Нарушения К. могут быть общими, охватывая всю кровеносную систему, и местными (в отдельных участках сосудистого русла). Поскольку непрерывное кровообращение необходимо для обеспечения нормального функционирования любых частей организма, его нарушение влечет за собой расстройства функции соответствующих органов.

Сердце работает как насос, перекачивающий кровь из венозной системы в артериальную. Для того чтобы кровоток во всей сосудистой системе организма был непрерывным, необходим некоторый постоянный уровень кровяного давления в аорте и крупных артериальных ветвях, называемый общим артериальным давлением (АД).

Величина общего АД зависит от минутного объема крови, выбрасываемой сердцем, и общего периферического сопротивления. При увеличении минутного объема крови или общего периферического сопротивления АД повышается, и наоборот. Длительное повышение общего артериального давления (см. Гипертензия артериальная ) обычно бывает обусловлено увеличением периферического сопротивления. Патологическое понижение общего артериального давления (см. Гипотензия артериальная ) чаще всего связано с уменьшением минутного объема крови при недостаточности сердечной деятельности или с уменьшением возврата крови из вен к сердцу (обычно при уменьшении объема циркулирующей крови). Характер кровотока в каждом органе в любых частях тела выражается зависимостью

где Q - объемная скорость кровотока, D Р - градиент давления на протяжении данного сосудистого русла и R - сопротивление току крови в нем. Для кровеносной системы каждого органа градиент давления соответствует артериовенозной разности давлений, т. е разности давлений между артериями (Р арт.) и венами (Р вен.). Следовательно,

Понижение Р арт. так же, как и повышение Р вен. , влечет за собой уменьшение Q в сосудистой системе данного органа (при условии неизменного сопротивления на ее протяжении). С другой стороны, сопротивление кровотоку определяется шириной просвета сосудов в данном органе и реологическими свойствами крови. Как только это сопротивление уменьшается (например, при местном расширении артерий и артериол), местный кровоток усиливается, что вызывает артериальную гиперемию . Наоборот, увеличение сопротивления в периферических артериях (при местной вазоконстрикции, при их тромбозе и т.д.) приводит к уменьшению объемной скорости кровотока в органе и возникновению ишемии . Увеличение сопротивления может происходить и в капиллярах той или иной сосудистой области, например вследствие усиленной внутрисосудистой агрегации эритроцитов. Наконец, сопротивление может возрастать и в венозной системе того или иного органа (например, при тромбозе или сдавлении вен). В этих случаях в системе микроциркуляции возникает венозный застой, сопровождающийся уменьшением объемной скорости кровотока в органе.

Причинами нарушения основной, т.е. насосной, функции сердца могут быть уменьшение возврата крови из вен к сердцу, что обычно бывает обусловлено уменьшением объема циркулирующей крови; декомпенсированные пороки сердца, в частности недостаточность клапанов сердца, когда неполное смыкание их створок приводит к возврату части крови в ретроградно расположенную полость сердца или же имеется стеноз сердечных отверстий, значительно увеличивающий сопротивление кровотоку в них; слабость сердечной мышцы, сокращения которой не обеспечивают достаточно высокого внутрижелудочкового давления для того, чтобы перемещать весь объем крови в пределах большого и малого круга кровообращения ; неспособность полостей сердца к достаточному расширению во время диастолы в результате накопления значительного количества крови (при тампонаде сердца) или экссудата (при перикардитах) в полости перикарда или же облитерации последней вследствие хронического перикардита.

Изменения величины сопротивления в артериях отдельных органов обычно не отражаются на уровне общего АД, но ведут к изменениям в их кровоснабжении. Такого рода нарушения функции периферических артерий могут быть связаны с функциональным расширением или сужением сосудов (см. Ангиоспазм ), со структурными изменениями стенок (см. Атеросклероз ), с полной или частичной закупоркой сосудистого просвета (см. Тромбоз , Эмболия ).

Ослабление кровотока в отдельных артериях вследствие увеличения сопротивления в них не обязательно ведет к уменьшению снабжения органа кровью, т.к. при этом может иметь место приток крови по коллатералям.

Если же коллатеральный приток крови недостаточен, то в соответствующих участках ткани (или органа) возникает ишемия.

Роль нарушений функции венозной системы в общих расстройствах кровообращения обусловлена их емкостной функцией. Вены осуществляют дренаж крови всех органов. Сопротивление кровотоку в венах очень низкое и может только возрастать, например при их сдавлении или закупорке тромбом. При этом затрудняется отток крови из микроциркуляторной системы соответствующего органа, что может сопровождаться развитием венозного застоя.

Микроциркуляторные нарушения имеют весьма существенное значение, т.к. в организме не происходит ни одного физиологического или патологического процесса без участия системы микроциркуляции . Микроциркуляторное русло включает в себя капилляры, ветвления соответствующих мелких артерий и вен. Основной функцией этих сосудов является обеспечение адекватного кровоснабжения определенных участков ткани, которое при нормальных условиях соответствует ее метаболическим потребностям. Изменения притока крови со стороны артерий в капилляры могут вызывать такие нарушения микроциркуляции, как артериальная гиперемия или ишемия. Артериальная гиперемия возникает при расширении артериальных сосудов микроциркуляторного русла. Градиент давлений и скорость кровотока в капиллярах при этом увеличиваются. Концентрация эритроцитов в крови (гематокрит), протекающей по микроциркуляторному руслу, и количество функционирующих капилляров растут. Внутрикапиллярное давление повышается, это способствует переходу воды из крови в тканевые щели, что при определенных условиях может привести к отеку ткани.

При констрикции приводящих артерий или возникновении препятствий для кровотока в их просвете в микроциркуляторном русле развивается ишемия, при которой основные параметры микроциркуляции изменяются в противоположном направлении: линейная скорость кровотока и гематокрит в капиллярах понижаются, приводя к недостаточности снабжения тканей кислородом, - возникает гипоксия . Внутрикапиллярное давление падает, и количество функционирующих капилляров сокращается. При этом уменьшается доставка энергетических и пластических материалов в ткани, а продукты обмена веществ накапливаются в них. Если коллатеральный приток крови не устраняет дефицита кровоснабжения, то нарушается метаболизм ткани и развиваются различные патологические изменения вплоть до некроза.

При затруднении оттока крови в венозную систему отмечаются типичные для венозного застоя нарушения микроциркуляции. Градиент кровяного давления в капиллярах понижается, что приводит к значительному замедлению в них кровотока. При этом снабжение тканей кислородом и другими энергетическими веществами уменьшается, а продукты обмена веществ не удаляются и задерживаются в них. В результате изменяются механические свойства ткани: ее растяжимость растет, а упругость падает. При таких условиях резко усиливается фильтрация жидкости из капилляров в ткань и развивается отек.

Микроциркуляция может нарушаться также независимо от первичных изменений притока крови из артерий или ее оттока в вены. Это происходит, когда меняются реологические свойства крови вследствие усиления внутрисосудистой агрегации эритроцитов, причем кровоток в капиллярах замедляется в разной степени, вплоть до его полной остановки - развития стаза.

Нарушения функции сердечно-сосудистой системы в целом могут быть вызваны воздействием разнообразных патогенных факторов на сердце, артерии, капилляры и вены, а также на циркулирующую в них кровь непосредственно или опосредованно - через нейрогуморальные механизмы. Поэтому различные нарушения функции вегетативной нервной системы, желез внутренней секреции, а также синтеза и превращений в организме разных физиологически активных веществ вызывают нарушения в системе кровообращения . При этом нейрогуморальные факторы, участвующие в регуляции нормальной работы сердца, в определенных условиях также вызывают нарушения его деятельности. Величина общего АД в большой степени зависит от влияний нервных и гуморальных факторов, действующих и на сердечную деятельность, и на тонус стенок периферических артерий.

Нейрогуморальные факторы, специфически действующие на артерии тех или иных органов, могут становиться причиной нарушений кровоснабжения тех или иных органов. Необходимым условием для этого является местное образование или специфическое действие таких физиологически активных веществ, как простагландины и серотонин, способствующие развитию спазма крупных артерий, снабжающих кровью какой-либо орган, например головной мозг.

Компенсация при нарушениях кровообращения . При возникновении каких-либо нарушений кровообращения обычно быстро наступает его функциональная компенсация. Компенсация осуществляется прежде всего теми же механизмами регулирования, что и в норме. На ранних стадиях нарушений кровообращения их компенсация происходит без каких-либо существенных сдвигов в структуре сердечно-сосудистой системы. Структурные изменения тех или иных частей системы кровообращения (например, гипертрофия миокарда, развитие артериальных или венозных коллатеральных путей) возникают обычно позже и направлены на улучшение работы механизмов компенсации.

Компенсация возможна за счет усиления сокращений миокарда, расширения полостей сердца, а также гипертрофии сердечной мышцы. Так, при затруднении изгнания крови из желудочка, например при стенозе устья аорты или легочного ствола, реализуется резервная мощность сократительного аппарата миокарда, что способствует усилению силы сокращения. При недостаточности клапанов сердца в каждую следующую фазу сердечного цикла часть крови возвращается в обратном направлении. При этом развивается дилатация полостей сердца, носящая компенсаторный характер. Однако чрезмерная дилатация создает неблагоприятные условия для работы сердца.

Повышение общего АД, вызванное увеличением общего периферического сопротивления, компенсируется, в частности, за счет усиления работы сердца и создания такой разности давлений между левым желудочком и аортой, которая способна обеспечить выброс в аорту всего систолического объема крови.

В ряде органов, особенно в головном мозге, при повышении уровня общего АД начинают функционировать компенсаторные механизмы, благодаря которым кровяное давление в сосудах мозга поддерживается на нормальном уровне.

При увеличении сопротивления в отдельных артериях (вследствие ангиоспазма, тромбоза, эмболии и т.д.) нарушение кровоснабжения соответствующих органов или их частей может быть компенсировано за счет коллатерального притока крови. В головном мозге коллатеральные пути представлены в виде артериальных анастомозов в области виллизиева круга и в системе пиальных артерий на поверхности больших полушарий. Артериальные коллатерали хорошо развиты и в сердечной мышце. Помимо артериальных анастомозов важную роль для коллатерального притока крови играет их функциональная дилатация, значительно уменьшающая сопротивление кровотоку и способствующая притоку крови в ишемизированную область. Если в расширившихся коллатеральных артериях кровоток оказывается усиленным в течение длительного времени, то наступает постепенная их перестройка, калибр артерий возрастает, так что в дальнейшем они могут полностью обеспечивать кровоснабжение органа в той же степени, что и основные артериальные стволы.

При увеличении сопротивления в отдельных венозных сосудах (при тромбозе, сдавлении вен и т.д.) коллатеральный отток крови осуществляется за счет широкой сети анастомозов, имеющейся в венозной системе. Однако при недостаточности кровотока по коллатеральным путям, особенно при их тромбозе, наступает декомпенсация оттока крови с венозным застоем в соответствующих органах.

Недостаточность кровообращения . Этиология, патогенез и клинические проявления недостаточности кровообращения отличаются разнообразием. Общим для них является наличие дисбаланса между потребностью в кислороде, питательных веществах и их доставкой с кровью. Конкретные причины такого дисбаланса, механизм его возникновения и признаки проявления (общие и местные) могут быть различны. Существует и более узкое понимание недостаточности кровообращения , полностью соответствующее значению терминов «сердечная недостаточность» и «хроническая сердечная недостаточность». Настаивая на понимании недостаточности кровообращения как эквивалента сердечной недостаточности, обычно ссылаются на то, что при этом патологическом состоянии всегда оказываются затронутыми функции сосудистой системы, в частности отмечается сосудистая дистония на различных уровнях, например, при такой форме сердечной недостаточности, как кардиогенный шок (см. Инфаркт миокарда ), наблюдаются разнообразные сосудистые реакции: повышение тонуса резистивных сосудов в первой фазе шока и резкое падение во второй. При хронической сердечной недостаточности также выявляются различные изменения периферического сосудистого сопротивления и венозного тонуса, связанные с гипоксией артериальных стенок, длительными застойными явлениями в венозной системе и т.д., что свидетельствует не только о недостаточности кровообращения, но и о сердечно-сосудистой недостаточности. Наряду с этими терминами иногда используются термины «декомпенсация кровообращения» и «декомпенсация сердечной деятельности». Однако большинство советских кардиологов рекомендуют применять термин «сердечная недостаточность». При этом отмечают, что первичным этиологическим звеном в подобных случаях является снижение насосной функции сердца, а те или иные изменения со стороны сосудистого тонуса имеют в этих случаях вторичный характер. Говорить о сердечно-сосудистой недостаточности можно лишь тогда, когда функция сердца и тонус сосудов нарушаются одновременно, например под действием того или иного токсического фактора. Критически следует относиться и к понятию «декомпенсация сердечной деятельности». На различных стадиях сердечной недостаточности речь идет не о декомпенсации, а, напротив, о включении тех или иных компенсаторных механизмов, которые в здоровом организме при данном уровне обменных процессов не функционируют. Так, на первой стадии сердечной недостаточности наблюдается учащение сердечных сокращений в покое, в результате чего увеличивается сердечный выброс, что позволяет обеспечить жизненные потребности организма, несмотря на снижение насосной функции сердца. По существу лишь терминальную стадию сердечной недостаточности можно рассматривать как декомпенсацию, когда мобилизация всех компенсаторных механизмов не в состоянии обеспечить жизнедеятельность организма.

Генерализованная недостаточность кровообращения включает также различные формы острой и хронической сосудистой недостаточности, такие как обморок , коллапс , шок , длительное снижение артериального давления.

Недостаточность кровообращения нередко носит регионарный характер и проявляется в виде нарушений кровотока, вызываемых сосудистой непроходимостью в результате экстравазальных компрессионных процессов, развития внутрисосудистых препятствий кровотоку (например, в результате атеросклероза сосудов, васкулитов, эмболии, тромбоза, травмы сосуда) и, наконец, изменений сосудистого тонуса (чаще всего спазма артерий и артериол и снижения тонуса вен). Клиническое значение регионарной недостаточности кровообращения зависит от локализации поражения сосудистой системы и от степени развившихся при этом нарушений кровоснабжения. Особое значение имеет коронарная недостаточность , расстройства артериального кровоснабжения мозга (см. Мозговое кровообращение ), сосудов конечностей (см. Облитерирующие поражения сосудов конечностей ) и др. Вообще же нарушение кровотока по любой артерии всегда представляет опасность для функции васкуляризируемого органа, если только оно не компенсируется достаточно развитыми коллатералями. В патогенезе регионарных проявлений недостаточности кровообращения большую роль играют расстройства в системе микроциркуляции: спазмы и дистония артериол, стазы в капиллярной системе, нарушение тонуса венул вследствие гипоксии и выделения в кровяное русло биологически активных метаболитов.

Из форм недостаточности кровообращения , развивающихся в венозной системе, чаще всего встречаются нарушения оттока крови (венозного возврата) в результате тромбофлебита , а также снижения венозного тонуса (например, венозной гипотензии в венах нижних конечностей у лиц пожилого возраста).

Методы исследования кровообращения . Существует большое число различных методов, позволяющих оценивать те или иные характеристики движения и распределения крови в организме, а также функцию звеньев, осуществляющих эти процессы. При этом решаются две главные задачи: установление общих закономерностей функционирования сердечно-сосудистой системы и выявление индивидуальных функциональных особенностей кровообращения , что необходимо для практических целей, в частности для диагностики нарушений кровообращения.

Методы исследования кровообращения делят на инвазивные (кровавые) и неинвазивные (бескровные). Структуру различных отделов сердечно-сосудистой системы оценивают с помощью различных рентгенологических методов (см.

Библиогр.: Власов Ю.А. Онтогенез кровообращения человека, Новосибирск, 1985; Джонсон П. Периферическое кровообращение , пер. с англ., М., 1982; Руководство по кардиологии, под ред. Е.И. Чазова, т. 2, 1982; Руководство по физиологии: Физиология кровообращения. Физиология сосудистой системы, под ред. Б.И. Ткаченко, с. 56, Л., 1984; Физиология человека, под ред. Р. Шмидта и Г. Тевса, пер. с англ., т. 3, М., 1986; Функциональные системы организма, под ред. К. В. Судакова, М., 1987.

Здоровый организм обладает многообразными механизмами, обеспечивающими своевременную разгрузку сосудистого русла от избытка жидкости. При сердечной недостаточности «включаются» компенсаторные механизмы, направленные на сохранение нормальной гемодинамики. Эти механизмы в условиях острой и хронической недостаточности кровообращения имеют много общего, вместе с тем между ними отмечаются существенные различия.

интракардиальные: экстракардиальные:

Реализацию его можно представить следующим образом. Нарушение сократительной функции сердца влечет за собой уменьшение ударного объема крови и гипоперфузию почек. Это способствует активации РААС, вызывающей задержку воды в организме и увеличение объема циркулирующей крови. В условиях возникшей гиперволемии происходит усиленный приток венозной крови к сердцу, увеличение диастолического кровенаполнения желудочков, растяжение миофибрилл миокарда и компенсаторное повышение силы сокращения сердечной мышцы, которое обеспечивает прирост ударного объема. Однако если конечное диастолическое давление повышается более чем на 18-22 мм рт.ст., возникает чрезмерное перерастяжение миофибрилл. В этом случае компенсаторный механизм Франка-Старлинга перестает действовать, а дальнейшее увеличение конечного диастолического объема или давления вызывает уже не подъем, а снижение ударного объема.

экстракардиальные Этот рефлекс реализуется при раздражении механорецепторов, локализованных в устье полых и легочных вен. Их раздражение передается на центральные симпатические ядра продолговатого мозга, в результате чего происходит повышение тонической активности симпатического звена вегетативной нервной системы , и развивается рефлекторная тахикардия. Рефлекс Бейнбриджа направлен на увеличение минутного объема крови.

n. vagus.

β

Все сказанное о механизмах компенсации сердечной деятельности в одинаковой степени относится как к лево-, так и к правожелудочковой недостаточности. Исключением является рефлекс Парина, действие которого реализуется только при перегрузке правого желудочка, наблюдаемой при эмболии легочной артерии .

Рефлекс Ларина - это падение артериального давления , вызванное расширением артерий большого круга кровообращения, снижением минутного объема крови в результате возникающей брадикардии и уменьшением объема циркулирующей крови из-за депонирования крови в печени и селезенке. Кроме того, для рефлекса Парина характерно появление одышки, связанной с наступающей гипоксией мозга. Полагают, что рефлекс Парина реализуется за счет усиления тонического влияния n.vagus

К ним относятся компенсаторная гиперфункция и гипертрофия сердца. Эти механизмы являются неотъемлемыми компонентами большинства приспособительных реакций сердечно-сосудистой системы здорового организма, но в условиях патологии могут превратиться в звено патогенеза хронической сердечной недостаточности.

выступает как важный фактор компенсации при пороках сердца, артериальной гипертензии , анемии, гипертонии малого круга и других заболеваниях. В отличие от физиологической гиперфункции она является длительной и, что существенно, непрерывной. Несмотря на непрерывность, компенсаторная гиперфункция сердца может сохраняться в течение многих лет без явных признаков декомпенсации насосной функции сердца.

Иными словами, для осуществления работы в условиях нагрузки давлением мышца сердца использует гораздо больше энергии, чем для выполнения той же работы, связанной с нагрузкой объемом, а следовательно, при стойкой артериальной гипертензии гипертрофия сердца развивается быстрее, чем при увеличении объема циркулирующей крови. Например, при физической работе, высотной гипоксии, всех видах клапанной недостаточности, артериовенозных фистулах, анемии гиперфункция миокарда обеспечивается за счет увеличения минутного объема сердца. При этом систолическое напряжение миокарда и давление в желудочках возрастают незначительно, и гипертрофия развивается медленно. В то же время при гипертонической болезни , гипертензии малого круга, стено-

Гипертрофия миокарда -

Первая, аварийная, стадия

Вторая стадия -

Третья стадия

1. Процесс гипертрофии не распространяется на коронарные сосуды , поэтому число капилляров на единицу объема миокарда в гипертрофированном сердце уменьшается (рис. 15-11). Следовательно, кровоснабжение гипертрофированной сердечной мышцы оказывается недостаточным для выполнения механической работы.

Рис. 5-11.

рефлексе Бейнбриджа,

Особое место среди «разгрузочных» экстракардиальных рефлексов занимает рефлекс Китаева, который «запускается» при митральном стенозе. Дело в том, что в большинстве случаев проявления правожелудочковой недостаточности связаны с застойными явлениями в большом круге кровообращения, а левожелудочковой - в малом. Исключение составляет стеноз митрального клапана , при котором застойные явления в легочных сосудах вызваны не декомпенсацией левого желудочка, а препятствием току крови через

Рефлекс Китаева - это рефлекторный спазм легочных артериол в ответ на повышение давления в левом предсердии. В результате возникает «второй (функциональный) барьер», который первоначально играет защитную роль, предохраняя легочные капилляры от чрезмерного переполнения кровью. Однако затем этот рефлекс приводит к выраженному повышению давления в легочной артерии - развивается острая легочная гипертензия. Афферентное звено этого рефлекса представлено n. vagus,

нейрогуморальные механизмы,

Возрастание давления в левом предсердии (ЛП) и легочных венах при митральном пороке, как известно, приводит к раздражению заложенного в их стенках специфического рецепторного аппарата, что вызывает рефлекторное сужение легочных артериол, описанное как рефлекс Китаева. Это ведет, с одной стороны, к уменьшению застоя в капиллярах и венозном русле малого круга, а с другой - к повышению легочного сосудистого сопротивления и формированию легочной гипертензии (ЛГ) .

Рефлекс Китаева по мере прогрессирования порока из эпизодического при нагрузке, становится постоянным, приводя к формированию артериальной ЛГ. Спазм артериол снижает кровоток в системе малого круга и, следовательно, уменьшает застой в его венозной части, предотвращая отек легких. Поэтому формирование функционального барьера в легких у больных митральным пороком рассматривают как один из компенсаторных механизмов, регулирующих давление в легочных капиллярах в покое и, особенно, при нагрузках.

Среди нарушений ритма, сопровождающих пороки митрального клапана, особое место занимает мерцательная аритмия (МА) ввиду ее распространенности, выраженного отрицательного влияния на гемодинамику и физическую работоспособность. Причиной ее возникновения при митральных пороках является растяжение миокарда предсердий с дистрофическими изменениями и хронической перегрузкой. Гемодинамический аспект МА состоит в утрате предсердной составляющей (от 15 до 50%) сердечного выброса («гемодинамическая остановка предсердий») и неритмичности сокращений желудочков сердца, частота которых нередко бывает повышена в покое.

Целью нашего исследования было изучение взаимосвязи нарушений легочной гемодинамики и возникновения мерцательной аритмии у больных митральными пороками.

МАТЕРИАЛ И МЕТОДЫ

Обследовано 49 пациентов, страдавших митральными пороками, из них 31 женщина и 18 мужчин в возрасте от 27 до 52 лет (средний возраст 42,18±7,39 лет). Из общего числа 45 пациентов страдали сложным митральным пороком с преобладанием стеноза, 3 больных - с преобладанием недостаточности митрального клапана и один - без преобладания. Мерцательная аритмия была у 23 пациентов, у остальных ритм был синусовым (СР). Основной жалобой пациентов была одышка, при этом у 26 человек она проявлялась и в покое. У подавляющего числа больных - 45 человек этиологической причиной развития порока был ревматизм. Почти половина обследованных - 22 пациента относились к IIА стадии недостаточности кровообращения по классификации Стражеско-Василенко, остальные больные - к IIБ. Средний функциональный класс NYHA составил 3,5±0,2. Всем пациентам в отделе сердечно-сосудистой хирургии нашего института проведена хирургическая коррекция порока митрального клапана в условиях искусственного кровообращения: 35 пациентам установлен протез митрального клапана и 14 выполнена открытая митральная комиссуротомия.

До операции, а также через 1, 6 и 12 мес после оперативной коррекции порока проводили эхокардиографическое исследование на аппарате «Ultramark-9HDI» (ATL, США) в одно-, двухмерном, допплеровском и цветном допплеровском режимах с синхронной записью ЭКГ. Для расчета гемодинамических показателей использовали 5-7 комплексов с определением средних значений, что было особенно актуальным в случаях наличия у больного МА.

В нашем исследовании использовались следующие стандартные эхокардиографические показатели: частота сердечных сокращений (ЧСС, мин -1 .); конечный диастолический размер левого желудочка (КДР ЛЖ, см); конечный систолический размер левого желудочка (КСР ЛЖ, см); фракция выброса левого желудочка (ФВ, %); передне-задний размер левого предсердия (ЛП, см); передне-задний размер правого желудочка (ПЖ, см); ударный объем правого желудочка (УО ПЖ, мл/мин); минутный объем правого желудочка (МО ПЖ, л/мин); период предизгнания правого желудочка (ППИ ПЖ, мсек); период изгнания правого желудочка (ПИ ПЖ, мсек); отношение периода предизгнания к периоду изгнания правого желудочка (ППИ/ПИ, у.е.); гемодинамически эффективная площадь митрального отверстия (Sмо, см 2); систолическое давление в легочной артерии (СДЛА, мм. рт. ст.).

Статистическую обработку данных проводили с использованием программы STATISTICA версии 5.0 (StatSoft, Inc., США). Применяли t-критерий Стьюдента, используя двухвыборочный t-критерий для проверки гипотезы о равенстве двух генеральных средних двух независимых выборок и парный t-критерий при оценке количественных динамических изменений внутри одной группы пациентов (оценка связанных выборок). Для проверки гипотезы о нормальности распределения использовали c 2 - критерий Пирсона. При оценке гипотезы о равенстве двух генеральных дисперсий нормально распределенных совокупностей применяли F-критерий Фишера.

Данные представлены в виде среднего значения и его стандартного отклонения (M±d), р - достоверность межгрупповых отличий.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

До операции пациенты с СР имели достоверно более низкие ЧСС, диаметр ЛП, передне-задний размер ПЖ в сравнении с больными, имевшими МА (табл. 1). У этих больных до операции достоверно выше были УО и сократимость ПЖ в виде более низкого отношения периодов предизгнания и изгнания ПЖ. Однако МО ПЖ значимо не различался из-за нивелирующих друг друга соотношений УО и ЧСС в группах больных с СР и МА. Показатель СДЛА в подгруппе больных с МА было недостоверно выше. Эти данные не отличаются от результатов предшествующих исследований.

Таблица 1.

Состояние центральной гемодинамики у пациентов с СР и МА в дооперационном периоде

Показатель Группа СР (n=26) Группа МА (n=23) р
ЧСС, мин -1 62,4±6,1 75,1±16,6
КДР, см 4,80±1,28 4,94±0,70
КСР, см 3,52±0,76 3,68±0,65
ФВ, % 60,8±11,0 49,9±9,9
ЛП, см 4,44±0,78 5,39±1,03
Sмо, см 2 1,30±0,40 1,08±0,35
ПЖ, см 2,42±0,42 2,77±0,45
УО ПЖ, мл 61,5±19,96 41,7±7,8
МО ПЖ, л/мин 3,62±1,33 3,25±1,31
ППИ, мсек 149±15 156±19
ПИ, мсек 258±46 214±58
ППИ/ПИ, у.е. 0,58±0,13 0,74±0,24
СДЛА, мм рт. ст. 44,8±6,2 49,0±9,8

В послеоперационном периоде мы наблюдали определенную межгрупповую закономерность динамики изученных показателей: СДЛА в подгруппе МА достоверно снижалось уже через 1 мес после хирургической коррекции порока в сравнении с дооперационным периодом и продолжало снижаться на протяжении всего срока наблюдения, в то время как у больных с СР этот показатель достоверно снижался только к 12 мес после операции (рис. 1).

Кроме того, следует указать, что у больных с МА достоверно увеличивались УО и МО ПЖ при недостоверном улучшении сократимости ПЖ к 6 мес. после хирургической коррекции порока, тогда как в подгруппе с СР сократительная и насосная функция ПЖ достоверно увеличились только к сроку 12 мес. (рис. 2), что заставило нас искать объяснение обнаруженным явлениям.

Развивающиеся изменения системы легочного кровообращения, обусловленные митральным пороком, вызывают у части больных раннее компенсаторное возникновение легочного барьера путем включения рефлекса Китаева. Активная ЛГ и рефлекс Парина снижают МО ПЖ, ограничивая наполнение перегруженного ЛП давлением при стенозе или объемом при недостаточности митрального клапана.

Снижение притока крови в ЛП, вероятно, предотвращает или замедляет дальнейшую дилатацию предсердия и связанные с этим дегенеративные изменения в его миокарде. Как следствие, сохраняется СР (рис. 3). Такая концепция, как нам представляется, может объяснить дооперационное состояние сердечно-легочного аппарата у больных с МА и СР и направления изменений гемодинамики в результате хирургической коррекции порока.

Рис. 3. Гипотетическая схема возможных механизмов сохранения синусового ритма и развития мерцательной аритмии при митральном пороке.

Полученные нами данные о более раннем увеличении выброса ПЖ у больных с МА, очевидно объясняются исходно меньшей перегрузкой ПЖ давлением и снижением этой перегрузки непосредственно после коррекции порока и раннего уменьшения СДЛА. В то время как у больных с синусовым ритмом ЛГ, имеющая активный характер, уменьшается только к 12 мес. после операции.

Включение «второго барьера» лишь у части больных, вероятно, объясняется индивидуальными механизмами развития ЛГ в процессе формирования митрального порока.Таким образом, рефлекс Китаева не только предотвращает отек легких, но и способствует сохранению СР у больных митральными пороками за счет уменьшения перегрузки ЛП посредством снижения МО при увеличении давления в легочной артерии.

Мы полагаем, что наличие СР у больных митральными пороками, относящихся к III-IV функциональному классу по классификации NYHA, свидетельствует о включении «второго барьера» и может использоваться как дополнительный диагностический критерий в дооперационной оценке состояния системы кровообращения и прогнозировании результатов хирургической коррекции порока.

ЛИТЕРАТУРА

1. Амбарцумян Р.А., Гусакова Н.Ф. Аглинцян Т.С. и др. Микроциркуляторное кровоснабжение, обмен и структура миокарда предсердий при мерцательной аритмии у больных с митральным пороком // Кровоснабжение, метаболизм и функция органов при реконструктивных операциях. - Тезисы III Всесоюзной научной конференции. - Ереван, 1984. - С. 12-15.

2. Амосов Н.М., Бендет Я.А. Терапевтические аспекты кардиохирургии. - Киев: Здоров"я, 1990. - 288 с.

3. Булынин В.И. Клинические формы митрального стеноза. - Воронеж. - 1977. - 119 с.

4. Горенцвит И.Э. Возникновение стойкого мерцания предсердий при приобретенных пороках сердца // Кардиология. - 1980. - N 6. - С.53-56.

5. Дзяк В.Н. Мерцательная аритмия. - Киев: Здоров"я, 1979. - 190 с.

6. Кассирский Г.И., Петрунина Л.В., Зотова Л.М. Реабилитация больных после протезирования митрального клапана // Тер. архив. - 1984. - N 1. - С.91-95.

7. Китаев Ф.Я. О компенсации митральных пороков // Сов. мед. - 1931. - N 15. - С. 295-302.

8. Константинов Б.А. Физиологические и клинические основы хирургической кардиологии. - Л.: Наука, 1981. - 262с.

9. Королев Б.А., Добротин С.С., Кочедыкова Л.В. и др. Вопросы медицинской реабилитации больных, перенесших протезирование митрального клапана // Реабилитация при ишемической болезни сердца и пороках сердца. Тез. конф. - Горький, 1980. - С.120-121.

10. Маколкин В.И. Приобретенные пороки сердца. - М.: Медицина, 1986. -254 с.

11. Мухарлямов Н.М., Беленков Ю.Н., Атьков О.Ю., Соболь Ю.С. Ультразвуковая диагностика в кардиологии // Клиническая ультразвуковая диагностика: Руководство для врачей. / Под ред. Н.М.Мухарлямова. - М.: Медицина, 1987. - Т.1. - С. 7-179.

12. Рашмер Р.Ф. Динамика сердечно-сосудистой системы: Пер. с англ. - М.: Медицина, 1981. - 600с.

13. Рыбакова М.К. Стандартные эокардиографические позиции и измерения // Клиническое руководство по ультразвуковой диагностике / Под ред. В.В.Митькова, В.А.Сандрикова. - М.: Видар, 1998. - Т.5. - С. 46-68.

14. Шердукалова Л.Ф. Механизмы регуляции сердечного выброса и работы сердца при нарушении оттока крови из малого круга кровообращения // Кровообращение, 1980. - N 4. - С. 3-10.

15. Шиллер Н., Осипов М.А. Клиническая эхокардиография. - М.: Практика, 1993. - 347 с.

16. Brent B., Berger H., Matthay R., Mahler D., Pytlik L., Zaret B. Physiologic correlates of right ventricular ejection fraction in chronic obstructive pulmonary disease: a combined radionuclide and hemodynamic study // Amer. J. Cardiol. - 1982. - Vol. 50. - P. 255-262.

17. Cutaia M., Rounds S. Hypoxic pulmonary vasoconstriction. Physiologic significianse, mechanism and clinical relevance // Chest. 1990. - Vol. 97. - P. 706-718.

18. Edmands R., Greenspan K. Hemodynamic consequence of atrial fibrillation // Geriatrics. - 1971. - Vol. 1. - P. 99-107.

19. Feigenbaum H. Echocardiography. 5th ed. Malvern, PA, Lea and Febiger, 1994. - 495 p.

20. Onudarson P., Thorgeirsson G., Jonmundsson E. et al. Chronic atrial fibrillation - epidemiologic features and 14-years follow-up. A case control study // Europ. Heart J. - 1987. - Vol. 8. - P. 521-527.

21. Zatuchni J. Atrial fibrillation and left atrial size // Amer. Heart J. - 1988. - Vol. 115. - P. 1336-1348.

КИТАЕВА РЕФЛЕКС (Ф. Я Китаев, советский физиолог, 1875- 1935) - сужение артериол легких в ответ на повышение давления в левом предсердии и легочных венах. Рефлекс описан автором в 1931 г., Богарт (A. Bogaert) с сотр. в 1953 г. доказали его в эксперименте. Возникает при различной патологии, сопровождающейся повышением давления, в первую очередь в левом предсердии и легочных венах, но чаще всего при сужении левого предсердно-желудочкового отверстия, или, как принято называть в клин, практике, митральном стенозе (см. Пороки сердца приобретенные). Механизм возникновения рефлекса при митральном стенозе Ф. Я. Китаев объяснял раздражением барорецепторов стенки левого предсердия при ее растяжении, к-рое ведет к сосудосуживающим реакциям легочных артериол. Некоторые авторы рассматривают К. р. как защитный механизм, предохраняющий капилляры легкого от чрезмерного повышения давления в них, в связи с переполнением кровью. В начальных стадиях митрального стеноза К. р. носит преимущественно функц, характер, но может сопровождаться кровохарканьем и даже преходящим отеком легких (см.), чаще при физ. нагрузках или отрицательных эмоциях.

Однако длительное существование функц, сужения легочных артериол может переходить в морфол, изменения сосудистого русла легких, что приводит к различным гемодинамическим сдвигам. Данные катетеризации сердца (см.) подтвердили теоретические предпосылки механизма К. р.

Основные морфол, изменения легочных артериол характеризуются пролиферацией гладких мышц и гипертрофией средней оболочки их стенок, сужением просвета. На поздних стадиях митрального стеноза подобные изменения развиваются уже в ветвях легочной артерии. Замечена прямая связь между степенью повышения среднего давления в легочной артерии и уровнем морфологического поражения сосудистого русла. Так, при повышении среднелегочного давления до 50 мм рт. ст. (норма ок. 15 мм рт. ст.) морфол, изменения развиваются лишь в артериолах, при достижении давления до 100 мм рт. ст. - в артериальных ветвях.

Рентгенол, исследование легких при К. р. позволяет обнаружить увеличение тени их корней, понижение прозрачности легких, усиление легочного рисунка, иногда с появлением так наз. линий Керли, свидетельствующих об интерстициальном лимфостазе.

Существует точка зрения, что возникновение К. р. является пусковым механизмом в развитии клин, гемодинамических, морфол, и рентгенол. сдвигов при митральном стенозе, которые объединяются понятием так наз. второго барьера (первый барьер - сужение предсердно-желудочкового отверстия). Наличие второго барьера, его всесторонняя оценка всегда учитывается при установлении показаний к операции у больных, страдающих митральным стенозом.

М. А. Корендясев.

этим ухудшаются условия для поступления в клетки питательных веществ и выделения из кардиомиоцитов продуктов метаболизма.

3. В гипертрофированном сердце нарушается соотношение между объемами внутриклеточных структур. Так, увеличение массы митохондрий и саркоплазматического ретикулума (СПР) отстает от увеличения размеров миофибрилл, что способствует

ухудшению энергоснабжения кардиомиоцитов и сопровождается нарушением аккумуляции Са2 + в СПР. Возникает Са2 +-перегрузка кардиомиоцитов, что обеспечивает

формирование контрактуры сердца и способствует уменьшению ударного объема. Кроме того, Са2 +-перегрузка клеток миокарда повышает вероятность возникновения аритмий.

4. Проводящая система сердца и вегетативные нервные волокна, иннервирующие миокард, не подвергаются гипертрофии, что также способствует возникновению дисфункции гипертрофированного сердца.

5. Активируется апоптоз отдельных кардиомиоцитов, что способствует постепенному замещению мышечных волокон соединительной тканью (кардиосклероз).

В конечном итоге гипертрофия утрачивает приспособительное значение и перестает быть полезной для организма. Ослабление сократительной способности гипертрофированного сердца происходит тем скорее, чем сильнее выражены гипертрофия и морфологические изменения в миокарде.

Экстракардиальные механизмы компенсации функции сердца. В отличие от острой сердечной недостаточности роль рефлекторных механизмов экстренной регуляции насосной функции сердца при хронической сердечной недостаточности сравнительно невелика, поскольку нарушения гемодинамики развиваются постепенно на протяжении нескольких лет. Более или менее определенно можно говорить о рефлексе Бейнбриджа, который «включается» уже на стадии достаточно выраженной гиперволемии.

левое атриовентрикулярное отверстие - так называемым «первым (анатомическим) барьером». При этом застой крови в легких способствует развитию правожелудочковой недостаточности, в генезе которой рефлекс Китаева играет важную роль.

Рефлекс Китаева - это рефлекторный спазм легочных артериол в ответ на повышение давления в левом предсердии. В результате возникает «второй

(функциональный) барьер», который первоначально играет защитную роль, предохраняя легочные капилляры от чрезмерного переполнения кровью. Однако затем этот рефлекс приводит к выраженному повышению давления в легочной артерии - развивается острая легочная гипертензия. Афферентное звено этого рефлекса представлено n. vagus, a эфферентное - симпатическим звеном вегетативной нервной системы. Негативной стороной данной приспособительной реакции является подъем давления в легочной артерии, приводящий к увеличению нагрузки на правое сердце.

Однако ведущую роль в генезе долговременной компенсации и декомпенсации нарушенной сердечной функции играют не рефлекторные, а нейрогуморальные механизмы, важнейшим из которых является активация симпатоадреналовой системы и РААС. Говоря об активации симпатоадреналовой системы у пациентов с хронической сердечной недостаточностью, нельзя не указать, что у большинства из них уровень катехоламинов в крови и моче находится в пределах нормы. Этим хроническая сердечная недостаточность отличается от острой сердечной недостаточности.

Механизмы декомпенсации сердечной недостаточности

Параллельно с интра- и экстракардиальными компенсаторными изменениями, которые развиваются при сердечной недостаточности, появляются и постепенно прогрессируют повреждения сердечной мышцы, приводящие к снижению ее сократительной способности. На определенной стадии процесса такие явления могут быть обратимыми. При продолжении или усилении действия причинного фактора, вызвавшего сердечную недостаточность, а также при срыве механизмов компенсации развиваются необратимые диффузные изменения миокарда с характерной клинической картиной декомпенсированной сердечной недостаточности.

Патогенез сердечной недостаточности представляется следующим образом. Многочисленный ряд примеров патологии сер-

дечной деятельности (кардиомиопатии, нарушения коронарной перфузии и др.) индуцирует кислородное голодание миокарда. Известно, что в условиях нормального кровоснабжения важным энергетическим субстратом для сердечной мышцы являются свободные жирные кислоты, глюкоза и молочная кислота. Гипоксия приводит к нарушению процессов аэробного окисления субстратов в цикле Кребса, к угнетению окисления НАДН в дыхательной цепи митохондрий. Все это способствует накоплению недоокисленных продуктов метаболизма свободных жирных кислот и глюкозы (ацилКоА, лактат). Усиленное образование ацил-КоА в кардиомиоцитах негативно сказывается на энергетическом метаболизме клетки. Дело в том, что ацил-КоА является ингибитором аденилаттранслоказы - фермента, который осуществляет транспорт АТФ из митохондрий в саркоплазму. Аккумуляция ацил-КоА приводит к нарушению этого транспорта, усугубляя энергетический дефицит в клетке.

Единственным источником энергии для кардиомиоцитов становится анаэробный гликолиз, интенсивность которого в условиях гипоксии резко возрастает. Однако «коэффициент полезного действия» анаэробного гликолиза по сравнению с эффективностью энергопродукции в цикле Кребса намного ниже. В силу этого анаэробный гликолиз не в состоянии полностью возместить энергетические потребности клетки. Так, при анаэробном расщеплении одной молекулы глюкозы образуются всего две молекулы АТФ, в то время как при окислении глюкозы до углекислого газа и воды - 32 молекулы АТФ. Нехватка высокоэнергетических фосфатов (АТФ и креатинфосфата) приводит к нарушению энергозависимого процесса удаления ионов кальция из саркоплазмы кардиомиоцитов и возникновению кальциевой перегрузки миокарда.

В норме увеличение концентрации Ca2 + в кардиомиоцитах вызывает образование мостиков между цепочками актина и миозина, что является основой сокращения клеток. Вслед за этим происходит удаление избытка ионов кальция из саркоплазмы и развитие диастолы. Кальциевая перегрузка клеток миокарда при его ишемии ведет к остановке

процесса сокращения - расслабления в стадии систолы, формируется контрактура миокарда - состояние, при котором кардиомиоциты перестают расслабляться. Возникшая зона асистолии характеризуется повышенным тканевым напряжением, что ведет к сдавлению коронарных сосудов и связанному с этим усугублению дефицита коронарного кровотока.

Ионы Са активируют фосфолипазу А2 , которая катализирует расщепление фосфолипидов. В результате этого образуются одна молекула свободной жирной кислоты и одна молекула лизофосфатида. Свободные жирные кислоты обладают детергентоподобным действием и в случае избыточного их накопления в миокарде могут повреждать мембраны кардиомиоцитов. Еще более выраженный кардиотоксический эффект оказывают лизофосфатиды. Особенно токсичен лизофосфатидилхолин, который может провоцировать аритмии. В настоящее время роль свободных жирных кислот и лизофосфатидов в патогенезе ишемического повреждения сердца никем не оспаривается, однако молекулярная природа необратимого повреждения кардиомиоцитов не сводится только к накоплению этих веществ в клетках сердечной мышцы. Кардиотоксическими свойствами могут обладать и другие продукты метаболизма, например активные формы кислорода (АФК).

К АФК относятся супероксидный радикал (O2 *-) и гидроксильный радикал O2 *- , которые обладают высокой окислительной активностью. Источником АФК в кардиомиоцитах является дыхательная цепь митохондрий и прежде всего цитохромы, которые в условиях гипоксии переходят в восстановленное состояние и могут быть донорами электронов, «передавая» их молекулам кислорода с образованием не молекулы воды, как это происходит в норме, а супероксидного радикала (O2 *-). Кроме того, образование свободных радикалов катализируется ионами металлов с переменной валентностью (прежде всего ионами железа), которые всегда присутствуют в клетке. АФК взаимодействуют с молекулами белков и полиненасыщенных жирных кислот, превращая их в свободные радикалы. Вновь образованные радикалы могут, в свою очередь, взаимодействовать с другими молекулами белков и жирных кислот, индуцируя дальнейшее образование свободных радикалов. Таким образом, реакция может принимать цепной и разветвленный характер. Если пероксидации подвергаются белки ионных каналов, то происходит нарушение процессов ионного транспорта. Если гидроперекиси образуются из молекул ферментов, последние теряют свою каталитическую активность.

Образование гидроперекисей полиненасыщенных жирных кислот, входящих в молекулярную структуру мембранных фосфолипидов, способствует изменению биологических свойств мембран. В отличие от жирных кислот гидроперекиси являются водорастворимыми веществами, и появление их в структуре гидрофобного

фосфолипидного матрикса клеточных мембран приводит к формированию пор, пропускающих ионы и молекулы воды. Кроме того, изменяется активность мембраносвязанных ферментов.

Процесс возникновения гидроперекисей жирных кислот является одним из звеньев перекисного окисления липидов (ПОЛ), которое включает в себя свободнорадикальное образование альдегидов и кетонов - продуктов ПОЛ. Согласно концепции Ф.З. Меерсона, продукты ПОЛ обладают кардиотоксическими свойствами, их накопление в клетке приводит к повреждению сарколеммы, а также лизосомальных и митохондриальных мембран. На заключительном этапе повреждения, предшествующем гибели клеток, особая роль отводится активации протеолитических ферментов. Обычно эти энзимы находятся в

цитоплазме кардиомиоцитов в неактивном состоянии или локализованы внутри лизосом, мембраны которых изолируют их от структурных элементов клетки. В связи с этим в норме протеазы не оказывают цитотоксического действия. В условиях ишемии перегрузка кардиомиоцитов ионами кальция и закисление цитоплазмы за счет накопления лактата приводят к активации внутриклеточных протеаз. Кроме того, повышение проницаемости лизосомальных мембран под действием фосфолипаз и продуктов ПОЛ способствует выходу активных протеолитических ферментов в саркоплазму. Конечным звеном этой патогенетической цепочки является некроз кардиомиоцитов в зоне ишемии и их аутолиз.

Важно отметить, что первыми погибают только те кардиомиоциты, которые отличаются высокой интенсивностью энергетического метаболизма и соответственно повышенной потребностью в кислороде. В то же время фибробласты и клетки проводящей системы менее зависимы от доставки кислорода и сохраняют свою жизнеспособность. Функциональная активность фибробластов обеспечивает процессы рубцевания.

Клетки проводящей системы, сохраняя жизнеспособность в условиях кислородного голодания, существенно изменяют свои электрофизиологические характеристики, что может способствовать возникновению аритмий. В результате повреждения мембран и снижения образования АТФ изменяется активность К+ / Na+ -АТФазы, что сопровождается усиленным поступлением натрия в кардиомиоциты и выходом из них калия. Это увеличивает электрическую нестабильность миокарда и способствует развитию аритмий.

Гипоксическая сократительная дисфункция сердца усугубляется нарушением процессов нейрогуморальной регуляции функционального состояния миокарда. Сердечные боли, приступы аритмии и другие нарушения являются для организма стрессором, т.е. воздействием чрезмерной силы, на которое организм, как и на любое стрессорное воздействие, реагирует активацией симпатоадреналовой системы. При этом происходит выброс катехоламинов из надпочечников и симпатических нервных терминалей. Однако, как и любой другой компенсаторный процесс, активация симпатоадреналовой системы в конце концов приобретает негативную окраску. Наступает период декомпенсации. Схематично последовательность событий представлена на рисунке 15-12.

В настоящее время установлено, что при хронической активации симпатоадреналовой системы происходят постепенная Са2 +- перегрузка кардиомиоцитов и их контрактура, нарушается целостность сарколеммы. При гиперактивации адренергической системы формируется электрическая нестабильность миокарда. Последняя способствует возникновению фибрилляции желудочков сердца,

Роль симпатоадреналовой и ренин-ангиотензин-альдостероновой систем в патогенезе хронической сердечной недостаточности: ХСН - хроническая сердечная недостаточность; ЧСС - частота сердечных сокращений

поэтому каждый третий пациент при хронической сердечной недостаточности погибает внезапно, иногда сердечная смерть наступает на фоне внешнего благополучия и положительной клинической динамики.

Адренергическая тахикардия сопровождается повышением потребности миокарда в кислороде, что наряду с Са2 +-перегрузкой еще больше усугубляет энергетический дефицит в клетках миокарда. Включается защитно-приспособительный механизм, получивший название гибернации (спячки) кардиомиоцитов. Часть клеток перестает сокращаться и отвечать на внешние стимулы, потребляя при этом минимум энергии и экономя кислород для активно сокращающихся кардиомиоцитов. Таким образом, количество обеспечивающих насосную функцию сердца клеток миокарда может существенно уменьшиться, способствуя усугублению сердечной недостаточности.

Кроме того, гиперактивация симпатоадреналовой системы усиливает секрецию ренина почками, выступая в роли стимулятора РААС. Образующийся ангиотензин-II оказывает ряд негативных эффектов на сердечно-сосудистую систему. Он способствует увеличению адренореактивности сердца и сосудов, усиливая тем самым кардиотоксическое действие катехоламинов. Одновременно этот пептид увеличивает периферическое сопротивление кровеносных сосудов, что, безусловно, способствует увеличению постнагрузки на сердце и весьма негативно сказывается на гемодинамике. Кроме того, ангиотензин-II может самостоятельно или через активацию образования цитокинов (биологически активные вещества белковой природы, образующиеся в миокарде и других тканях) стимулировать программируемую гибель кардиомиоцитов («апоптоз»).

Наряду с отмеченным, повышение уровня ангиотензина-II негативно сказывается на состоянии водно-солевого гомеостаза, поскольку этот пептид активирует секрецию

альдостерона. В результате в организме задерживается избыточное количество воды и натрия. Задержка натрия повышает осмолярность крови, в ответ на которую происходит активация секреции антидиуретического гормона, что приводит к уменьшению диуреза и еще большей гидратации организма. В итоге повышается объем циркулирующей крови и увеличивается преднагрузка на сердце. Гиперволемия ведет к раздражению механорецепторов, локализованных в устье полых и легочных вен, «включается» рефлекс Бейнбриджа, возникает

рефлекторная тахикардия, что еще больше увеличивает нагрузку на миокард и потребность сердечной мышцы в кислороде.

Создается «порочный круг», разорвать который можно только с помощью определенных фармакологических воздействий. Ко всему этому присоединяется повышение гидростатического давления в микрососудистом русле, что способствует выходу жидкой части крови в ткани и формированию отеков. Последние сдавливают ткани, что усугубляет нарушение микроциркуляции и еще больше усиливает тканевую гипоксию. При дальнейшем прогрессировании недостаточности кровообращения нарушаются и другие виды обмена, в том числе и белковый, что приводит к дистрофическим изменениям в органах и тканях, нарушению их функции. В конечной стадии хронической сердечной недостаточности развиваются кахексия, маскируемая отеками, гипопротеинемия, появляются признаки почечной и печеночной декомпенсации.

15.3.3. Некоронарогенная патология сердца

Некоронарогенная патология сердечной мышцы неревматической этиологии

Миокардиодистрофии - это группа некоронарогенных заболеваний миокарда, возникающих под влиянием экстракардиальных факторов, основными проявлениями которых служат нарушения метаболизма и сократительной функции сердечной мышцы. Понятие миокардиодистрофии было введено в клиническую практику в 1936 г. академиком Г.Ф. Лангом. В качестве причин миокардиодистрофии рассматриваются анемия, недостаточное питание, авитаминоз, поражения печени и почек, нарушения отдельных видов обмена веществ, заболевания эндокринной системы, системные заболевания, интоксикации, физическое перенапряжение, инфекции.

В развитии миокардиодистрофии выделяют три стадии. I стадия - стадия адаптивной гиперфункции миокарда. Для нее характерен гиперкинетический вариант кровообращения, возникающий вследствие повышения тонуса симпатического и подавления парасимпатического звеньев вегетативной нервной системы. ВоII стадии формируются обменно-структурные изменения, приводящие к нарушению функции сердца и появлению клинических признаков недостаточности кровообращения. ВIII стадии развиваются тяжелые нарушения обмена веществ, структуры и функции сердечной мышцы, проявляющиеся стойкой недостаточностью кровообращения.

Миокардиты (неревматической этиологии) - это воспалительные поражения

сердечной мышцы, возникающие вследствие прямого или опосредованного аллергическими реакциями повреждающего действия инфекционных или неинфекционных агентов. Миокардиты развиваются при бактериальных, риккетсиозных, спирохетозных, грибковых, вирусных и других инфекциях. К

неинфекционным факторам, вызывающим миокардиты, относят некоторые лекарственные препараты - антибиотики и сульфаниламиды, лечебные сыворотки и вакцины.

Особое место среди различных видов воспалительных поражений миокарда занимает

идиопатический миокардит Абрамова-Финдлена. Данная форма заболевания характеризуется тяжелым течением с развитием кардиомегалии и выраженной сердечной недостаточности. Причина возникновения этого заболевания невыяснена. Обсуждается возможная роль вирусной инфекции и аллергических реакций, возникающих как после перенесенной инфекции, так и после приема лекарственных препаратов. Прогноз при идиопатическом миокардите неблагоприятен. Больные погибают быстро, в сроки от 2-3 месяцев до года. Причиной смерти обычно бывают нарушения сердечного ритма или сердечная недостаточность.

Основные проявления миокардиодистрофии и миокардитов, несмотря на их различную этиологию, имеют много общего и определяются выраженностью структурнофункциональных изменений сердца. Обе группы заболеваний характеризуются кардиалгией, симптомами сердечной недостаточности (тахикардия, одышка, акроцианоз, отеки), а также нарушениями сердечного ритма и проводимости. При миокардитах, поскольку это воспалительный процесс, выявляются лейкоцитоз, эозинофилия, увеличение СОЭ, а при миокардиодистрофии подобные изменения не обнаруживаются.

Кардиомиопатии. Термин «кардиомиопатия» введен W. Brigden в 1957 г. для обозначения некоронарогенных заболеваний миокарда неизвестной этиологии. В 1968 г. рабочая группа ВОЗ определила кардиомиопатии какзаболевания, характеризующиеся кардиомегалией и недостаточностью кровообращения. Кардиомиопатии подразделяются на дилатационные, гипертрофические и рестриктивные.

Дилатационная кардиомиопатия характеризуется значительным увеличением всех камер сердца и нарушением его систолической функции. Возможно, дилатационная кардиомиопатия является наследственно-детерминированным заболеванием. Так, ретро-

спективный анализ историй болезней 169 пациентов с дилатационной кардиомиопатией, проведенный в США, позволил установить положительный семейный анамнез в 7% случаев. Кроме того, были описаны случаи аутосомно-доминантного и аутосомнорецессивного наследования.

При патолого-анатомическом исследовании сердца выявляется значительная дилатация полостей. Масса сердца намного увеличена по сравнению с нормальной и может достигать 800-1000 г. Единственно возможное радикальное лечение дилатационной кардиомиопатии заключается в проведении трансплантации сердца. Симптоматическая терапия направлена на лечение сердечной недостаточности.

Гипертрофическая кардиомиопатия характеризуется выраженной гипертрофией миокарда с преимущественным нарушением его диастолической функции.

Гипертрофическая кардиомиопатия относится к генетически обусловленным заболеваниям с аутосомнодоминантным характером наследования и высокой степенью пенетрантности. Течение заболевания может напоминать клапанные пороки сердца, гипертрофию миокарда при артериальной гипертензии или ишемической болезни сердца. Часто истинный диагноз устанавливается только во время патологоанатомического исследования, когда выявляются асимметричная гипертрофия межжелудочковой перегородки и уменьшение полости левого желудочка.

Патогенез гемодинамических изменений при гипертрофической кардиомиопатии обусловлен нарушениями диастолической функции левого желудочка, движения стенок которого становятся некоординированными и неравномерными. Гипертрофия миокарда в сочетании с гипоксией сердечной мышцы становится причиной электрофизиологической гетерогенности сердца и создает условия для возникновения аритмий. Именно поэтому у пациентов с гипертрофической кардиомиопатией чаще, чем при других видах кардиомиопатии, наступает фибрилляция и внезапная смерть.

Рестриктивная кардиомиопатия объединяет два заболевания, которые ранее описывались самостоятельно: эндомиокардиальный фиброз и фибропластический париетальный эндокардит Леффлера. Основным звеном патогенеза нарушений гемодинамики при рестриктивной кардиомиопатии, как и при гипертрофической кардиомиопатии, является нарушение диастолической функции миокарда. Однако при гипертрофической кардиомиопатии это проис-

ходит в результате перегрузки кардиомиоцитов ионами кальция, а при рестриктивной кардиомиопатии связано с утолщением эндокарда и фиброзным перерождением миокарда. Для рестриктивной кардиомиопатии характерны образование тромбов в полостях желудочков и поражение митрального клапана в виде прорастания створок фиброзной тканью с последующей кальцификацией.

Патогенетически обоснованное лечение рестриктивной кардиомиопатии должно быть направлено на борьбу с сердечной недостаточностью. Хирургическое лечение заключается в иссечении плотной фиброзной ткани и протезировании клапанов по показаниям.

Стрессорная кардиомиопатия - особая форма поражения миокарда. Характеризуется диффузными изменениями, которые возникают после длительного, многочасового экстремального воздействия на организм. В 1974 г. шведский физиолог Johansson для обозначения стрессорного повреждения сердца предложил использовать термин«стрессорная кардиомиопатия». Это заболевание характеризуется появлением дистрофических изменений в клетках миокарда вплоть до некроза отдельных кардиомиоцитов. В начале 1970-х гг. американским физиологом Бернардом Лауном было установлено, что стрессорная кардиомиопатия сопровождается снижением электрической стабильности сердца. Возникающая в результате стресса электрическая нестабильность сердца способствует возникновению тяжелых желудочковых аритмий, которые могут закончиться внезапной сердечной смертью (Б. Лаун). На вскрытии у таких пациентов при макроскопическом исследовании сердца очень часто не удается идентифицировать никаких патоморфологических изменений. Причиной стрессорной электрической нестабильности сердца является гиперактивация симпатоадреналовой системы. Патогенез стрессорного повреждения сердца очень сходен с патогенезом его ишемического повреждения.

Инфекционный эндокардит - заболевание, возникающее в результате инфекционного поражения эндокарда. Термин «инфекционный эндокардит» применяется с 1966 г. вместо ранее употреблявшихся терминов «бактериальный» и «затяжной септический эндокардит».

Основными возбудителями заболевания считаются зеленящий стрептококк и золотистый стафилококк. На долю этих микроорганизмов приходится около 80% случаев инфекционного эндокардита. Всего выявлено 119 микроорганизмов, способных привести

к развитию этого заболевания, которое начинается с сепсиса. При этом происходит бактериальное поражение клапанов сердца, чаще аортального и реже - митрального, трикуспидального и клапана легочной артерии. После внедрения микроорганизмов в ткань эндокарда происходит дополнительное отложение тромбоцитов и фибрина в этой зоне, что в определенной мере ограничивает контакт возбудителя с внутренней средой организма.

Формирование локальных очагов инфекции считается пусковым механизмом ряда патогенетически значимых процессов в организме, для которых характерны: 1) постоянное поступление инфекционного агента в кровеносное русло с развитием эпизодов бактериемии, вирусемии, проявляющееся усталостью, снижением массы тела, потерей аппетита, лихорадкой, развитием анемии, спленомегалией; 2) местное развитие микробных вегетаций, вызывающее нарушение функции сердца, абсцессы фиброзного клапанного кольца, перикардиты, аневризмы синуса Вальсальвы, перфорацию клапана; 3) отрыв фрагментов микробных вегетаций, попадание их в системный кровоток с развитием бактериальных эмболий.

Заболевания перикарда

Перикардиты - воспалительное поражение серозных оболочек, ограничивающих перикардиальную полость. По этиологии перикардиты подразделяют на инфекционные (туберкулезный, бактериальный, вирусный) и асептические (постинфарктный перикардит Дресслера, уремический и др.). Все перикардиты принято подразделять на экссудативные и сухие (слипчивые), патогенез которых имеет существенные различия.

Экссудативный перикардит обычно протекает остро и начинается с повышения температуры, развития лейкоцитоза и увеличения СОЭ. К этим симптомам воспаления присоединяются патологические проявления, связанные с накоплением экссудата в плевральной полости. В нормальных условиях в полости перикарда находится 2-5 мл жидкости. При выраженной экссудации и быстром увеличении количества жидкости в полости перикарда ее объем может составить 250-400 мл. Известны случаи, когда у хронических больных во время однократной пункции удаляли до 10 л экссудата. Если экссудат накапливается очень быстро, возникает опасность резкого нарушения гемодинамики -тампонады серд-

ца, которая развивается в результате сдавления сердца выпотом, с последующим падением сердечного выброса и формированием острой сердечной недостаточности. Она проявляется выраженной нарастающей одышкой до 40-60 дыханий в минуту, частым нитевидным пульсом, снижением систолического артериального давления.

Слипчивый перикардит часто называют констриктивным перикардитом,поскольку он характеризуется сдавлением миокарда патологически измененной околосердечной сумкой. Сухой перикардит может развиться после экссудативного (часто недиагностированного) перикардита, однако бывает и первичным. По мере развития заболевания в полости перикарда образуются вначале нежные спайки, которые не влияют на работу сердца и общую гемодинамику, но могут провоцировать болевой синдром. Изменение гемодинамики связано в первую очередь с нарушением заполнения сердца

кровью в период диастолы. Это происходит вследствие сдавления фиброзной тканью верхней и нижней полых вен. Мощные спайки могут сдавливать и миокард, затрудняя его полное расслабление в фазу диастолы. Позже спайки, достигающие толщины 1 см и более, могут полностью облитерировать полость перикарда. На заключительных этапах заболевания в рубцовой ткани откладываются соли извести, возникает кальциноз, формируется «панцирное сердце».

Заболевания ревматической природы

Ревматизм - это системное заболевание соединительной ткани.

Происхождение этого заболевания продолжает вызывать споры и дискуссии, поскольку оно поражает всю соединительнотканную систему, органные проявления его могут быть самыми различными (артриты, васкулиты, ревмокардит и др.). Тем не менее наиболее часто болезнь поражает сердце и суставы. По образному выражению французского врача XIX столетия Лассега, «ревматизм лижет суставы и кусает сердце».

В этиологии ревматизма решающее значение придается β-гемолитическому стрептококку группы А. Это заболевание развивается в организме, особо реагирующем на стрептококковую инфекцию. Оно возникает у лиц с генетической недостаточностью иммунитета к стрептококку (наследственная предрасположенность), что привело к возникновению понятия «семейный ревматизм». Хотя стрептококк и рассматривается в качестве основного

этиологического фактора ревматизма, тем не менее с точки зрения классической инфекционной патологии его нельзя считать возбудителем данного заболевания. Более распространенными являются представления об инфекционно-аллергической природе ревматизма. У лиц с генетически детерминированной недостаточностью иммунитета к стрептококку обострение хронической инфекции приводит к накоплению высокого титра иммунных комплексов (стрептококковый антиген + антитело + комплемент). Циркулируя в кровеносной системе, они фиксируются в стенке сосудов микроциркуляторного русла и повреждают их. В результате облегчается поступление антигенов возбудителя и белков в соединительную ткань, что способствует ее деструкции (аллергические реакции немедленного типа). Из-за общности антигенного строения стрептококка и соединительной ткани сердца иммунные реакции в оболочках последнего повреждают их с образованием аутоантигенов и антикардиальных аутоантител. Ткани сердца связывают как противокардиальные, так и противострептококковые антитела. Одни аутоантитела при ревматизме реагируют с сердечным антигеном, другие перекрестно - с мембраной стрептококка. Образование иммунных комплексов при этом приводит к развитию хронического воспаления в сердце(ревмокардиту).

Кроме гуморального иммунитета, при ревматизме страдает и клеточный иммунитет. В результате образуется клон сенсибилизированных лимфоцитов-киллеров, несущих на себе фиксированные антитела к сердечной мышце и эндокарду. Эти лимфоциты способны повреждать ткани сердца по типу аллергической реакции IV или клеточноопосредованного типа, т.е. гиперчувствительности замедленного типа.

Течение ревматизма имеет хронический характер, периоды ремиссии чередуются с периодами обострения. С каждой новой атакой ревматизма экстракардиальные проявления становятся менее яркими, а ведущее значение приобретают изменения,

Здоровый организм обладает многообразными механизмами, обеспечивающими своевременную разгрузку сосудистого русла от избытка жидкости. При сердечной недостаточности «включаются» компенсаторные механизмы, направленные на сохранение нормальной гемодинамики. Эти механизмы в условиях острой и хронической недостаточности кровообращения имеют много общего, вместе с тем между ними отмечаются существенные различия.

Как и при острой, так и при хронической сердечной недостаточности все эндогенные механизмы компенсации гемодинамических нарушений можно подразделить на интракардиальные: компенсаторная гиперфункция сердца (механизм Франка-Старлинга, гомеометрическая гиперфункция), гипертрофия миокарда и экстракардиальные: разгрузочные рефлексы Бейнбриджа, Парина, Китаева, активация выделительной функции почек, депонирование крови в печени и селезенке, потоотделение, испарение воды со стенок легочных альвеол, активация эритропоэза и др. Такое деление в некоторой степени условно, поскольку реализация как интра-, так и экстракардиальных механизмов находится под контролем нейрогуморальных регуляторных систем.

Механизмы компенсации гемодинамических нарушений при острой сердечной недостаточности. На начальной стадии систолической дисфункции желудочков сердца включаются интракардиальные факторы компенсации сердечной недостаточности, важнейшим из которых является механизм Франка-Старлинга (гетерометрический механизм компенсации, гетерометрическая гиперфункция сердца). Реализацию его можно представить следующим образом. Нарушение сократительной функции сердца влечет за собой уменьшение ударного объема крови и гипоперфузию почек. Это способствует активации РААС, вызывающей задержку воды в организме и увеличение объема циркулирующей крови. В условиях возникшей гиперволемии происходит усиленный приток венозной крови к сердцу, увеличение диастолического кровенаполнения желудочков, растяжение миофибрилл миокарда и компенсаторное повышение силы сокращения сердечной мышцы, которое обеспечивает прирост ударного объема. Однако если конечное диастолическое давление повышается более чем на 18-22 мм рт.ст. возникает чрезмерное перерастяжение миофибрилл. В этом случае компенсаторный механизм Франка-Старлинга перестает действовать, а дальнейшее увеличение конечного диастолического объема или давления вызывает уже не подъем, а снижение ударного объема.

Наряду с внутрисердечными механизмами компенсации при острой левожелудочковой недостаточности запускаются разгрузочные экстракардиальные рефлексы, способствующие возникновению тахикардии и увеличению минутного объема крови (МОК). Одним из наиболее важных сердечно-сосудистых рефлексов, обеспечивающих увеличение МОК, является рефлекс Бейнбриджа увеличение частоты сердечных сокращений в ответ на увеличение объема циркулирующей крови. Этот рефлекс реализуется при раздражении механорецепторов, локализованных в устье полых и легочных вен. Их раздражение передается на центральные симпатические ядра продолговатого мозга, в результате чего происходит повышение тонической активности симпатического звена вегетативной нервной системы, и развивается рефлекторная тахикардия. Рефлекс Бейнбриджа направлен на увеличение минутного объема крови.

Рефлекс Бецольда-Яриша - это рефлекторное расширение артериол большого круга кровообращения в ответ на разражение механо- и хеморецепторов, локализованных в желудочках и предсердиях.

В результате возникает гипотония, которая сопровождается бра-

дикардией и временной остановкой дыхания. В реализации этого рефлекса принимают участие афферентные и эфферентные волокна n. vagus. Этот рефлекс направлен на разгрузку левого желудочка.

К числу компенсаторных механизмов при острой сердечной недостаточности относится и повышение активности симпатоадреналовой системы, одним из звеньев которого является высвобождение норадреналина из окончаний симпатических нервов, иннервирующих сердце и почки. Наблюдаемое при этом возбуждение β -адренорецепторов миокарда ведет к развитию тахикардии, а стимуляция подобных рецепторов в клетках ЮГА вызывает усиленную секрецию ренина. Другим стимулом секреции ренина является снижение почечного кровотока в результате вызванной катехоламинами констрикции артериол почечных клубочков. Компенсаторное по своей природе усиление адренергического влияния на миокард в условиях острой сердечной недостаточности направлено на увеличение ударного и минутного объемов крови. Положительный инотропный эффект оказывает также ангиотензин-II. Однако эти компенсаторные механизмы могут усугубить сердечную недостаточность, если повышенная активность адренергической системы и РААС сохраняется достаточно продолжительное время (более 24 ч).

Все сказанное о механизмах компенсации сердечной деятельности в одинаковой степени относится как к лево-, так и к правожелудочковой недостаточности. Исключением является рефлекс Парина, действие которого реализуется только при перегрузке правого желудочка, наблюдаемой при эмболии легочной артерии.

Рефлекс Ларина - это падение артериального давления, вызванное расширением артерий большого круга кровообращения, снижением минутного объема крови в результате возникающей брадикардии и уменьшением объема циркулирующей крови из-за депонирования крови в печени и селезенке. Кроме того, для рефлекса Парина характерно появление одышки, связанной с наступающей гипоксией мозга. Полагают, что рефлекс Парина реализуется за счет усиления тонического влияния n.vagus на сердечно-сосудистую систему при эмболии легочных артерий.

Механизмы компенсации гемодинамических нарушений при хронической сердечной недостаточности. Основным звеном патогенеза хронической сердечной недостаточности является, как известно, постепенно нарастающее снижение сократительной функции ми-

окарда и падение сердечного выброса. Происходящее при этом уменьшение притока крови к органам и тканям вызывает гипоксию последних, которая первоначально может компенсироваться усиленной тканевой утилизацией кислорода, стимуляцией эритропоэза и т.д. Однако этого оказывается недостаточно для нормального кислородного обеспечения органов и тканей, и нарастающая гипоксия становится пусковым механизмом компенсаторных изменений гемодинамики.

Интракардиальные механизмы компенсации функции сердца. К ним относятся компенсаторная гиперфункция и гипертрофия сердца. Эти механизмы являются неотъемлемыми компонентами большинства приспособительных реакций сердечно-сосудистой системы здорового организма, но в условиях патологии могут превратиться в звено патогенеза хронической сердечной недостаточности.

Компенсаторная гиперфункция сердца выступает как важный фактор компенсации при пороках сердца, артериальной гипертензии, анемии, гипертонии малого круга и других заболеваниях. В отличие от физиологической гиперфункции она является длительной и, что существенно, непрерывной. Несмотря на непрерывность, компенсаторная гиперфункция сердца может сохраняться в течение многих лет без явных признаков декомпенсации насосной функции сердца.

Увеличение внешней работы сердца, связанное с подъемом давления в аорте (гомеометрическая гиперфункция), приводит к более выраженному возрастанию потребности миокарда в кислороде, чем перегрузка миокарда, вызванная повышением объема циркулирующей крови (гетерометрическая гиперфункция). Иными словами, для осуществления работы в условиях нагрузки давлением мышца сердца использует гораздо больше энергии, чем для выполнения той же работы, связанной с нагрузкой объемом, а следовательно, при стойкой артериальной гипертензии гипертрофия сердца развивается быстрее, чем при увеличении объема циркулирующей крови. Например, при физической работе, высотной гипоксии, всех видах клапанной недостаточности, артериовенозных фистулах, анемии гиперфункция миокарда обеспечивается за счет увеличения минутного объема сердца. При этом систолическое напряжение миокарда и давление в желудочках возрастают незначительно, и гипертрофия развивается медленно. В то же время при гипертонической болезни, гипертензии малого круга, стено-

зах клапанных отверстий развитие гиперфункции связано с повышением напряжения миокарда при незначительно измененной амплитуде сокращений. В этом случае гипертрофия прогрессирует достаточно быстро.

Гипертрофия миокарда - это увеличение массы сердца за счет увеличения размеров кардиомиоцитов. Существуют три стадии компенсаторной гипертрофии сердца.

Первая, аварийная, стадия характеризуется, прежде всего, увеличением интенсивности функционирования структур миокарда и, по сути, представляет собой компенсаторную гиперфункцию еще не гипертрофированного сердца. Интенсивность функционирования структур - это механическая работа, приходящаяся на единицу массы миокарда. Увеличение интенсивности функционирования структур закономерно влечет за собой одновременную активацию энергообразования, синтеза нуклеиновых кислот и белка. Указанная активация синтеза белка происходит таким образом, что вначале увеличивается масса энергообразующих структур (митохондрий), а затем - масса функционирующих структур (миофибрилл). В целом увеличение массы миокарда приводит к тому, что интенсивность функционирования структур постепенно возвращается к нормальному уровню.

Вторая стадия - стадия завершившейся гипертрофии - характеризуется нормальной интенсивностью функционирования структур миокарда и соответственно нормальным уровнем энергообразования и синтеза нуклеиновых кислот и белков в ткани сердечной мышцы. При этом потребление кислорода на единицу массы миокарда остается в границах нормы, а потребление кислорода сердечной мышцей в целом увеличено пропорционально возрастанию массы сердца. Увеличение массы миокарда в условиях хронической сердечной недостаточности происходит за счет активации синтеза нуклеиновых кислот и белков. Пусковой механизм этой активации изучен недостаточно. Считается, что определяющую роль здесь играет усиление трофического влияния симпатоадреналовой системы. Эта стадия процесса совпадает с длительным периодом клинической компенсации. Содержание АТФ и гликогена в кардиомиоцитах также находится при этом в пределах нормы. Подобные обстоятельства придают относительную устойчивость гиперфункции, но вместе с тем не предотвращают исподволь развивающихся в данной стадии нарушений обмена и структуры миокарда. Наиболее ранними признаками таких нарушений являются

значительное увеличение концентрации лактата в миокарде, а также умеренно выраженный кардиосклероз.

Третья стадия прогрессирующего кардиосклероза и декомпенсации характеризуется нарушением синтеза белков и нуклеиновых кислот в миокарде. В результате нарушения синтеза РНК, ДНК и белка в кардиомиоцитах наблюдается относительное уменьшение массы митохондрий, что ведет к торможению синтеза АТФ на единицу массы ткани, снижению насосной функции сердца и прогрессированию хронической сердечной недостаточности. Ситуация усугубляется развитием дистрофических и склеротических процессов, что способствует появлению признаков декомпенсации и тотальной сердечной недостаточности, завершающейся гибелью пациента. Компенсаторная гиперфункция, гипертрофия и последующая декомпенсация сердца - это звенья единого процесса.

Механизм декомпенсации гипертрофированного миокарда включает следующие звенья:

1. Процесс гипертрофии не распространяется на коронарные сосуды, поэтому число капилляров на единицу объема миокарда в гипертрофированном сердце уменьшается (рис. 15-11). Следовательно, кровоснабжение гипертрофированной сердечной мышцы оказывается недостаточным для выполнения механической работы.

2. Вследствие увеличения объема гипертрофированных мышечных волокон уменьшается удельная поверхность клеток, в связи с

Рис. 5-11. Гипертрофия миокарда: 1 - миокард здорового взрослого; 2 - гипертрофированный миокард взрослого (масса 540 г); 3 - гипертрофированный миокард взрослого (масса 960 г)

этим ухудшаются условия для поступления в клетки питательных веществ и выделения из кардиомиоцитов продуктов метаболизма.

3. В гипертрофированном сердце нарушается соотношение между объемами внутриклеточных структур. Так, увеличение массы митохондрий и саркоплазматического ретикулума (СПР) отстает от увеличения размеров миофибрилл, что способствует ухудшению энергоснабжения кардиомиоцитов и сопровождается нарушением аккумуляции Са 2 + в СПР. Возникает Са 2 +-перегрузка кардиомиоцитов, что обеспечивает формирование контрактуры сердца и способствует уменьшению ударного объема. Кроме того, Са 2 +-перегрузка клеток миокарда повышает вероятность возникновения аритмий.

4. Проводящая система сердца и вегетативные нервные волокна, иннервирующие миокард, не подвергаются гипертрофии, что также способствует возникновению дисфункции гипертрофированного сердца.

5. Активируется апоптоз отдельных кардиомиоцитов, что способствует постепенному замещению мышечных волокон соединительной тканью (кардиосклероз).

В конечном итоге гипертрофия утрачивает приспособительное значение и перестает быть полезной для организма. Ослабление сократительной способности гипертрофированного сердца происходит тем скорее, чем сильнее выражены гипертрофия и морфологические изменения в миокарде.

Экстракардиальные механизмы компенсации функции сердца. В отличие от острой сердечной недостаточности роль рефлекторных механизмов экстренной регуляции насосной функции сердца при хронической сердечной недостаточности сравнительно невелика, поскольку нарушения гемодинамики развиваются постепенно на протяжении нескольких лет. Более или менее определенно можно говорить о рефлексе Бейнбриджа, который «включается» уже на стадии достаточно выраженной гиперволемии.

Особое место среди «разгрузочных» экстракардиальных рефлексов занимает рефлекс Китаева, который «запускается» при митральном стенозе. Дело в том, что в большинстве случаев проявления правожелудочковой недостаточности связаны с застойными явлениями в большом круге кровообращения, а левожелудочковой - в малом. Исключение составляет стеноз митрального клапана, при котором застойные явления в легочных сосудах вызваны не декомпенсацией левого желудочка, а препятствием току крови через

левое атриовентрикулярное отверстие - так называемым «первым (анатомическим) барьером». При этом застой крови в легких способствует развитию правожелудочковой недостаточности, в генезе которой рефлекс Китаева играет важную роль.

Рефлекс Китаева - это рефлекторный спазм легочных артериол в ответ на повышение давления в левом предсердии. В результате возникает «второй (функциональный) барьер», который первоначально играет защитную роль, предохраняя легочные капилляры от чрезмерного переполнения кровью. Однако затем этот рефлекс приводит к выраженному повышению давления в легочной артерии - развивается острая легочная гипертензия. Афферентное звено этого рефлекса представлено n. vagus, a эфферентное - симпатическим звеном вегетативной нервной системы. Негативной стороной данной приспособительной реакции является подъем давления в легочной артерии, приводящий к увеличению нагрузки на правое сердце.

Однако ведущую роль в генезе долговременной компенсации и декомпенсации нарушенной сердечной функции играют не рефлекторные, а нейрогуморальные механизмы, важнейшим из которых является активация симпатоадреналовой системы и РААС. Говоря об активации симпатоадреналовой системы у пациентов с хронической сердечной недостаточностью, нельзя не указать, что у большинства из них уровень катехоламинов в крови и моче находится в пределах нормы. Этим хроническая сердечная недостаточность отличается от острой сердечной недостаточности.

Компенсаторные механизмы

Информация, релевантная «Компенсаторные механизмы»

При любой эндокринной патологии, как и при всех заболеваниях, наряду с нарушением функций развиваются компенсаторно-приспособительные механизмы. Например, при гемикастрации – компенсаторная гипертрофия яичника или семенника; гипертрофия и гиперплазия секреторных клеток коркового вещества надпочечника при удалении части паренхимы железы; при гиперсекреции глюкокортикоидов – уменьшение их

Размер почки уменьшен за счет гибели нефронов. Компенсаторные механизмы велики: при 50% гибели нефронов ХПН еще не развивается. Запустевают клубочки, гибнут канальцы, идут фибропластические процессы: гиалиноз, склероз оставшихся клубочков. Относительно сохранившихся клубочков существуют 2 точки зрения: 1) Они берут на себя функцию тех нефронов, которые погибли (1:4) - клетки увеличиваются в

Физиологическая реакция организма в ответ на изменения во времени подразделяется на три фазы: 1) немедленная химическая реакция буферных систем; 2) дыхательная компенсация (при метаболических нарушениях кислотно-основного состояния); 3) более медленная, но более эффективная компенсаторная реакция почек, способная ТАБЛИЦА 30-1. Диагностика нарушений кислотно-основного состояния Нарушение

Следует выделить три основные группы механизмов выздоровления: 1) срочные (неустойчивые, «аварийные») защитно-компенсаторные реакции, возникающие в первые секунды и минуты после воздействия и представляющие собой главным образом защитные рефлексы, с помощью которых организм освобождается от вредных веществ и удаляет их (рвота; кашель, чиханье и т.д.). К этому типу реакций следует отнести

При описании нарушений кислотно-основного состояния и компенсаторных механизмов необходимо использовать точную терминологию (табл. 30-1). Суффикс «оз» отражает патологический процесс, приводящий к изменению рН артериальной крови. Нарушения, которые приводят к снижению рН, называют ацидозом, тогда как состояния, которые вызывают увеличение рН,- алкалозом. Если первопричиной нарушений является

Терминальные состояния - это своеобразный патологический симптомокомплекс, проявляющийся тяжелейшими нарушениями функций органов и систем, с которыми организм без помощи извне справиться не может. Другими словами это состояния пограничные между жизнью и смертью. К ним относятся все стадии умирания и ранние этапы постреанимационного периода. Умирание может быть следствием развития любого тяжелого

Недостаточность внешнего дыхания (НВД) – это патологическое состояние, развивающееся вследствие нарушения внешнего дыхания, при котором не обеспечивается нормальный газовый состав артериальной крови или он достигается в результате включения компенсаторных механизмов, приводящих к ограничению резервных возможностей организма. Формы недостаточности внешнего дыхания

Повышение рН артериальной крови угнетает дыхательный центр. Снижение альвеолярной вентиляции приводит к увеличению PaCO2 и сдвигу рН артериальной крови в сторону нормы. Компенсаторная реакция дыхания при метаболическом алкалозе менее предсказуема, чем при метаболическом ацидозе. Гипоксемия, развивающаяся в результате прогрессирующей гиповентиляции, в конечном счете активирует чувствительные к

Первый ЭКГ признак Поскольку экстрасистола - это внеочередное возбуждение, то на ЭКГ ленте месторасположение ее будет раньше предполагаемого очередного синусового импульса. Поэтому пред экстрасистолический интервал, т.е. интервал R(синусовый) - R(экстрасистолический) будет меньше интервала R(синусовый) - R(синусовый). Рис. 68. Предсердная экстрасистола. В отведении III

Активный экстрасистолический очаг находится в желудочках. Первый ЭКГ признак Этот признак характеризует экстрасистолу как таковую, вне зависимости от места расположения эктопического очага. Краткая запись - интервал R(с)-R(э)

Компенсаторные механизмы сердечной недостаточности. Сердечные гликозиды - дигоксин

Компенсаторные механизмы . активируемые во время ЗСН, проявляются в виде положительной инотропии. Повышение силы сокращения мышц ([+dP/dt]max) носит название положительной инотропии. Она возникает как следствие усиленной симпатической стимуляции сердца и активации (З1-адренорецепторов желудочков и ведет к повышению эффективности систолического выброса. Но благоприятный эффект этого компенсаторного механизма не может поддерживаться долго. Развивается недостаточность в результате перегрузки желудочков, возникающей вследствие повышения давления в желудочках при их наполнении, систолического стресса стенки и повышенной потребности миокарда в энергии.

Лечение застойной сердечной недостаточности . Существует две фазы ЗСН: острая и хроническая. Лекарственная терапия должна не только облегчить симптомы заболевания, но и снизить смертность. Эффект лекарственной терапии наиболее благоприятен в тех случаях, когда ЗСН возникла вследствие кардиомиопатии или артериальной гипертензии. Цель лечения состоит в том, чтобы:

Уменьшить застой (отеки);

Улучшить систолическую и диастолическую функции сердца. Для достижения этой цели используют различные лекарственные средства.

Сердечные гликозиды используют для лечения сердечной недостаточности более 200 лет. Дигоксин - прототипичный сердечный гликозид, экстрагируемый из листьев пурпурной и белой наперстянки (Digitalis purpurea и D. lanata соответственно). Дигоксин - наиболее распространенный препарат из группы сердечных гликозидов, применяемых в США.


Все сердечные гликозиды обладают сходной химической структурой. Дигоксин, дигиталис и оубаин содержат агликоновое стероидное ядро, имеющее значение для фармакологической активности, а также ненасыщенное, связанное с С17 лактоновое кольцо, обладающее кардиотоническим действием, и связанный с С3 углеводный компонент (сахар), влияющий на активность и фармакокинетические свойства гликозидов.

Сердечные гликозиды ингибируют мембраносвязанную Nа+/К+-АТФазу, улучшая симптоматику ЗСН. Эффекты сердечных гликозидов на молекулярном уровне обусловлены ингибированием мембраносвя-занной Nа+/К+-АТФазы. Этот фермент участвует в создании мембранного потенциала покоя большинства возбудимых клеток посредством выведения трех ионов Na+ из клетки в обмен на поступление двух ионов К+ в клетку против градиента концентрации, тем самым создавая высокую концентрацию К+ (140 мМ) и низкую концентрацию Na+ (25 мМ). Энергию для этого насосного эффекта дает гидролиз АТФ. Ингибирование насоса приводит к повышению внутриклеточной цитоплазматической концентрации Na+.

Повышение концентрации Na+ ведет к ингибированию мембраносвязанного Ка+/Са2+-обменника и как следствие - к повышению концентрации цито-плазматического Са2+. Обменник представляет собой АТФ-независимый антипортер, вызывающий в обычных условиях вытеснение Са2+ из клеток. Повышение концентрации Na+ в цитоплазме пассивно снижает обменную функцию, и из клетки вытесняется меньше Са2+. Затем Са2+ в повышенной концентрации активно нагнетается в саркоплазматический ретикулум (СР) и становится доступным для высвобождения в течение последующей клеточной деполяризации, тем самым усиливая связь возбуждение-сокращение. Результатом является более высокая сократимость, известная как положительная инотропия.

При сердечной недостаточности положительное инотропное действие сердечных гликозидов изменяет кривую Франка-Старлинга желудочковой функции.

Несмотря на широкое применение дигиталиса, отсутствуют убедительные доказательства того, что он благоприятно влияет на отдаленный прогноз при ЗСН. У многих пациентов дигиталис улучшает симптоматику, однако не снижает смертность от ЗСН.

Сердечная недостаточность (СН) - это состояние, при котором:

1. Сердце не может полностью обеспечить должный минутный объем крови (МО), т.е. перфузию органов и тканей, адекватную их метаболическим потребностям в покое или при физической нагрузке.

2. Или относительно нормальный уровень МО и перфузии тканей достигается за счет чрезмерного напряжения внутрисердечных и нейроэндокринных компенсаторных еханизмов, прежде всего за счет увеличения давления наполнения полостей сердца и

активации САС, ренин-ангиотензиновой и других систем организма.

В большинстве случаев речь идет о сочетании обоих признаков СН - абсолютного или относительного снижения МО и выраженного напряжения компенсаторных механизмов. СН выявляется у 1–2% населения, причем ее распространенность увеличивается с возрастом. У лиц старше 75 лет СН встречается в 10% случаев. Почти все заболевания сердечно-сосудистой системы могут осложняться СН, являющейся наиболее частой причиной госпитализации, снижения трудоспособности и смерти больных.

ЭТИОЛОГИЯ

В зависимости от преобладания тех или иных механизмов формирования СН выделяют следующие причины развития этого патологического синдрома.

I. Поражения сердечной мышцы (миокардиальная недостаточность).

1. Первичные:

миокардиты;

2. Вторичные:

острый инфаркт миокарда (ИМ);

хроническая ишемия сердечной мышцы;

постинфарктный и атеросклеротический кардиосклероз;

гипо- или гипертиреоз;

поражение сердца при системных заболеваниях соединительной ткани;

токсико-аллергические поражения миокарда.

II. Гемодинамическая перегрузка желудочков сердца.

1. Повышение сопротивления изгнанию (увеличение постнагрузки):

системная артериальная гипертензия (АГ);

легочная артериальная гипертензия;

стеноз устья аорты;

стеноз легочной артерии.

2. Увеличение наполнения камер сердца (увеличение преднагрузки):

недостаточность клапанов сердца

врожденные пороки сердца

III. Нарушение наполнения желудочков сердца.

IV. Повышение метаболических потребностей тканей (СН с высоким МО).

1. Гипоксические состояния:

хроническое легочное сердце.

2. Повышение обмена веществ:

гипертиреоз.

3. Беременность.

Наиболее частыми причинами сердечной недостаточности являются:

ИБС, включая острый ИМ и постинфарктный кардиосклероз;

артериальная гипертензия, в том числе в сочетании с ИБС;

клапанные пороки сердца.

Многообразие причин сердечной недостаточности объясняет существование различных клинических и патофизиологических форм этого патологического синдрома, при каждой из которых преобладает преимущественное поражение тех или иных отделов сердца и действие различных механизмов компенсации и декомпенсации. В большинстве случаев (около 70–75%) речь идет о преимущественном нарушении систолической функции сердца, которая определяется степенью укорочения сердечной мышцы и величиной сердечного выброса (МО).

На конечных этапах развития систолической дисфункции наиболее характерную последовательность гемодинамических изменений можно представить следующим образом: снижение УО, МО и ФВ, что сопровождается возрастанием конечно-систолического объема (КСО) желудочка, а также гипоперфузией периферических органов и тканей; возрастание конечно-диастолического давления (конечное диастолическое давление) в желудочке, т.е. давления наполнения желудочка; миогенная дилатация желудочка - увеличение конечно-диастолического объема (конечный диастолический объем) желудочка; застой крови в венозном русле малого или большого круга кровообращения. Последний гемодинамический признак СН сопровождается наиболее “яркими” и четко очерченными клиническими проявлениями СН (одышка, отеки, гепатомегалия и т.п.) и определяет клиническую картину двух ее форм. При левожелудочковой СН развивается застой крови в малом круге кровообращения, а при правожелудочковой СН - в венозном русле большого круга. Быстрое развитие систолической дисфункции желудочка приводит к возникновению острой СН (лево- или правожелудочковой). Длительное существование гемодинамической перегрузки объемом или сопротивлением (ревматические пороки сердца) или постепенное прогрессирующее снижение сократимости миокарда желудочка (например, при его ремоделировании после перенесенного ИМ или длительном существовании хронической ишемии сердечной мышцы) сопровождается формированием хронической СН (ХСН).

Примерно в 25–30% случаев в основе развития СН лежат нарушения диастолической функции желудочков. Диастолическая дисфункция развивается при заболеваниях сердца, сопровождающихся нарушением расслабления и наполнения желудочков Нарушение растяжимости миокарда желудочков приводит к тому, что для обеспечения достаточного диастолического наполнения желудочка кровью и сохранения нормального УО и МО необходимо значительно более высокое давление наполнения, соответствующее более высокому конечное диастолическое давление желудочка. Кроме того, замедление релаксации желудочка приводит к перераспределению диастолического наполнения в пользу предсердного компонента, и значительная часть диастолического кровотока осуществляется не во время фазы быстрого наполнения желудочка, как в норме, а во время активной систолы предсердия. Эти изменения способствуют увеличению давления и размеров предсердия, повышая риск возникновения застоя крови в венозном русле малого или большого круга кровообращения. Иными словами, диастолическая дисфункция желудочков может сопровождаться клиническими признаками ХСН при нормальной сократимости миокарда и сохраненном сердечном выбросе. При этом полость желудочка обычно остается нерасширенной, поскольку нарушается соотношение конечное диастолическое давление и конечный диастолический объем желудочка.

Следует обратить внимание на то, что во многих случаях ХСН имеет место сочетание систолической и диастолической дисфункции желудочков, что необходимо учитывать при выборе соответствующей медикаментозной терапии. Из приведенного выше определения СН следует, что этот патологический синдром может развиться не только в результате уменьшения насосной (систолической) функции сердца или его диастолической дисфункции, но и при значительном увеличении метаболических потребностей органов и тканей (гипертиреоз, беременность и т.п.) или при снижении кислородной транспортной функции крови (анемии). В этих случаях МО может оказаться даже повышенным (СН с “высоким МО”), что связано обычно с компенсаторным увеличением ОЦК. По современным представлениям формирование систолической или диастолической СН тесным образом связано с активацией многочисленных кардиальных и экстракардиальных (нейрогормональных) компенсаторных механизмов. При систолической дисфункции желудочков такая активация вначале носит адаптационный характер и направлена преимущественно на поддержание на должном уровне МО и системного АД. При диастолической дисфункции конечным результатом включения компенсаторных механизмов является повышение давления наполнения желудочков, что обеспечивает достаточный диастолический приток крови к сердцу. Однако в последующем практически все компенсаторные механизмы трансформируются в патогенетические факторы, способствующие еще большему нарушению систолической и диастолической функции сердца и формированию значительных изменений гемодинамики, характерных для СН.

Кардиальные механизмы компенсации:

К числу важнейших кардиальных адаптационных механизмов относятся гипертрофия миокарда и механизм Старлинга.

На начальных стадиях заболевания гипертрофия миокарда способствует уменьшению внутримиокардиального напряжения за счет увеличения толщины стенки, позволяя желудочку развивать достаточное внутрижелудочковое давление в систолу.

Рано или поздно компенсаторная реакция сердца на гемодинамическую перегрузку или повреждение миокарда желудочков оказывается недостаточной и происходит снижение сердечного выброса. Так, при гипертрофии сердечной мышцы со временем происходит “изнашивание” сократительного миокарда: истощаются процессы белкового синтеза и энергетического обеспечения кардиомиоцитов, нарушается соотношение между сократительными элементами и капиллярной сетью, повышается концентрация внутриклеточного Са 2+ , развивается фиброз сердечной мышцы и т.п. Одновременно происходит снижение диастолической податливости камер сердца и развивается диастолическая дисфункция гипертрофированного миокарда. Кроме того, наблюдаются выраженные нарушения метаболизма миокарда:

Уменьшается АТФ-азная активность миозина, обеспечивающего сократимость миофибрилл за счет гидролиза АТФ;

Нарушается сопряжение возбуждения с сокращением;

Нарушается образование энергии в процессе окислительного фосфорилирования и истощаются запасы АТФ и креатинфосфата.

В результате уменьшается сократимость миокарда, величина МО, возрастает конечное диастолическое давление желудочка и появляется застой крови в венозном русле малого или большого круга кровообращения.

Важно помнить, что эффективность механизма Старлинга, обеспечивающего сохранение МО за счет умеренной (“тоногенной”) дилатации желудочка, резко снижается при повышении конечного диастолического давления в ЛЖ больше 18–20 мм рт. ст. Чрезмерное растяжение стенок желудочка (“миогенная” дилатация) сопровождается лишь незначительным увеличением или даже уменьшением силы сокращения, что способствует снижению сердечного выброса.

При диастолической форме СН реализация механизма Старлинга вообще затруднена вследствие ригидности и неподатливости стенки желудочка.

Экстракардиальные механизмы компенсации

По современным представлениям, основную роль как в процессах адаптации сердца к гемодинамическим перегрузкам или первичному повреждению сердечной мышцы, так и в формировании характерных для СН изменений гемодинамики играет активация нескольких нейроэндокринных систем , важнейшими из которых являются:

Симпатико-адреналовая система (САС)

Ренин-ангиотензин-альдостероновая система (РААС);

Тканевые ренин-ангиотензиновые системы (РАС);

Предсердный натрийуретический пептид;

Эндотелиальная дисфункция и др.

Гиперактивация симпатико-адреналовой системы

Гиперактивация симпатико-адреналовой системы и повышение концентрации катехоламинов (А и На) является одним из наиболее ранних компенсаторных факторов при возникновении систолической или диастолической дисфункции сердца. Особенно важной оказывается активация САС в случаях развития острой СН. Эффекты такой активации реализуются прежде всего через a- и b-адренергические рецепторы клеточных мембран различных органов и тканей. Основными следствиями активации САС являются:

Увеличение ЧСС (стимуляция b 1 -адренергических рецепторов) и, соответственно, МО (поскольку МО = УО х ЧСС);

Повышение сократимости миокарда (стимуляция b 1 - и a 1 -рецепторов);

Системная вазоконстрикция и повышение ОПСС и АД (стимуляция a 1 -рецепторов);

Повышение тонуса вен (стимуляция a 1 -рецепторов), что сопровождается увеличением венозного возврата крови к сердцу и увеличением преднагрузки;

Стимуляция развития компенсаторной гипертрофии миокарда;

Активирование РААС (почечно-надпочечниковой) в результате стимуляции b 1 -адренергических рецепторов юкстагломерулярных клеток и тканевых РАС за счет дисфункции эндотелия.

Таким образом, на начальных этапах развития заболевания повышение активности САС способствует увеличению сократимости миокарда, притока крови к сердцу, величины преднагрузки и давления наполнения желудочков, что в конечном итоге приводит к сохранению в течение определенного времени достаточного сердечного выброса. Однако длительная гиперактивация САС у больных хронической СН может иметь многочисленные негативные последствия, способствуя:

1. Значительному увеличению преднагрузки и постнагрузки (за счет чрезмерной вазоконстрикции, активации РААС и задержки натрия и воды в организме).

2. Повышению потребности миокарда в кислороде (в результате положительного инотропного эффекта активации САС).

3. Уменьшению плотности b-адренергических рецепторов на кардиомиоцитах, что со временем приводит к ослаблению инотропного эффекта катехоламинов (высокая концентрация катехоламинов в крови уже не сопровождается адекватным увеличением сократимости миокарда).

4. Прямому кардиотоксическому эффекту катехоламинов (некоронарогенные некрозы, дистрофические изменения миокарда).

5. Развитию фатальных желудочковых нарушений ритма (желудочковой тахикардии и фибрилляции желудочков) и т.д.

Гиперактивация ренин-ангиотензин-альдостероновой системы

Гиперактивация РААС играет особую роль в формировании СН. При этом имеет значение не только почечно-надпочечниковая РААС с циркулирующими в крови нейрогормонами (ренином, ангиотензином-II, ангиотензином-III и альдостероном), но и локальные тканевые (в том числе миокардиальная) ренин-ангиотензиновые системы.

Активация почечной ренин-ангиотензиновой системы, наступающая при любом самом незначительном снижении перфузионного давления в почках, сопровождается выделением клетками ЮГА почек ренина, расщепляющего ангиотензиноген с образованием пептида - ангиотензина I (АI). Последний под действием ангиотензин-превращающего фермента (АПФ) трансформируется в ангиотензин II, который является основным и наиболее мощным эффектором РААС. Характерно, что ключевой фермент этой реакции - АПФ - локализуется на мембранах эндотелиальных клеток сосудов легких, проксимальных канальцев почек, в миокарде, плазме, где и происходит образование АII. Его действие опосредуется специфическими ангиотензиновыми рецепторами (АТ 1 и АТ 2), которые находятся в почках, сердце, артериях, надпочечниках и т.д. Важно, что при активации тканевых РАС имеются и другие пути (помимо АПФ) превращения АI в АII: под действием химазы, химазоподобного фермента (CAGE), катепсина G, тканевого активатора плазминогена (ТАП) и др.

Наконец, воздействие АII на АТ 2 -рецепторы клубочковой зоны коркового вещества надпочечников приводит к образованию альдостерона, основным эффектом которого является задержка в организме натрия и воды, что способствует увеличению ОЦК.

В целом активация РААС сопровождается следующими эффектами:

Выраженной вазоконстрикцией, повышением АД;

Задержкой в организме натрия и воды и увеличением ОЦК;

Повышением сократимости миокарда (положительное инотропное действие);

Инициированием развития гипертрофии и ремоделирования сердца;

Активацией образования соединительной ткани (коллагена) в миокарде;

Повышением чувствительности миокарда к токсическому влиянию катехоламинов.

Активация РААС при острой СН и на начальных этапах развития хронической СН имеет компенсаторное значение и направлена на поддержание нормального уровня АД, ОЦК, перфузионного давления в почках, увеличение пред- и постнагрузки, увеличение сократимости миокарда. Однако в результате длительной гиперактивации РААС развивается ряд отрицательных эффектов:

1. увеличение ОПСС и снижение перфузии органов и тканей;

2. чрезмерное увеличение постнагрузки на сердце;

3. значительная задержка жидкости в организме, что способствует формированию отечного синдрома и повышению преднагрузки;

4. инициация процессов ремоделирования сердца и сосудов, в том числе гипертрофии миокарда и гиперплазии гладкомышечных клеток;

5. стимуляция синтеза коллагена и развитие фиброза сердечной мышцы;

6. развитие некроза кардиомиоцитов и прогрессирующее повреждение миокарда с формированием миогенной дилатации желудочков;

7. повышение чувствительности сердечной мышцы к катехоламинам, что сопровождается возрастанием риска возникновения фатальных желудочковых аритмий у больных СН.

Система аргинин-вазопрессин (антидиуретический гормон)

Антидиуретический гормон (АДГ), секретируемый задней долей гипофиза, участвует в регуляции проницаемости для воды дистальных отделов канальцев почек и собирательных трубок. Например, при недостатке в организме воды и дегидратации тканей происходит уменьшение объема циркулирующей крови (ОЦК) и увеличение осмотического давления крови (ОДК). В результате раздражения осмо- и волюморецепторов усиливается секреция АДГ задней долей гипофиза. Под влиянием АДГ повышается проницаемость для воды дистальных отделов канальцев и собирательных трубок, и, соответственно, усиливается факультативная реабсорбция воды в этих отделах. В итоге выделяется мало мочи с высоким содержанием осмотически активных веществ и высокой удельной плотностью мочи.

Наоборот, при избытке воды в организме и гипергидратации тканей в результате увеличения ОЦК и уменьшения осмотического давления крови происходит раздражение осмо- и волюморецепторов, и секреция АДГ резко снижается или даже прекращается. В результате реабсорбция воды в дистальных отделах канальцев и собирательных трубках снижается, тогда как Na + продолжает реабсорбироваться в этих отделах. Поэтому выделяется много мочи с низкой концентрацией осмотически активных веществ и низкой удельной плотностью.

Нарушение функционирования этого механизма при сердечной недостаточности может способствовать задержке воды в организме и формированию отечного синдрома. Чем меньше сердечный выброс, тем больше раздражение осмо- и волюморецепторов, что приводит к увеличению секреции АДГ и, соответственно, задержке жидкости.

Предсердный натрийуретический пептид

Предсердный натрийуретический пептид (ПНУП) является своеобразным антагонистом вазоконстрикторных систем организма (САС, РААС, АДГ и других). Он продуцируется миоцитами предсердий и выделяется в кровоток при их растяжении. Предсердный натрийуретический пептид вызывает вазодилатирующий, натрийуретический и диуретический эффекты, угнетает секрецию ренина и альдостерона.

Секреция ПНУП - это один из наиболее ранних компенсаторных механизмов, препятствующих чрезмерной вазоконстрикции, задержке Nа + и воды в организме, а также увеличению пред- и постнагрузки.

Активность Предсердного натрийуретического пептида быстро усиливается по мере прогрессирования СН. Однако, несмотря на высокий уровень циркулирующего Предсердного натрийуретического пептида, степень его положительных эффектов при хронической СН заметно снижается, что связано, вероятно, с уменьшением чувствительности рецепторов и увеличением расщепления пептида. Поэтому максимальный уровень циркулирующего Предсердного натрийуретического пептида ассоциируется с неблагоприятным течением хронической СН.

Нарушения эндотелиальной функции

Нарушениям эндотелиальной функции в последние годы придается особое значение в формировании и прогрессировании ХСН. Дисфункция эндотелия , возникающая под действием различных повреждающих факторов (гипоксии, чрезмерной концентрации катехоламинов, ангиотензина II, серотонина, высокого уровня АД, ускорения кровотока и т.д.), характеризуется преобладанием вазоконстрикторных эндотелийзависимых влияний и закономерно сопровождается повышением тонуса сосудистой стенки, ускорением агрегации тромбоцитов и процессов пристеночного тромбообразования.

Напомним, что к числу важнейших эндотелийзависимых вазоконстрикторных субстанций, повышающих сосудистый тонус, агрегацию тромбоцитов и свертываемость крови, относятся эндотелин-1 (ЭТ 1), тромбоксан А 2 , простагландин PGH 2 , ангиотензин II (АII) и др.

Они оказывают существенное влияние не только на сосудистый тонус, приводя к выраженной и стойкой вазоконстрикции, но и на сократимость миокарда, величину преднагрузки и постнагрузки, агрегацию тромбоцитов и т.д. (подробнее см. главу 1). Важнейшим свойством эндотелина-1 является его способность “запускать” внутриклеточные механизмы, приводящие к усилению белкового синтеза и развитию гипертрофии сердечной мышцы. Последняя, как известно, является важнейшим фактором, так или иначе осложняющим течение СН. Кроме того, эндотелин-1 способствует образованию коллагена в сердечной мышце и развитию кардиофиброза. Существенную роль вазоконстрикторные субстанции играют в процессе пристеночного тромбообразования (рис. 2.6).

Показано, что при тяжелой и прогностически неблагоприятной ХСН уровень эндотелина-1 повышен в 2–3 раза. Его концентрация в плазме крови коррелирует с выраженностью нарушений внутрисердечной гемодинамики, давлением в легочной артерии и уровнем летальности у пациентов с ХСН.

Таким образом, описанные эффекты гиперактивации нейрогормональных систем вместе с типичными нарушениями гемодинамики лежат в основе характерных клинических проявлений СН. Причем, симптоматика острой СН главным образом определяется внезапно наступившими расстройствами гемодинамики (выраженным снижением сердечного выброса и ростом давления наполнения), микроциркуляторными нарушениями, которые усугубляются активацией САС, РААС (преимущественно почечной).

В развитии хронической СН в настоящее время большее значение придают длительной гиперактивации нейрогормонов и эндотелиальной дисфункции, сопровождающихся выраженной задержкой натрия и воды, системной вазоконстрикцией, тахикардией, развитием гипертрофии, кардиофиброза и токсическим повреждением миокарда.

КЛИНИЧЕСКИЕ ФОРМЫ СН

В зависимости от скорости развития симптомов СН различают две клинические формы СН

Острая и хроническая СН. Клинические проявления острой СН развиваются в течение нескольких минут или часов, а симптоматика хронической СН - от нескольких недель до нескольких лет от начала заболевания. Характерные клинические особенности острой и хронической СН позволяют практически во всех случаях достаточно легко различать эти две формы сердечной декомпенсации. Однако следует иметь в виду, что острая, например, левожелудочковая недостаточность (сердечная астма, отек легких) может возникать на фоне длительно текущей хронической СН.

ХРОНИЧЕСКАЯ СН

При наиболее распространенных заболеваниях, связанных с первичным повреждением или хронической перегрузкой ЛЖ (ИБС, постинфарктный кардиосклероз, АГ и др.), последовательно развиваются клинические признаки хронической левожелудочковой недостаточности, легочной артериальной гипертензии и правожелудочковой недостаточности. На определенных этапах сердечной декомпенсации начинают проявляться признаки гипоперфузии периферических органов и тканей, связанной как с гемодинамическими нарушениями, так и с гиперактивацией нейрогормональных систем. Это и составляет основу клинической картины бивентрикулярной (тотальной) СН, наиболее часто встречающейся в клинической практике. При хронической перегрузке ПЖ или первичном повреждении этого отдела сердца развивается изолированная правожелудочковая хроническая СН (например, хроническое легочное сердце).

Ниже приведено описание клинической картины хронической систолической бивентрикулярной (тотальной) СН.

Жалобы

Одышка (dyspnoe ) - один из наиболее ранних симптомов хронической СН. Вначале одышка возникает только при физической нагрузке и проходит после ее прекращения. По мере прогрессирования болезни одышка начинает появляться при все меньшей нагрузке, а затем и в покое.

Одышка появляется в результате повышения конечное диастолическое давление и давления наполнения ЛЖ и свидетельствует о возникновении или усугублении застоя крови в венозном русле малого круга кровообращения. Непосредственными причинами одышки у больных хронической СН являются:

Существенные нарушения вентиляционно-перфузионных соотношений в легких (замедление тока крови через нормально вентилируемые или даже гипервентилируемые альвеолы);

Отек интерстиция и повышение ригидности легких, что приводит к уменьшению их растяжимости;

Нарушение диффузии газов через утолщенную альвеолярно-капиллярную мембрану.

Все три причины ведут к уменьшению газообмена в легких и раздражению дыхательного центра.

Ортопноэ (orthopnoe ) - это одышка, возникающая в положении больного лежа с низким изголовьем и исчезающая в вертикальном положении.

Ортопноэ возникает в результате увеличения венозного притока крови к сердцу, наступающего в горизонтальном положении больного, и еще большего переполнения кровью малого круга кровообращения. Появление такого вида одышки, как правило, свидетельствует о значительных нарушениях гемодинамики в малом круге кровообращения и высоком давлении наполнения (или давлении “заклинивания” - см. ниже).

Непродуктивный сухой кашель у больных хронической СН нередко сопровождает одышку, появляясь либо в горизонтальном положении больного, либо после физической нагрузки. Кашель возникает вследствие длительного застоя крови в легких, набухания слизистой бронхов и раздражения соответствующих кашлевых рецепторов (“сердечный бронхит”). В отличие от кашля при бронхолегочных заболеваниях у больных с хронической СН кашель является непродуктивным и проходит после эффективного лечения сердечной недостаточности.

Сердечная астма (“пароксизмальная ночная одышка”) - это приступ интенсивной одышки, быстро переходящей в удушье. После проведения неотложной терапии приступ обычно купируется, хотя в тяжелых случаях удушье продолжает прогрессировать и развивается отек легких.

Сердечная астма и отек легких относятся к проявлениям острой СН и вызываются быстрым и значительным уменьшением сократимости ЛЖ, увеличением венозного притока крови к сердцу и застоя в малом круге кровообращения

Выраженная мышечная слабость, быстрое утомление и тяжесть в нижних конечностях, появляющиеся даже на фоне небольших физических нагрузок, также относятся к ранним проявлениям хронической СН. Они обусловлены нарушением перфузии скелетных мышц, причем не только за счет уменьшения величины сердечного выброса, но и в результате спастического сокращения артериол, вызванного высокой активностью САС, РААС, эндотелина и уменьшением расширительного резерва сосудов.

Сердцебиение. Ощущение сердцебиений чаще всего связано с характерной для больных с СН синусовой тахикардией, возникающей в результате активации САС или с увеличением пульсового АД. Жалобы на сердцебиение и перебои в работе сердца могут указывать на наличие у больных разнообразных нарушений сердечного ритма, например, на появление фибрилляции предсердий или частую экстрасистолию.

Отеки - одна из наиболее характерных жалоб больных с хронической СН.

Никтурия - увеличение диуреза в ночное время Следует иметь в виду, что в терминальной стадии хронической СН, когда сердечный выброс и почечный кровоток резко уменьшаются даже в покое, наблюдается значительное уменьшение суточного диуреза - олигурия.

К проявлениям хронической правожелудочковой (или бивентрикулярной) СН относятся также жалобы больных на боли или чувство тяжести в правом подреберье, связанные с увеличением печени и растяжением глиссоновой капсулы, а также на диспепсические расстройства (снижение аппетита, тошноту, рвоту, метеоризм и др.).

Набухание шейных вен является важным клиническим признаком повышения центрального венозного давления (ЦВД), т.е. давления в правом предсердии (ПП), и застоя крови в венозном русле большого круга кровообращения (рис. 2.13, см. цветную вклейку).

Исследование органов дыхания

Осмотр грудной клетки. Подсчет частоты дыхательных движений (ЧДД) позволяет ориентировочно оценить степень вентиляционных нарушений, обусловленных хроническим застоем крови в малом круге кровообращения. Во многих случаях одышка у больных ХСН носит характер тахипноэ , без отчетливого преобладания объективных признаков затруднения вдоха или выдоха. В тяжелых случаях, связанных со значительным переполнением легких кровью, что ведет к повышению ригидности легочной ткани, одышка может приобретать характер инспираторного диспноэ .

В случае изолированной правожелудочковой недостаточности, развившейся на фоне хронических обструктивных заболеваний легких (например, легочное сердце), одышка имеет экспираторный характер и сопровождается эмфиземой легких и другими признаками обструктивного синдрома (подробнее см. ниже).

В терминальной стадии ХСН нередко появляется апериодическое дыхание Чейна– Стокса , когда короткие периоды учащенного дыхания чередуются с периодами апноэ. Причиной появления такого типа дыхания является резкое снижение чувствительности дыхательного центра к СО 2 (углекислому газу), что связано с тяжелой дыхательной недостаточностью, метаболическим и дыхательным ацидозом и нарушением перфузии головного мозга у больных ХСН.

При резком повышении порога чувствительности дыхательного центра у больных ХСН дыхательные движения “инициируются” дыхательным центром только при необычно высокой концентрации СО 2 в крови, которая достигается лишь в конце 10–15-секундного периода апноэ. Несколько частых дыхательных движений приводят к снижению концентрации СО 2 до уровня ниже порога чувствительности, в результате чего период апноэ повторяется.

Артериальный пульс. Изменения артериального пульса у больных ХСН зависят от стадии сердечной декомпенсации, выраженности гемодинамических расстройств и наличия нарушений сердечного ритма и проводимости. В тяжелых случаях артериальный пульс частый (pulsus frequens ), нередко аритмичный (pulsus irregularis ), слабого наполнения и напряжения (pulsus parvus et tardus ). Уменьшение величины артериального пульса и его наполнения, как правило, указывают на значительное снижение УО и скорости изгнания крови из ЛЖ.

При наличии мерцательной аритмии или частой экстрасистолии у больных ХСН важно определить дефицит пульса (pulsus deficiens ). Он представляет собой разность между числом сердечных сокращений и частотой артериального пульса. Дефицит пульса чаще выявляется при тахисистолической форме мерцательной аритмии (см. главу 3) в результате того, что часть сердечных сокращений возникает после очень короткой диастолической паузы, во время которой не происходит достаточного наполнения желудочков кровью. Эти сокращения сердца происходят как бы “впустую” и не сопровождаются изгнанием крови в артериальное русло большого круга кровообращения. Поэтому число пульсовых волн оказывается значительно меньшим, чем количество сердечных сокращений. Естественно, при уменьшении сердечного выброса дефицит пульса возрастает, свидетельствуя о значительном снижении функциональных возможностей сердца.

Артериальное давление. В тех случаях, когда у больного ХСН до появления симптомов сердечной декомпенсации отсутствовала артериальная гипертензия (АГ), уровень АД по мере прогрессирования СН нередко снижается. В тяжелых случаях систолическое АД (САД) достигает 90–100 мм рт. ст., а пульсовое АД - около 20 мм рт. ст., что связано с резким снижением сердечного выброса.

Регуляция мозгового кровообращения осуществляется сложной системой, включающей интра- и экстрацеребральные механизмы. Эта система способна к саморегуляции (т.е. может поддерживать кровоснабжение головного мозга в соответствии с его функциональной и метаболической потребностью и тем самым сохранять постоянство внутренней среды), что осуществляется путем изменения просвета мозговых артерий. Эти гомеостатические механизмы, развившиеся в процессе эволюции, весьма совершенны и надежны. Среди них выделяют следующие основные механизмы саморегуляции.

Нервный механизм передает информацию о состоянии объекта регулирования посредством специализированных рецепторов, расположенных в стенках сосудов и в тканях. К ним, в частности, относятся механорецепторы, локализующиеся в кровеносной системе, сообщающие об изменениях внутрисосудистого давления (баро- и прессорецепторы), в том числе прессорецепторы каротидного синуса, при их раздражении расширяются мозговые сосуды; механорецепторы вен и мозговых оболочек, которые сигнализируют о степени их растяжения при увеличении кровенаполнения или объема мозга; хеморецепторы каротидного синуса (при их раздражении суживаются мозговые сосуды) и самой ткани мозга, откуда идет информация о содержании кислорода, углекислоты, о колебаниях рН и о других химических сдвигах в среде при накоплении продуктов метаболизма или биологически активных веществ, а также рецепторы вестибулярного аппарата, аортальной рефлексогенной зоны, рефлексогенные зоны сердца и коронарных сосудов, ряд проприорецепторов. Особенно велика роль синокаротидной зоны. Она оказывает влияние на мозговое кровообращение не только опосредовано (через общее АД), как это представлялось ранее, но и непосредственно. Денервация и новокаинизация этой зоны в эксперименте, устраняя сосудосуживающие влияния, ведет к расширению мозговых сосудов, к усилению кровоснабжения головного мозга, к повышению в нем напряжения кислорода.

Гуморальный механизм заключается в прямом воздействии на стенки сосудов-эффекторов гуморальных факторов (кислорода, углекислоты, кислых продуктов метаболизма, ионов К и др.) путем диффузии физиологически активных веществ в стенку сосудов. Так, мозговое кровообращение усиливается при уменьшении содержания кислорода и (или) увеличении содержания углекислого газа в крови и, наоборот, ослабляется, когда содержание газов в крови меняется в противоположном направлении. При этом происходит рефлекторная дилятация или констрикция сосудов в результате раздражения хеморецепторов соответствующих артерий мозга при изменении содержания в крови кислорода и углекислоты. Возможен и механизм аксонрефлекса.


Миогенный механизм реализуется на уровне сосудов-эффекторов. При их растяжении тонус гладких мышц возрастает, а при сокращении наоборот снижается. Миогенные реакции могут способствовать изменениям сосудистого тонуса в определенном направлении.

Разные механизмы регуляции действуют не изолировано, а в различных сочетаниях друг с другом. Система регулирования поддерживает постоянный кровоток в мозге на достаточном уровне и быстро изменяет его при воздействии различных «возмущающих» факторов.

Таким образом, понятие «сосудистые механизмы» включает структурные и функциональные особенности соответствующих артерий или их сегментов (локализацию в микроциркуляторной системе, калибр, строение стенок, реакции на различные воздействия), а также их функциональное поведение – специфическое участие в тех либо иных видах регуляции периферического кровообращения и микроциркуляции.

Выяснение структурно-функциональной организации сосудистой системы головного мозга позволило сформулировать концепцию о внутренних (автономных) механизмах регуляции мозгового кровообращения при различных возмущающих воздействиях. Согласно этой концепции, в частности, были выделены: «замыкательный механизм» магистральных артерий, механизм пиальных артерий, механизм регуляции оттока крови из венозных синусов мозга, механизм внутримозговых артерий. Суть их функционирования заключается в следующем.

«Замыкательный» механизм магистральных артерий поддерживает в мозге постоянство кровотока при изменениях уровня общего артериального давления. Это осуществляется путем активных изменений просвета мозговых сосудов – их сужения, увеличивающего сопротивление кровотоку при повышении общего АД и, наоборот, расширения, снижающего цереброваскулярное сопротивление при падении общего АД. Как констрикторные, так и дилятаторные реакции возникают рефлекторно с экстракраниальных прессорецепторов, либо с рецепторов самого мозга. Основными эффекторами в таких случаях являются внутренние сонные и позвоночные артерии. Благодаря активным изменениям тонуса магистральных артерий гасятся дыхательные колебания общего артериального давления, а также волны Траубе – Геринга, и тогда кровоток в сосудах мозга остается равномерным. Если же изменения общего АД очень значительны или механизм магистральных артерий несовершенен, вследствие чего нарушается адекватное кровоснабжение головного мозга, то наступает второй этап саморегуляции – включается механизм пиальных артерий, реагирующий аналогично механизму магистральных артерий. Весь этот процесс многозвеньевой. Основную роль в нем играет нейрогенный механизм, однако определенное значение имеют и особенности функционирования гладкомышечной оболочки артерии (миогенный механизм), а также чувствительность последней к различным биологически активным веществам (гуморальный механизм).

При венозном застое, обусловленном окклюзией крупных шейных вен, избыточное кровенаполнение сосудов головного мозга устраняется путем ослабления притока крови в его сосудистую систему вследствие констрикции всей системы магистральных артерий. В таких случаях регуляция происходит также рефлекторно. Рефлексы посылаются с механорецепторов венозной системы, мелких артерий и оболочек мозга (вено-вазальный рефлекс).

Система внутримозговых артерий представляет собой рефлексогенную зону, которая в условиях патологии дублирует роль синокаротидной рефлексогенной зоны.

Таким образом, согласно разработанной концепции, существуют механизмы, ограничивающие влияние общего АД на мозговой кровоток, корреляция между которыми во многом зависит от вмешательства саморегулирующихся механизмов, поддерживающих постоянство сопротивления мозговых сосудов (табл. 1). Однако саморегуляция возможна лишь в определенных пределах, ограниченных критическими величинами факторов, являющихся ее пусковыми механизмами (уровень системного АД, напряжения кислорода, углекислоты, а также рH вещества мозга и др.). В клинических условиях важно определить роль исходного уровня АД, его диапазона, в рамках которого мозговой кровоток сохраняет стабильность. Отношение диапазона этих изменений к исходному уровню давления (показатель саморегуляции мозгового кровотока) в известной мере определяет потенциальные возможности саморегуляции (высокий или низкий уровень саморгеуляции).

Нарушения саморегуляции мозгового кровообращения возникают в следующих случаях.

1. При резком снижении общего АД, когда градиент давления в кровеносной системе мозга уменьшается настолько, что не может обеспечить достаточный кровоток в мозге (при уровне систолического давления ниже 80 мм рт. ст.). Минимальный критический уровень системного АД равен 60 мм рт. ст. (при исходном – 120 мм рт. ст.). При его падении мозговой кровоток пассивно следует за изменением общего АД.

2. При остром значительном подъеме системного давления (выше 180 мм рт. ст.), когда нарушается миогенная регуляция, так как мышечный аппарат артерий мозга утрачивает способность противостоять повышению внутрисосудистого давления, в результате чего расширяются артерии, усиливается мозговой кровоток, что чревато «мобилизацией» тромбов и эмболией. Впоследствии изменяются стенки сосудов, а это ведет к отеку мозга и резкому ослаблению мозгового кровотока, несмотря на то, что системное давление продолжает оставаться на высоком уровне.

3. При недостаточном метаболическом контроле мозгового кровотока. Так, иногда после восстановления кровотока в ишемизированном участке мозга концентрация углекислоты снижается, но рН сохраняется на низком уровне вследствие метаболического ацидоза. В результате сосуды остаются расширенными, а мозговой кровоток – высоким; кислород утилизируется не в полной мере и оттекающая венозная кровь имеет красный цвет (синдром избыточной перфузии).

4. При значительном снижении интенсивности насыщения крови кислородом или увеличении напряжения углекислоты в мозге. При этом активность мозгового кровотока также меняется вслед за изменением системного АД.

При срывах механизмов саморегуляции артерии мозга утрачивают способность к сужению в ответ на повышение внутрисосудистого давления, пассивно расширяются, вследствие чего избыточное количество крови под высоким давлением направляется в мелкие артерии, капилляры, вены. В результате повышается проницаемость стенок сосудов, начинается выход белков, развивается гипоксия, возникает отек мозга.

Таким образом, нарушения мозгового кровообращения компенсируются до определенных пределов за счет местных регуляторных механизмов. Впоследствии в процесс вовлекается и общая гемодинамика. Однако даже при терминальных состояниях в течение нескольких минут за счет автономности мозгового кровообращения в мозге поддерживается кровоток, а напряжение кислорода падает медленнее, чем в других органах, так как нервные клетки способны поглощать кислород при таком низком парциальном давлении его в крови, при котором другие органы и ткани поглощать его не могут. По мере развития и углубления процесса все более нарушаются взаимоотношения между мозговым кровотоком и системной циркуляцией, иссякает резерв ауторегулирующих механизмов, и кровоток в мозге все больше начинает зависеть от уровня общего АД.

Таким образом, компенсация нарушений мозгового кровообращения осуществляется при помощи тех же, функционирующих в нормальных условиях, регуляторных механизмов, но более напряженных.

Для механизмов компенсации характерна двойственность: компенсация одних нарушений вызывает другие циркуляторные расстройства, например, при восстановлении кровотока в ткани, испытавшей дефицит кровоснабжения, в ней может развиться постишемическая гиперемия в виде избыточной перфузии, способствующей развитию постишемического отека мозга.

Конечной функциональной задачей системы мозгового кровообращения являются адекватное метаболическое обеспечение деятельности клеточных элементов мозга и своевременное удаление продуктов их обмена, т.е. процессы, протекающие в пространстве микрососуд – клетка. Все реакции мозговых сосудов подчинены этим главным задачам. Микроциркуляция в головном мозге имеет важную особенность: в соответствии со спецификой его функционирования активность отдельных областей ткани меняется почти независимо от других областей ее, поэтому микроциркуляция также меняется мозаично – в зависимости от характера функционирования мозга в тот или иной момент. Благодаря ауторегуляции перфузионное давление микроциркуляторных систем любых частей мозга менее зависит от центрального кровообращения в других органах. В мозге микроциркуляция усиливается при повышении уровня метаболизма и, наоборот. Те же механизмы функционируют и в условиях патологии, когда имеет место неадекватность кровоснабжения ткани. При физиологических и патологических условиях интенсивность кровотока в микроциркуляторной системе зависит от величины просвета сосудов и от реологических свойств крови. Однако регулирование микроциркуляции осуществляется в основном путем активных изменений ширины сосудов, в то же время при патологии важную роль играют также изменения текучести крови в микрососудах.

Патофизиология сердечно-сосудистой системы - наиважнейшая проблема современной медицины. Смертность от сердечно-сосудистых заболеваний в настоящее время выше, чем от злокачественных опухолей, травм и инфекционных болеваний, вместе взятых.

Возникновение этих заболеваний может быть связано как с наруше-нием функции сердца, так и (или) периферических сосудов. Однако, эти нарушения долго, а иногда и всю жизнь, могут не проявляться клинически. Так при вскрытиях было обнаружено, что около 4% лю-дей имеют пороки клапанов сердца, но только менее чем у 1% лиц заболевание проявилось клинически. Это объясняется включением разнообразных приспособительных механизмов, способных длительное время компенсировать нарушение в том или ином звене кровообраще-ния. Наиболее наглядно роль этих механизмов можно разобрать на примере пороков сердца.

Патофизиология кровообращения при пороках.

Пороки сердца (vitia cordis) - стойкие дефекты в строении сердца, могущие нарушить его функции. Они могут быть врожденными и приобретенными. Условно приобретенные пороки можно разделить на органические и функциональные. При органических пороках пора-жается непосредственно клапанный аппарат сердца. Чаще всего это связано с развитием ревматического процесса, реже - септического эндокардита, атеросклерозы, сифилитичекой инфекции, что приводит к склерозу и сморщиванию створок или к их сращению. В первом случае это ведет к их неполному смыканию (недостаточности клана-на), во втором - к сужению выходного отверстия (стенозу). Воз-можна и комбинация этих поражений, в таком случае говорят о ком-бинированных пороках.

Принято выделять и так называемые функциональные пороки кла-панов, которые возникают только в области атрио-вентрикулярных отверстий и только в форме клапанной недостаточности вследствие нарушения слаженного функционирования "комплекса" (фиброзное кольцо , хорды , папиллярные мышцы ) при неизменных или малоизме-ненных створках клапана. Клиницисты в подобном случае используют термин "относительная клапанная недостаточность" , которая может возникнуть в результате растяжения мышечного кольца атрио-вент-рикулярного отверстия до такой степени, что створки его прикрыть не могут, либо из-за уменьшения тонуса, дисфункции папиллярных мышц, что приводит к провисанию (пролапсу) клапанных створок.

При возникновении порока нагрузка на миокард существенно возрастает. При недостаточности клапанов сердце вынуждено посто-янно перекачивать больший, чем в норме объем крови,так как вследствие неполного смыкания клапанов часть крови, выброшенной из полости в период систолы, обратно возвращается в нее в период диастолы. При сужении выходного отверстия из полости сердца - стенозе - резко возрастает сопротивление оттоку крови, причем нагрузка увеличивается пропорционально четвертой степени радиуса отверстия - т. е. если диаметр отверстия уменьшается в 2 раза, то нагрузка на миокард возрастает в 16 раз. В этих уловиях, ра-ботая в обычном режиме, сердце не способно поддерживать должный минутный объем. Возникает угроза нарушения кровоснабжения орга-нов и тканей организма, причем при втором варианте нагрузки, эта опасность более реальна, поскольку работа сердца против повышен-ного сопротивления сопровождается значительно большим расходом энергии (работа напряжения), т.е. молекул аденозинтрифосфорной кислоты (АТФ), необходимых для преобразования химической энергии в механическую энергию сокращения и соответственно большим пот-реблением кислорода, так как основной путь получения энергии в миокарде - окислительное фосфорилирование (так, если работа сердца удвоилась за счет увеличения в 2 раза перекачиваемого объема, то потребление кислорода возрастает на 25%, если же ра-бота удвоилась за счет увеличения в 2 раза систолического сопро-тивления, то потребление миокардом кислорода увеличится на 200%).

Эта угроза отодвигается включением приспособительных механиз-мов, условно разделяемых на кардиальные (сердечные) и экстракар-диальные (внесердечные).

I. Кардиальные приспособительные механизмы. Их можно разделить на две группы: срочные и долговременные.

1.Группа срочных приспособительных механизмов, благодаря которым сердце может быстро повысить частоту и силу сокращений под влия-нием увеличившейся нагрузки.

Как известно, сила сокращений сердца регулируется поступлением ионов кальция через медленные потенциалзависимые каналы, откры-вающиеся при деполяризации клеточной мембраны под влиянием по-тенциала действия (ПД). (От длительности ПД и его величины зави-сит сопряжение возбуждения с сокращением). При увеличении силы и (или) длительности ПД увеличивается число открытых медленных кальциевых каналов и (или) удлиняется среднее время жизни их открытого состояния, что повышает вход ионов кальция за один сердечный цикл, увеличивая тем самым мощность сердечного сокра-щения. Ведущая роль этого механизма доказывается тем, что блока-да медленных кальциевых каналов разобщает процесс электромехани-ческого сопряжения, в результате чего сокращения не наступает, то есть сокращение разобщается с возбуждением, несмотря на нор-мальный потенциал действия ПД.

Вход внеклеточных ионов кальция, в свою очередь, стимулирует освобождение значительного количества ионов кальция из терми-нальных цистерн СПР в саркоплазму.("кальциевый залп", в резуль-тате которого концентрация кальция в саркоплазме увеличивается

Ионы кальция в саркомерах взаимодействуют с тропонином, в ре-зультате чего происходит серия конформационных преобразований ряда мышечных белков, которые приводят в итоге к взаимодействию актина с миозином и образованием актомиозиновых мостиков, следс-твием чего является сокращение миокарда.

Причем число образующихся актомиозиновых мостиков зависит не только от саркоплазматической концентрации кальция, но и от сродства тропонина к ионам кальция.

Увеличение числа мостиков приводит к снижению нагрузки на каждый отдельный мостик и повышению производительности работы, однако это увеличивает потребность сердца в кислороде, поскольку возрастает расход АТФ.

При пороках серда увеличение силы сердечных сокращений может быть связано:

1) с включением механизма тоногенной дилятации сердца (ТДС), вызванного растяжением мышечных волокон полости сердца за счет увеличения объема крови. Следствием такого растяжения является более сильное систолическое сокращение сердца (закон Франка - Старлинга). Это связано с увеличением продолжительности времени плато ПД, что переводит медленные кальциевые каналы в открытое состояние на более длительный промежуток времени (гетерометри-ческий механизм компенсации).

Второй механизм включается, когда увеличивается сопротивление изгнанию крови и резко увеличивается напряжение при сокращении мышцы, вследствие значительного повышения давления в полости сердца. Это сопровождается укорочением и увеличением амплитуды ПД. Причем повышение силы сердечных сокращений происходит не сразу, а увеличивается постепенно, с каждым последующим сокра-щением сердца, так как ПД с каждым сокращением увеличивается м укорачивается, в результате с каждым сокращением быстрее дости-гается тот порог, при котором медленные кальциевые каналы откры-ваются и кальций все в больших количествах входит в клетку, уве-личивая мощность сердечного сокращения до тех пор, пока она не достигнет уровня, необходимого для сохранения постоянства минут-ного объема (гомеометрический механизм компенсации).

Третий механизм включается при активации симпатоадреналовой системы. При угрозе снижения минутного объема и возникновении гиповолемии в ответ на стимуляцию барорецепторов синокаротидной и аортальной зоны ушка правого предсердия, возбуждается симпати-ческий отдел вегетативной нервной системы (ВНС). При ее возбуж-дении значительно увеличивается сила и скорость сердечных сокра-щений, уменьшается объем остаточной крови в полостях сердца за счет более полного изгнания ее во время систолы (при обычной нагрузке приблизительно 50% крови остается в желудочке в конце систолы), значительно также увеличивается скорость диастоличес-кого расслабления. Несколько увеличивается и сила диастолы, так как это энергозависимый процесс, связанный с активацией кальцие-вой АТФ-азы, "откачивающей" ионы кальция из саркоплазмы в СПР.

Основной эффект действия катехоламинов на миокард реализут-ся через возбуждение бета-1-адренорецепторов кардиомиоцитов, что приводит к быстрой стимуляции аденилатциклазы, в результате чего увеличивается количество циклического аденозинмонофосфата

(цАМФ), активирующего протеинкиназу, которая фосфорилирует регу-ляторные белки. Результатом этого является: 1) увеличение коли-чества медленных кальциевых каналов, увеличение среднего времени открытого сотояния канала, кроме того, под влиянием норадренали-на увеличивается ПД. Он также стимулирует синтез простагландина J 2 эндотелиальными клетками, который увеливает силу сердечного сокращения (через механизм цАМФ) и величину коронарного кровото-ка. 2) Через фосфорилирование тропонина и цАМФ, ослабляется связь ионов кальция с тропонином С. Через фосфорилирование белка ретикулума фосфоламбана повышается активность кальциевой АТФ-азы СПР, тем самым ускоряется расслабление миокарда и повышается эф-фективность венозного возврата в полости сердца, с последующим увеличением ударного объема (механизм Франка-Старлинга).

Четвертый механизм. При недостаточности силы сокращений по-вышается давление в предсердиях. Повышение давления в полости правого предсердия автоматически повышает частоту генерации им-пульсов в синопредсердном узле и, как следствие, приводит к уча-щению сердечных сокращений - тахикардии, которая также играет компенсаторную роль в поддержании минутного объема. Она может возникать рефлекторно при повышении давления в полых венах (реф-лекс Бейнбриджа), в ответ на повышение уровня кахехоламинов, ти-реоидных гормонов в крови.

Тахикардия - наименее выгодный механизм, так как она сопро-вождается большим расходом АТФ (укорочение диастолы).

Причем этот механизм включается тем раньше, чем хуже адапти-рован человек к физическим нагрузкам.

Важно подчеркнуть, что при тренировке изменяется нервная ре-гуляция сердца, что значительно расширяет диапазон его адаптации и благоприятствует выполнению больших нагрузок.

Второй кардиальный механизм компенсации - долговременный (эпигенетический) вид приспособления адаптации сердца, возни-кающий при длительной или постоянно увеличенной нагрузке. Имеет-ся в виду компенсаторная гипертрофия миокарда. В физиологических условиях гиперфункция не бывает длительной, а при пороках она может длиться многие годы. Важно подчеркнуть, что при физической нагрузке гипертрофия формируется на фоне увеличиенного МО и "ра-бочей гиперемии" сердца, в то время как при пороках это проис-ходит на фоне или неизменного или сниженного (аварийная стадия)

МО. В результате развития гипертрофии сердце посылает нормальное кол-во крови в аорту и легочные артерии, несмотря на порочность сердца.

Стадии течения компенсаторной гипертрофии миокарда.

1. Стадия формирования гипертрофии.

Увеличение нагрузки на миокард приводит к усилению интенсив-ности функционирования структур миокарда, то есть увеличение ко-личества функции, приходящейся на единицу массы сердца.

Если на сердце неожиданно падает большая нагрузка (что при пороках встречается редко), например, при инфаркте миокарда, от-рыве сосочковых мышц, разрыве сухожильных хорд, при резком подъ-еме артериального давления вследствие быстрого увеличения пери-ферического сосудистого сопротивления, то в этих случаях возни-кает хорошо выраженная кратковременная т.н. "аварийная" фаза первой стадии.

При такой перегрузке сердца количество поступающей в коро-нарные артерии крови снижается, энергии окислительного фосорли-рования для совершения серечных сокращений не хватает и присое-диняется расточительный анаэробный гликолиз. В результате в сердце снижается содержание гликогена, креатин-фосфата, накапли-ваются недоокисленные продукты (пировиноградная, молочная кисло-ты), возникает ацидоз, развиваются явления белковой и жировой дистрофии. Повышается содержание натрия в клетках и снижается содержание калия, возникает электрическая нестабильночсть мио-карда, что может провоцировать возникновение аритмии.

Дефицит АТФ ионов калия, ацидоз приводят к тому, что многие медленные кальциевые каналы становятся неактивируемыми при депо-ляризации и снижается сродство кальция к тропонину, в результате чего клетка сокращается слабее или вообще не сокращается, что может привести к появлению признаков сердечной недостаточности, возникает миогенная дилятация сердца, сопровождающаяся увеличе-нием остающегося во во время систолы в полостях сердца крови и переполнением вен. Повышение давления в полости правого предсер-дия и в полых венах прямо и рефлекторно вызывает тахикардию, ко-торая усугубляет обменные нарушения в миокарде. Поэтому расшире-

ние полостей сердца и тахикардия служат грозными симптомами на-чинающейся декомпенсации. Если организм не погибает, то очень быстро включается механизм, запускающий гипертрофию: в связи с гиперфункцией сердца, активацией симпатико-адреналовой системы и действием норадреналина на бета-1-адренорецепторы повышается концентрация цАМФ в кардиомиоцитах. Этому же способствует и вы-ход ионов кальция из саркоплазматического ретикулюма. В условиях ацидоза (скрытого или явного) и дефицита энергии усиливается влияние цАМФ на фосфорилирование ядерных энзимниых систем, спо-собных увеличить синтез белка, что можно зарегистрировать уже через час после перегрузки сердца. Причем в начале гипертрофии имеет место опережающее усиление синтеза белков митохондрий. Благодаря этому клетки обеспечивают себя энергией для продолже-ния функции в трудных условиях перегрузки и для синтеза других белков, в том числе и сократительных.

Прирост массы миокарда идет интенсивно, скорость его равна 1 мг/г массы сердца в час. (Например, после отрыва створки аор-тального клапана у человека масса седца увеличилась в 2,5 раза за две недели). Процесс гипертрофии продолжается до тех пор, по-ка интенсивность функционирования структур не нормализуется, то есть пока масса миокарда не придет в соответствие с увеличенной нагрузкой и исчезнет стимул, ее вызвавший.

При постепенном формировании порока эта стадия значительно растягивается во времени. Она развивается медлено, без "аварий-ной" фазы, исподволь, но с включением тех же механизмов.

Следует подчеркнуть, что формирование гипертрофии находится в прямой зависимости от нервных и гуморальных влияний. Она раз-вивается при обязательном участии соматотропина и вагусных влия-ний. Существенное положительное влияние на процесс гипертрофии оказывают катехоламины, которые через цАМФ индуцируют синтез нуклеиновых кислот и белков. Инсулин, тиреоидные гормоны, андро-гены также способствуют синтезу белков. Глюкокортикоиды усилива-ют распад белков в организме (но не в сердце или мозге), создают фонд свободных аминокислот и тем самым обеспечивают ресинтез белков в миокарде.

Активируя К-Nа-АТФ-азу, они способствуют поддержанию опти-мального уровня ионов калия и натрия, воды в клетках, сохраняют их возбудимость.

Итак гипертрофия закончилась и наступает II стадия ее течения.

II-ая стадия - стадия завершившейся гипертрофии.

В эту стадию наблюдается относительно устойчивая адаптация сердца к непрерывной нагрузке. Процесс потребления АТФ на едини-цу массы снижается, восстанавливаются энергетические ресурсы ми-окарда, исчезают явления дистрофии. Интенсивность функционирова-ния структур нормализуется, в то время как работа сердца и, сле-довательно, потребление кислорода остаются повышенными. Само увеличение толщины стенки создает затруднения для растяжения ка-меры сердца в период диастолы. Из-за гипертрофии снижается плот-ность входящего кальциевого тока и поэтому ПД, имея нормальную амплитуду, будет восприниматься СПР как сигнал с меньшей ампли-тудой и, следовательно, в меньшей степни будут активироваться сократительные белки.

В эту стадию нормальная амплитуда силы сокращения сохраняет-ся за счет увеличения длительности сократительного цикла, вследствие удлинения фазы плато потенциала действия, изменения изоферментного состава миозиновой АТФ-азы (с возрастанием доли изофермента V 3 , обеспечивающего самый медленный гидролиз АТФ), в результате снижается скорость укорочения миокардиальных волокон и увеличивается длительность сократительного ответа, сопособс-твуя поддержанию силы сокращения на обычном уровне, несмотря на уменьшение развития силы сокращения.

Менее благоприятно развивается гипертрофия в детском возрас-те, так как рост специализированной проводящей системы сердца отстает от роста его массы по мере прогрессирования гипертрофии.

При устранении препятствия, вызвавшего гипертрофию (опера-ция), происходит полная регрессия гипертрофических изменений в миокарде желудочков, однако сократимость обычно полностью не восстанавливается. Последнее может быть связано с тем, что изме-нения, происходящие в содинительной ткани (накопление коллагена) не подвергаются обратному развитию. Будет ли регрессия полной или частичной, зависит от степени гипертрофии, а также от воз-раста и состояния здоровья больного. Если сердце гипертрофирова-но умеренно, оно может долгие годы работать в режиме компенсато-рной гиперфункции и обеспечивать активную жизнь человека. Если же гипертрофия прогрессирует и масса сердца достигает 550 г и более (может достигнуть и 1000 г при норме 200 - 300 г), то в

этом случае все более проявляется действие неблагоприятных фак-торов, которые в конце концов приводят к "отрицанию отрицания", то есть к изнашиванию миокарда и наступлению III-ей стадии тече-ния гипертрофии.

Факторы, влияющие на сердце неблагоприятно и вызывающие "из-нашивание" миокарда:

1. При патологической гипертрофии ее формирование происходит на фоне сниженного или неизмененного минутного объема, то есть количество крови, приходящееся на единицу массы миокарда, снижа-ется.

2. Увеличение массы мышечных волокон не сопровождается адек-ватным увеличением количества капилляров (хотя они и шире обыч-ных), плотность капиллярной сети значительно снижается. Напри-мер, в норме приходится 4 тыс. капилляров на 1 мкм, при патоло-гической гипертрофии 2400.

3. В связи с гипертрофией снижается плотность иннервации, снижается концентрация норадреналина в миокарде (в 3 - 6 раз), снижается реактивность клеток к катехоламинам в связи с уменьше-нием площади адренорецепторов. Это приводит к уменьшению силы и скорости сердечных сокращений, скорости и полноты диастолы, сни-жению стимула к синтезу нуклеиновых кислот, поэтому ускоряется изнашивание миокарда.

4. Увеличение массы сердца происходит за счет утолщения каж-дого кардиомиоцита. Объем клетки при этом увеличивается в боль-шей степени, чем полщадь поверхности, несмотря на компенсаторные изменения в сарколемме (увеличение количества Т-тубул), то есть уменьшается отношение поверхности к объему. В норме оно равно 1:2, а при выраженной гипертрофии 1:5. В результате поступления глюкозы, кислорода и других энергетических субстратов на единицу массы снижается, снижается и плотность входящего кальциевого то-ка, что способствует снижению силы сердечных сокращений.

5. В силу тех же причин снижается отношение рабочей повер-хности СПР к массе саркоплазмы, что приводит к снижению эффек-тивности кальциевого "насоса", СПР и часть ионов кальция не от-качивается в продольные цистерны СПР).

Избыток кальция в саркоплазме приводит:

1) к контрактуре миофибрилл

2) падению эффективности использования кислорода из-за действия

избытка кальция на митохондрии (см. раздел "Повреждение клетки")

3) активируются фосфолипазы и протеазы, которые усугубляют пов-реждение клеток вплоть до их гибели.

Таким образом, по мере прогрессирования гипертрофии все бо-льше нарушается использование энергии. При этом, наряду с плохой сократимостью наблюдается затруднение расслабления мышечного во-локна, возникновение локальных контрактур, а в дальнейшем - дистрофия и гибель кардиомиоцитов. Это увеличиает нагрузку на оставшиеся, что приводит к изнашиванию генераторов энергии - ми-тохондрий и еще более выраженному снижению силы сердечнвых сок-ращений.

Таким образом, прогресирует кардиосклероз. Оставшиеся клетки не могут справиться с нагрузкой, развивается сердечная недоста-точность. Следует отметить, что и наличие компенсаторной физио-логической гипертрофии снижает устойчивость организма к раз-

личным видам гипоксии, длительным физическим и психическим наг-рузкам.

При снижении функциональных способностей миокарда включаются и экстракардиальные механизмы компенсации. Основная их задача - привести кровообращение в соответствие с возможностями миокарда.

Первая группа таких механизмов - это кардиоваскулярные (сер-дечно-сосудистые) и ангиоваскулярные (сосуд-сосудистые) рефлексы.

1. Депрессорно-разгрузочный рефлекс. Он возникает в ответ на повышение давления в полости левого желудочка, например, при стенозе устья аорты. При этом усиливается афферентная импульса-ция по блуждающим нервам и рефлекторно снижается тонус симпати-ческих нервов, что приводит к расширению артериол и вен большого круга. В результате уменьшения периферического сосудистого соп-ротивления (ПСС) и снижения венозного возврата к сердцу происхо-дит разгрузка сердца.

Одновременно возникает брадикардия, удлиняется период диас-толы и улучшается кровоснабжение миокарда.

2. Рефлекс, противоположный предыдущему - прессорный, возни-кает в ответ на понижение давления в аорте и левом желудочке. В ответ на возбуждение барорецепторов сино-каротидной зоны, дуги аорты возникает сужение артериальных и венозных сосудов, тахи-кардия, то есть в этом случае снижение минутного объема компен-сируется уменьшением емкости периферического сосудистого русла,

что позволяет поддерживать артериальное давление (АД) на адек-ватном уровне. Так как эта реакция не касается сосудов сердца, а сосуды головного мозга даже расширяются, то их кровоснабжение страдает в меньшей степени.

3. Рефлекс Китаева. (См. лекцию ВСО N2)

4. Разгрузочный рефлекс В.В.Парина - трехкомпонентный: бра-дикардия, снижение ПСС и венозного возврата.

Включение этих рефлексов приводит к уменьшению минутного объема, но уменьшает опасности отека легких (то есть развитию острой сердечной недостаточности (ОСД)).

Вторая группа экстракардиальных механизмов - компенсаторные изменения диуреза:

1. Активация ренин-ангиотензиновой системы (РАС) в ответ на гиповолемию приводит к задержке соли и воды почками, что приво-дит к увеличению объема циркулирующей крови, что вносит опреде-ленный вклад в поддержание минутного объема сердца.

2. Активация натрийуреза в ответ на повышение давления в предсердиях и секрецию натрийуретического гормона, что способс-твует снижению ПСС.

Если компенсация с помощью выше разобранных механизмов ока-зывается несовершенной, возникает циркуляторная гипоксия и всту-пает в действие третья группа экстракардиальных компенсаторных механизмов, о которых говорилось в лекции по дыханию, в разделе "Приспособительные механизмы при гипоксиях".