Свойства полупроводников. Сравнительная характеристика полупроводников и металлов

Темы кодификатора ЕГЭ : полупроводники, собственная и примесная проводимость полупроводников.

До сих пор, говоря о способности веществ проводить электрический ток, мы делили их на проводники и диэлектрики. Удельное сопротивление обычных проводников находится в интервале Ом·м; удельное сопротивление диэлектриков превышает эти величины в среднем на порядков: Ом·м.

Но существуют также вещества, которые по своей электропроводности занимают промежуточное положение между проводниками и диэлектриками. Это полупроводники : их удельное сопротивление при комнатной температуре может принимать значения в очень широком диапазоне Ом·м. К полупроводникам относятся кремний, германий, селен, некоторые другие химические элементы и соединения (Полупроводники чрезвычайно распространены в природе. Например, около 80% массы земной коры приходится на вещества, являющиеся полупроводниками). Наиболее широко примененяются кремний и германий .

Главная особенность полупроводников заключается в том, что их электропроводность резко увеличивается с повышением температуры. Удельное сопротивление полупроводника убывает с ростом температуры примерно так, как показано на рис. 1 .

Рис. 1. Зависимость для полупроводника

Иными словами, при низкой температуре полупроводники ведут себя как диэлектрики, а при высокой - как достаточно хорошие проводники. В этом состоит отличие полупроводников от металлов: удельное сопротивление металла, как вы помните, линейно возрастает с увеличением температуры.

Между полупроводниками и металлами имеются и другие отличия. Так, освещение полупроводника вызывает уменьшение его сопротивления (а на сопротивление металла свет почти не оказывает влияния). Кроме того, электропроводность полупроводников может очень сильно меняться при введении даже ничтожного количества примесей.

Опыт показывает, что, как и в случае металлов, при протекании тока через полупроводник не происходит переноса вещества. Стало быть, электрический ток в полупроводниках обусловлен движением электронов.

Уменьшение сопротивления полупроводника при его нагревании говорит о том, что повышение температуры приводит к увеличению количества свободных зарядов в полупроводнике. В металлах ничего такого не происходит; следовательно, полупроводники обладают иным механизмом электропроводности, чем металлы. И причина этого - различная природа химической связи между атомами металлов и полупроводников.

Ковалентная связь

Металлическая связь, как вы помните, обеспечивается газом свободных электронов, который, подобно клею, удерживает положительные ионы в узлах кристаллической решётки. Полупроводники устроены иначе - их атомы скрепляет ковалентная связь . Давайте вспомним, что это такое.

Электроны, находящиеся на внешнем электронном уровне и называемые валентными , слабее связаны с атомом, чем остальные электроны, которые расположены ближе к ядру. В процессе образования ковалентной связи два атома вносят «в общее дело» по одному своему валентному электрону. Эти два электрона обобществляются, то есть теперь принадлежат уже обоим атомам, и потому называются общей электронной парой (рис. 2 ).

Рис. 2. Ковалентная связь

Обобществлённая пара электронов как раз и удерживает атомы друг около друга (с помощью сил электрического притяжения). Ковалентная связь - это связь, существующая между атомами за счёт общих электронных пар . По этой причине ковалентная связь называется также парноэлектронной .

Кристаллическая структура кремния

Теперь мы готовы подробнее изучить внутреннее устройство полупроводников. В качестве примера рассмотрим самый распространённый в природе полупроводник - кремний. Аналогичное строение имеет и второй по важности полупроводник - германий.

Пространственная структура кремния представлена на рис. 3 (автор картинки - Ben Mills). Шариками изображены атомы кремния, а трубки, их соединяющие, - это каналы ковалентной связи между атомами.

Рис. 3. Кристаллическая структура кремния

Обратите внимание, что каждый атом кремния скреплён с четырьмя соседними атомами. Почему так получается?

Дело в том, что кремний четырёхвалентен - на внешней электронной оболочке атома кремния расположены четыре валентных электрона. Каждый из этих четырёх электронов готов образовать общую электронную пару с валентным электроном другого атома. Так и происходит! В результате атом кремния окружается четырьмя пристыковавшимися к нему атомами, каждый из которых вносит по одному валентному электрону. Соответственно, вокруг каждого атома оказывается по восемь электронов (четыре своих и четыре чужих).

Более подробно мы видим это на плоской схеме кристаллической решётки кремния (рис. 4 ).

Рис. 4. Кристаллическая решётка кремния

Ковалентные связи изображены парами линий, соединяющих атомы; на этих линиях находятся общие электронные пары. Каждый валентный электрон, расположенный на такой линии, большую часть времени проводит в пространстве между двумя соседними атомами.

Однако валентные электроны отнюдь не «привязаны намертво» к соответствующим парам атомов. Происходит перекрытие электронных оболочек всех соседних атомов, так что любой валентный электрон есть общее достояние всех атомов-соседей. От некоторого атома 1 такой электрон может перейти к соседнему с ним атому 2, затем - к соседнему с ним атому 3 и так далее. Валентные электроны могут перемещаться по всему пространству кристалла - они, как говорят, принадлежат всему кристаллу (а не какой-либо одной атомной паре).

Тем не менее, валентные электроны кремния не являются свободными (как это имеет место в металле). В полупроводнике связь валентных электронов с атомами гораздо прочнее, чем в металле; ковалентные связи кремния не разрываются при невысоких температурах. Энергии электронов оказывается недостаточно для того, чтобы под действием внешнего электрического поля начать упорядоченное движение от меньшего потенциала к большему. Поэтому при достаточно низких температурах полупроводники близки к диэлектрикам - они не проводят электрический ток.

Собственная проводимость

Если включить в электрическую цепь полупроводниковый элемент и начать его нагревать, то сила тока в цепи возрастает. Следовательно, сопротивление полупроводника уменьшается с ростом температуры. Почему это происходит?

При повышении температуры тепловые колебания атомов кремния становятся интенсивнее, и энергия валентных электронов возрастает. У некоторых электронов энергия достигает значений, достаточных для разрыва ковалентных связей. Такие электроны покидают свои атомы и становятся свободными (или электронами проводимости ) - точно так же, как в металле. Во внешнем электрическом поле свободные электроны начинают упорядоченное движение, образуя электрический ток.

Чем выше температура кремния, тем больше энергия электронов, и тем большее количество ковалентных связей не выдерживает и рвётся. Число свободных электронов в кристалле кремния возрастает, что и приводит к уменьшению его сопротивления.

Разрыв ковалентных связей и появление свободных электронов показан на рис. 5 . На месте разорванной ковалентной связи образуется дырка - вакантное место для электрона. Дырка имеет положительный заряд, поскольку с уходом отрицательно заряженного электрона остаётся нескомпенсированный положительный заряд ядра атома кремния.

Рис. 5. Образование свободных электронов и дырок

Дырки не остаются на месте - они могут блуждать по кристаллу. Дело в том, что один из соседних валентных электронов, «путешествуя» между атомами, может перескочить на образовавшееся вакантное место, заполнив дырку; тогда дырка в этом месте исчезнет, но появится в том месте, откуда электрон пришёл.

При отсутствии внешнего электрического поля перемещение дырок носит случайный характер, ибо валентные электроны блуждают между атомами хаотически. Однако в электрическом поле начинается направленное движение дырок. Почему? Понять это несложно.

На рис. 6 изображён полупроводник, помещённый в электрическое поле . В левой части рисунка - начальное положение дырки.

Рис. 6. Движение дырки в электрическом поле

Куда сместится дырка? Ясно, что наиболее вероятны перескоки «электрон > дырка» в направлении против линий поля (то есть к «плюсам», создающим поле). Один из таких перескоков показан в средней части рисунка: электрон прыгнул влево, заполнив вакансию, а дырка, соответственно, сместилась вправо. Следующий возможный скачок электрона, вызванный электрическим полем, изображён в правой части рисунка; в результате этого скачка дырка заняла новое место, расположенное ещё правее.

Мы видим, что дырка в целом перемещается по направлению линий поля - то есть туда, куда и полагается двигаться положительным зарядам. Подчеркнём ещё раз, что направленное движение дырки вдоль поля вызвано перескоками валентных электронов от атома к атому, происходящими преимущественно в направлении против поля.

Таким образом, в кристалле кремния имеется два типа носителей заряда: свободные электроны и дырки. При наложении внешнего электрического поля появляется электрический ток, вызванный их упорядоченным встречным движением: свободные электроны перемещаются противоположно вектору напряжённости поля , а дырки - в направлении вектора .

Возникновение тока за счёт движения свободных электронов называется электронной проводимостью , или проводимостью n-типа . Процесс упорядоченного перемещения дырок называется дырочной проводимостью ,или проводимостью p-типа (от первых букв латинских слов negativus (отрицательный) и positivus (положительный)). Обе проводимости - электронная и дырочная - вместе называются собственной проводимостью полупроводника.

Каждый уход электрона с разорванной ковалентной связи порождает пару «свободный электрон–дырка». Поэтому концентрация свободных электронов в кристалле чистого кремния равна концентрации дырок. Соответственно, при нагревании кристалла увеличивается концентрация не только свободных электронов, но и дырок, что приводит к возрастанию собственной проводимости полупроводника за счёт увеличения как электронной, так и дырочной проводимости.

Наряду с образованием пар «свободный электрон–дырка» идёт и обратный процесс: рекомбинация свободных электронов и дырок. А именно, свободный электрон, встречаясь с дыркой, заполняет эту вакансию, восстанавливая разорванную ковалентную связь и превращаясь в валентный электрон. Таким образом, в полупроводнике устанавливается динамическое равновесие : среднее число разрывов ковалентных связей и образующихся электронно-дырочных пар в единицу времени равно среднему числу рекомбинирующих электронов и дырок. Это состояние динамического равновесия определяет равновесную концентрацию свободных электронов и дырок в полупроводнике при данных условиях.

Изменение внешних условий смещает состояние динамического равновесия в ту или иную сторону. Равновесное значение концентрации носителей заряда при этом, естественно, изменяется. Например, число свободных электронов и дырок возрастает при нагревании полупроводника или при его освещении.

При комнатной температуре концентрация свободных электронов и дырок в кремнии приблизительно равно см. Концентрация же атомов кремния - порядка см. Иными словами, на атомов кремния приходится лишь один свободный электрон! Это очень мало. В металлах, например, концентрация свободных электронов примерно равна концентрации атомов. Соответственно, собственная проводимость кремния и других полупроводников при нормальных условиях мала по сравнению с проводимостью металлов .

Примесная проводимость

Важнейшей особенностью полупроводников является то, что их удельное сопротивление может быть уменьшено на несколько порядков в результате введения даже весьма незначительного количества примесей. Помимо собственной проводимости у полупроводника возникает доминирующая примесная проводимость . Именно благодаря этому факту полупроводниковые приборы нашли столь широкое применение в науке и технике.
Предположим, например, что в расплав кремния добавлено немного пятивалентного мышьяка . После кристаллизации расплава оказывается, что атомы мышьяка занимают места в некоторых узлах сформировавшейся кристаллической решётки кремния.

На внешнем электронном уровне атома мышьяка имеется пять электронов. Четыре из них образуют ковалентные связи с ближайшими соседями - атомами кремния (рис. 7 ). Какова судьба пятого электрона, не занятого в этих связях?

Рис. 7. Полупроводник n-типа

А пятый электрон становится свободным! Дело в том, что энергия связи этого «лишнего» электрона с атомом мышьяка, расположенным в кристалле кремния, гораздо меньше энергии связи валентных электронов с атомами кремния. Поэтому уже при комнатной температуре почти все атомы мышьяка в результате теплового движения остаются без пятого электрона, превращаясь в положительные ионы. А кристалл кремния, соответственно, наполняется свободными электронами, которые отцепились от атомов мышьяка.

Наполнение кристалла свободными электронами для нас не новость: мы видели это и выше, когда нагревался чистый кремний (без каких-либо примесей). Но сейчас ситуация принципиально иная: появление свободного электрона, ушедшего из атома мышьяка, не сопровождается появлением подвижной дырки . Почему? Причина та же - связь валентных электронов с атомами кремния гораздо прочнее, чем с атомом мышьяка на пятой вакансии, поэтому электроны соседних атомов кремния и не стремятся эту вакансию заполнить. Вакансия, таким образом, остаётся на месте, она как бы «приморожена» к атому мышьяка и не участвует в создании тока.

Таким образом, внедрение атомов пятивалентного мышьяка в кристаллическую решётку кремния создаёт электронную проводимость, но не приводит к симметричному появлению дырочной проводимости . Главная роль в создании тока теперь принадлежит свободным электронам, которые в данном случае называются основными носителями заряда.

Механизм собственной проводимости, разумеется, продолжает работать и при наличии примеси: ковалентные связи по-прежнему рвутся за счёт теплового движения, порождая свободные электроны и дырки. Но теперь дырок оказывается гораздо меньше, чем свободных электронов, которые в большом количестве предоставлены атомами мышьяка. Поэтому дырки в данном случае будут неосновными носителями заряда.

Примеси, атомы которых отдают свободные электроны без появления равного количества подвижных дырок, называются донорными . Например, пятивалентный мышьяк - донорная примесь. При наличии в полупроводнике донорной примеси основными носителями заряда являются свободные электроны, а неосновными - дырки; иными словами, концентрация свободных электронов намного превышает концентрацию дырок. Поэтому полупроводники с донорными примесями называются электронными полупроводниками , или полупроводниками n-типа (или просто n-полупроводниками ).

А насколько, интересно, концентрация свободных электронов может превышать концентрацию дырок в n-полупроводнике? Давайте проведём простой расчёт.

Предположим, что примесь составляет , то есть на тысячу атомов кремния приходится один атом мышьяка. Концентрация атомов кремния, как мы помним, порядка см.

Концентрация атомов мышьяка, соответственно, будет в тысячу раз меньше: см. Такой же окажется и концентрация свободных электронов, отданных примесью - ведь каждый атом мышьяка отдаёт по электрону. А теперь вспомним, что концентрация электронно-дырочных пар, появляющихся при разрывах ковалентных связей кремния, при комнатной температуре примерно равна см. Чувствуете разницу? Концентрация свободных электронов в данном случае больше концентрации дырок на порядков, то есть в миллиард раз! Соответственно, в миллиард раз уменьшается удельное сопротивление кремниевого полупроводника при введении столь небольшого количества примеси.

Приведённый расчёт показывает, что в полупроводниках n-типа основную роль действительно играет электронная проводимость. На фоне столь колоссального превосходства численности свободных электронов вклад движения дырок в общую проводимость пренебрежимо мал.

Можно, наоборот, создать полупроводник с преобладанием дырочной проводимости. Так получится, если в кристалл кремния внедрить трёхвалентную примесь - например, индий . Результат такого внедрения показан на рис. 8 .

Рис. 8. Полупроводник p-типа

Что происходит в этом случае? На внешнем электронном уровне атома индия расположены три электрона, которые формируют ковалентные связи с тремя окружающими атомами кремния. Для четвёртого соседнего атома кремния у атома индия уже не хватает электрона, и в этом месте возникает дырка.

И дырка эта не простая, а особенная - с весьма большой энергией связи. Когда в неё попадёт электрон из соседнего атома кремния, он в ней «застрянет навеки», ибо притяжение электрона к атому индия весьма велико - больше, чем к атомам кремния. Атом индия превратится в отрицательный ион, а в том месте, откуда электрон пришёл, возникнет дырка - но теперь уже обыкновенная подвижная дырка в виде разорванной ковалентной связи в кристаллической решётке кремния. Эта дырка обычным образом начнёт блуждать по кристаллу за счёт «эстафетной» передачи валентных электронов от одного атома кремния к другому.

И так, каждый примесный атом индия порождает дырку, но не приводит к симметричному появлению свободного электрона. Такие примеси, атомы которых захватывают «намертво» электроны и тем самым создают в кристалле подвижную дырку, называются акцепторными .

Трёхвалентный индий - пример акцепторной примеси.

Если в кристалл чистого кремния ввести акцепторную примесь, то число дырок, порождённых примесью, будет намного больше числа свободных электронов, возникших за счёт разрыва ковалентных связей между атомами кремния. Полупроводник с акцепторной примесью - это дырочный полупроводник , или полупроводник p-типа (или просто p-полупроводник ).

Дырки играют главную роль при создании тока в p-полупроводнике; дырки - основные носители заряда . Свободные электроны - неосновные носители заряда в p-полупроводнике. Движение свободных электронов в данном случае не вносит существенного вклада: электрический ток обеспечивается в первую очередь дырочной проводимостью.

p–n-переход

Место контакта двух полупроводников с различными типами проводимости (электронной и дырочной) называется электронно-дырочным переходом , или p–n-переходом . В области p–n-перехода возникает интересное и очень важное явление - односторонняя проводимость.

На рис. 9 изображён контакт областей p- и n-типа; цветные кружочки - это дырки и свободные электроны, которые являются основными (или неосновными) носителями заряда в соответствующих областях.

Рис. 9. Запирающий слой p–n-перехода

Совершая тепловое движение, носители заряда проникают через границу раздела областей.

Свободные электроны переходят из n-области в p-область и рекомбинируют там с дырками; дырки же диффундируют из p-области в n-область и рекомбинируют там с электронами.

В результате этих процессов в электронном полупроводнике около границы контакта остаётся нескомпенсированный заряд положительных ионов донорной примеси, а в дырочном полупроводнике (также вблизи границы) возникает нескомпенсированный отрицательный заряд ионов акцепторной примеси. Эти нескомпенсированные объёмные заряды образуют так называемый запирающий слой , внутреннее электрическое поле которого препятствует дальнейшей диффузии свободных электронов и дырок через границу контакта.

Подключим теперь к нашему полупроводниковому элементу источник тока, подав «плюс» источника на n-полупроводник, а «минус» - на p-полупроводник (рис. 10 ).

Рис. 10. Включение в обратном направлении: тока нет

Мы видим, что внешнее электрическое поле уводит основные носители заряда дальше от границы контакта. Ширина запирающего слоя увеличивается, его электрическое поле возрастает. Сопротивление запирающего слоя велико, и основные носители не в состоянии преодолеть p–n-переход. Электрическое поле позволяет переходить границу лишь неосновным носителям, однако ввиду очень малой концентрации неосновных носителей создаваемый ими ток пренебрежимо мал.

Рассмотренная схема называется включением p–n-перехода в обратном направлении . Электрического тока основных носителей нет; имеется лишь ничтожно малый ток неосновных носителей. В данном случае p–n-переход оказывается закрытым.

Теперь поменяем полярность подключения и подадим «плюс» на p-полупроводник, а «минус»-на n-полупроводник (рис. 11 ). Эта схема называется включением в прямом направлении .

Рис. 11. Включение в прямом направлении: ток идёт

В этом случае внешнее электрическое поле направлено против запирающего поля и открывает путь основным носителям через p–n-переход. Запирающий слой становится тоньше, его сопротивление уменьшается.

Происходит массовое перемещение свободных электронов из n-области в p-область, а дырки, в свою очередь, дружно устремляются из p-области в n-область.

В цепи возникает ток , вызванный движением основных носителей заряда (Теперь, правда, электрическое поле препятствует току неосновных носителей, но этот ничтожный фактор не оказывает заметного влияния на общую проводимость).

Односторонняя проводимость p–n-перехода используется в полупроводниковых диодах . Диодом называется устройство, проводящие ток в лишь одном направлении; в противоположном направлении ток через диод не проходит (диод, как говорят, закрыт). Схематическое изображение диода показано на рис. 12 .

Рис. 12. Диод

В данном случае диод открыт в направлении слева направо: заряды как бы текут вдоль стрелки (видите её на рисунке?). В направлении справа налево заряды словно упираются в стенку - диод закрыт.

Добавить сайт в закладки

Каковы основные свойства полупроводников?

По электрическому сопротивлению полупроводники занимают промежуточное место между проводниками и изоляторами. Полупроводниковые диоды и триоды имеют ряд преимуществ: малый вес и размеры, значительно больший срок службы, большую механическую прочность.

Рассмотрим основные свойства и характеристики полупровод­ников. В отношении их электрической проводимости полупровод­ники разделяются на 2 типа: с электронной и дырочной проводимостью.

Полупроводники с электронной проводимостью имеют так на­зываемые свободные электроны, которые слабо связаны с ядрами атомов. Если к этому полупроводнику приложить разность потенциалов, то свободные электроны будут двигаться поступательно - в определенном направлении, создавая таким образом электри­ческий ток. Поскольку в этих типах полупроводников электрический ток представляет собой перемещение отрицательно заря­женных частиц, они получили название проводников типа п (от слова negative - отрицательный).

Полупроводники с дырочной проводимостью называются полу­проводниками типа р (от слова positive - положительный). Прохождение электрического тока в этих типах полупроводников можно рассматривать как перемещение положительных зарядов. В полупроводниках с р-проводимостью нет свободных электронов; если атом полупроводника под влиянием каких-либо причин по­теряет 1 электрон, то он будет заряжен положительно.

Отсутствие одного электрона в атоме, вызывающее положи­тельный заряд атома полупроводника, назвали дыркой (это зна­чит, что образовалось свободное место в атоме). Теория и опыт показывают, что дырки ведут себя как элементарные положитель­ные заряды.

Дырочная проводимость состоит в том, что под влиянием при­ложенной разности потенциалов перемещаются дырки, что равно­сильно перемещению положительных зарядов.

В действительности, при дырочной проводимости происходит следующее. Предположим, что имеются 2 атома, один из которых снабжен дыркой (отсут­ствует 1 электрон на внешней орбите), а другой, находящий­ся справа, имеет все электроны на своих местах (назовем его ней­тральным атомом). Если к полупроводнику приложена разность потенциалов, то под влиянием электрического поля электрон из нейтрального атома, у которого все электроны на своих местах, переместится влево на атом, снабженный дыркой.

Благодаря этому атом, имевший дырку, становится нейтральным, а дырка пере­местилась вправо на атом, с которого ушел электрон. В полупровод­никовых приборах процесс «заполнения» дырки свободным электро­ном называется рекомбинацией. В результате рекомбинации исчезает и свободный электрон, и дырка, а создается нейтральный атом. И так перемещение дырок происходит в направлении, противоположном движению электронов.

В абсолютно чистом (собственном) полупроводнике под действием тепла или света электроны и дырки рождаются парами, поэтому число электронов и дырок в собственном полупроводнике одинаково.

Для создания полупроводников с резко выраженными концентрациями электронов или дырок чистые полупроводники снабжают примесями, образуя примесные полупроводники. Примеси бывают донорные, дающие электроны, и акцепторные, образующие дырки (т. е. отрывающие электроны от атомов). Следовательно, в полупроводнике с донорной примесью проводимость будет преимущественно электронной, или n - проводимостью. В этих полупроводниках основными носителями зарядов являются электроны, а неосновными - дырки. В полупроводнике с акцепторной примесью, наоборот, основными носителями зарядов являются дырки, а неосновными - электроны; это - полупроводники с р-проводимостью.

Основными материалами для изготовления полупроводниковых диодов и триодов служат германий и кремний; по отношению к ним донорами являются сурьма, фосфор, мышьяк; акцепторами - индий, галлий, алюминий, бор.

Рисунок 1. Расположение электрических зарядов в полупроводнике.

Примеси, которые обычно добавляются в кристаллический полупроводник, резко изменяют физическую картину прохождения электрического тока.

При образовании полупроводника с n-проводимостью в полу­проводник добавляется донорная примесь: например, в полупро­водник германий добавляется примесь сурьмы. Атомы сурьмы, являющиеся донорными, сообщают германию много свободных электронов, заряжаясь при этом положительно.

Таким образом, в полупроводнике n-проводимости, образован­ного примесью, имеются следующие виды электрических заря­дов:

  • подвижные отрицательные заряды (электроны), являющиеся основными носителями (как от донорной примеси, так и от соб­ственной проводимости);
  • подвижные положительные заряды (дырки) - неосновные носители, возникшие от собственной проводимости;
  • неподвижные положительные заряды - ионы донорной при­меси.

При образовании полупроводника с р-проводимостью в полупроводник добавляется акцепторная примесь: например, в полупроводник германий добавляется примесь индия. Атомы индия являющиеся акцепторными, отрывают от атомов германия элек­троны, образуя дырки. Сами атомы индия при этом заряжаются отрицательно.

Следовательно, в полупроводнике р-проводимости имеются сле­дующие виды электрических зарядов:

  • подвижные положительные заряды (дырки) - основные но­сители, возникшие от акцепторной примеси и от собственной про­водимости;
  • подвижные отрицательные заряды (электроны) - неоснов­ные носители, возникшие от собственной проводимости;
  • неподвижные отрицательные заряды - ионы акцепторной примеси.

На рис. 1 показаны пластинки р-германия (а) и n-германия (б) с расположением электрических зарядов.

В этой статье ну нет ничего экстраординарно важного и интересного, только ответ на простой вопрос для "чайников", какие основные свойства отличают полупроводники от металлов и диэлектриков?

Полупроводники - материалы (кристаллы, поликристаллические и аморфные материалы, элементы или соединения) с существованием запрещенной зоны (между зоной проводимости и валентной зоной).

Электронными полупроводниками называют кристаллы и аморфные вещества, которые по величине электропроводности занимают промежуточное положение между металлами (σ = 10 4 ÷10 6 Ом -1 ·см -1) и диэлектриками (σ = 10 -10 ÷10 -20 Ом -1 ·см -1). Однако приведённые граничные значения проводимости весьма условны.

Зонная теория позволяет сформулировать критерий, который даёт возможность разделить твёрдые тела на два класса - металлы и полупроводники (изоляторы). Металлы характеризуются наличием в валентной зоне свободных уровней, на которые могут переходить электроны, получающие дополнительную энергию, например, вследствие ускорения в электрическом поле. Отличительная особенность металлов заключается в том, что у них в основном, невозбуждённом состоянии (при 0 К) имеются электроны проводимости, т.е. электроны, которые участвуют в упорядоченном движении по действием внешнего электрического поля.

У полупроводников и изоляторов при 0 К валентная зона заселена полностью, а зона проводимости отделена от неё запрещённой зоной и не содержит носителей. Поэтому не слишком сильное электрическое поле не в состоянии усилить электроны, расположенные в валентной зоне, и перевести их в зону проводимости. Иными словами, такие кристаллы при 0 К должны быть идеальными изоляторами. При повышении температуры или облучении подобного кристалла электроны могут поглотить кванты тепловой или лучистой энергии, достаточные для перехода в зону проводимости. В валентной зоне при этом переходе появляются дырки, которые также могут участвовать в переносе электричества. Вероятность перехода электрона из валентной зоны в зону проводимости пропорциональна ( g / kT ), где Е g - ширина запрещённой зоны. При большой величине Е g (2-3 эВ) эта вероятность оказывается очень малой.

Таким образом, подразделение веществ на металлы и неметаллы имеет вполне определённую основу. В отличие от этого деление неметаллов на полупроводники и диэлектрики такой основы не имеет и является чисто условным.

Ранее считали, что к диэлектрикам можно отнести вещества с величиной запрещённой зоны Е g ≈ 2÷3 эВ, однако позже выяснилось, что многие из них являются типичными полупроводниками. Более того, было показано, что в зависимости от концентрации примесей или избыточных (сверх стехиометрического состава) атомов одного из компонентов один и тот же кристалл может быть и полупроводником, и изолятором. Это относится, например, к кристаллам алмаза, оксида цинка, нитрида галлия и т.д. Даже такие типичные диэлектрики как титанаты бария и стронция, а также рутил при частичном восстановлении приобретают свойства полупроводников, что связано с появлением в них избыточных атомов металлов.

Деление неметаллов на полупроводники и диэлектрики также имеет определённый смысл, поскольку известен целый ряд кристаллов, электронную проводимость которых не удается заметно повысить ни путём введения примесей, ни путём освещения или нагрева. Это связано либо с очень малым временем жизни фотоэлектронов, либо с существованием в кристаллах глубоких ловушек, либо с очень малой подвижностью электронов, т.е. с чрезвычайно низкой скоростью их дрейфа в электрическом поле.

Электропроводность пропорциональна концентрации n, заряду e и подвижности носителей заряда. Поэтому температурная зависимость проводимости различных материалов определяется температурными зависимостями указанных параметров. Для всех электронных проводников заряд е постоянен и не зависит от температуры. В большинстве материалов величина подвижности обычно слабо уменьшается с ростом температуры из-за увеличения интенсивности столкновений между движущимися электронами и фононами, т.е. из-за рассеяния электронов на колебаниях кристаллической решётки. Поэтому различное поведение металлов, полупроводников и диэлектриков связано в основном с концентрацией носителе заряда и её температурной зависимостью:

1) в металлах концентрация носителей заряда n велика и слабо изменяется при изменении температуры. Переменной величиной, входящей в уравнение для электропроводности, является подвижность. А поскольку подвижность слабо уменьшается с температурой, то также уменьшается и электропроводность;

2) в полупроводниках и диэлектриках n обычно экспоненциально растёт с температурой. Этот стремительный рост n вносит наиболее существенный вклад в изменение проводимости, чем уменьшение подвижности. Следовательно, электропроводность быстро увеличивается с повышением температуры. В этом смысле диэлектрики можно рассматривать как некоторый предельный случай, так как при обычных температурах величина n в этих веществах крайне мала. При высоких температурах проводимость отдельных диэлектриков достигает полупроводникового уровня из-за роста n . Наблюдается и обратное - при низких температурах некоторые полупроводники становятся диэлектриками.

Список литературы

  1. Вест А. Химия твердого тела. Ч.2 Пер. с англ. - М.: Мир, 1988. - 336 с.
  2. Современная кристаллография. Т.4. Физические свойства кристаллов. - М.: Наука, 1981.

Студенты 501 группы химического факультета: Беззубов С.И., Воробьева Н.А., Ефимов А.А.

Полупроводники - широкий класс веществ, характеризующийся значениями удельной электропроводности, лежащей в диапазоне между удельной элек-тропроводностью металлов и хороших диэлектриков, то есть эти вещества не могут быть отнесены как к диэлектрикам (так как не являются хорошими изоля-торами), так и к металлам (не являются хорошими проводниками электрического тока). К полупроводникам, например, относят такие вещества как германий, кремний, селен, теллур, а также некоторые оксиды, сульфиды и сплавы металлов.

Свойства:

1) С повышением температуры удельное сопротивление полупроводников уменьшается, в отличие от металлов, у которых удельное сопротивление с повышением температуры увеличивается. Причем как правило в широком интервале температур возрастание это происходит экспоненционально. Удельное сопротивление полупроводниковых кристаллов может также уменьшаться при воздействии света или сильных электронных полей.

2) Свойство односторонней проводимости контакта двух полупроводников. Именно это свойство используется при создании разнообразных полупроводни-ковых приборов: диодов, транзисторов, тиристоров и др.

3) Контакты различных полупроводников в определенных условиях при осве-щении или нагревании являются источниками фото - э. д. с. или, соответственно, термо - э. д. с.

Полупроводники отличаются от других классов твердых тел многими специфическими особенностями, главнейшими из которых являются :

1) положительный температурный коэффициент электропроводности, то есть с повышением температуры электропроводность полупроводников растет;

2) удельная проводимость полупроводников меньше, чем у металлов, но больше, чем у изоляторов;

3) большие значения термоэлектродвижущей силы по сравнению с металлами;

4) высокая чувствительность свойств полупроводников к ионизирующим излучениям;

5) способность резкого изменения физических свойств под влиянием ничтожно малых концентраций примесей;

6) эффект выпрямления тока или неомическое поведение на контактах.

3. Физические процессы в p-n – переходе.

Основным элементом большинства полупроводниковых приборов является электронно-дырочный переход (р-n -переход), представляющий собой переходный слой между двумя областями полупроводника, одна из которых имеет электронную электропроводность, а другая - дырочную.

Образование p-n перехода. P-n переход в равновесном состоянии

Рассмотрим подробнее процесс образования p-n перехода. Равновесным называют такое состояние перехода, когда отсутствует внешнее напряжение. Напомним, что в р -области имеются два вида основных носителей заряда: неподвижные отрицательно заряженные ионы атомов акцепторной примеси и свободные положительно заряженные дырки; а в n -области имеются также два вида основных носителей заряда: неподвижные положительно заряженные ионы атомов акцепторной примеси и свободные отрицательно заряженные электроны.

До соприкосновения p и n областей электроны дырки и ионы примесей распределены равномерно. При контакте на границе p иn областей возникает градиент концентрации свободных носителей заряда и диффузия. Под действием диффузии электроны из n -области переходит в p и рекомбинирует там с дырками. Дырки из р -области переходят в n -область и рекомбинируют там с электронами. В результате такого движения свободных носителей заряда в пограничной области их концентрация убывает почти до нуля и в тоже время в р области образуется отрицательный пространственный заряд ионов акцепторной примеси, а в n -области положительный пространственный заряд ионов донорной примеси. Между этими зарядами возникает контактная разность потенциалов φ к и электрическое поле Е к , которое препятствует диффузии свободных носителей заряда из глубины р- иn- областей через р-n- переход. Таким образом область, объединённая свободными носителями заряда со своим электрическим полем и называется р-n- переходом.

P-n -переход характеризуется двумя основными параметрами:

1. Высота потенциального барьера . Она равна контактной разности потенциалов φ к . Это разность потенциалов в переходе, обусловленная градиентом концентрации носителей заряда. Это энергия, которой должен обладать свободный заряд чтобы преодолеть потенциальный барьер:

где k – постоянная Больцмана; е – заряд электрона; Т – температура; N а и N Д – концентрации акцепторов и доноров в дырочной и электронной областях соответственно; р р и р n – концентрации дырок в р- и n- областях соответственно; n i – собственная концентрация носителей заряда в нелигированном полупроводнике,  т =кТ/е - температурный потенциал. При температуре Т =27 0 С  т =0.025В, для германиевого перехода  к =0,6В, для кремниевого перехода к =0,8В.

2. Ширина p-n-перехода (рис.1) – это приграничная область, обеднённая носителями заряда, которая располагается в p и n областях: l p-n = l p + l n :

Отсюда ,

где ε – относительная диэлектрическая проницаемость материала полупроводника; ε 0 - диэлектрическая постоянная свободного пространства.

Толщина электронно-дырочных переходов имеет порядок (0,1-10)мкм. Если , то и p-n -переход называется симметричным, если , то и p-n -переход называется несимметричным, причём он в основном располагается в области полупроводника с меньшей концентрацией примеси.

В равновесном состоянии (без внешнего напряжения) через р-n переход движутся два встречных потока зарядов (протекают два тока). Это дрейфовый ток неосновных носителей заряда и диффузионный ток, который связан с основными носителями заряда. Так как внешнее напряжение отсутствует, и тока во внешней цепи нет, то дрейфовый ток и диффузионный ток взаимно уравновешиваются и результирующий ток равен нулю

I др + I диф = 0.

Это соотношение называют условие динамического равновесия процессов диффузии и дрейфа в изолированном (равновесном) p-n -переходе.

Поверхность, по которой контактируют p и n области называется металлургической границей. Реально она имеет конечную толщину - δ м . Если δ м << l p-n , то p-n -переход называют резким. Если δ м >>l p-n , то p-n -переход называют плавным.

Р-n переход при внешнем напряжении, приложенном к нему

Внешнее напряжение нарушает динамическое равновесие токов в p-n -переходе. P-n -переход переходит в неравновесное состояние. В зависимости от полярности напряжения приложенного к областям в p-n -перехода возможно два режима работы.

1) Прямое смещение p-n перехода . Р-n- переход считается смещённым в прямом направлении, если положительный полюс источника питания подсоединен к р -области, а отрицательный к n -области (рис.1.2)

При прямом смещении, напряжения  к и U направлены встречно, результирующее напряжение на p-n -переходе убывает до величины  к - U . Это приводит к тому, что напряженность электрического поля убывает и возобновляется процесс диффузии основных носителей заряда. Кроме того, прямое смещении уменьшает ширину p-n перехода, т.к. l p-n ≈ ( к – U) 1/2 . Ток диффузии, ток основных носителей заряда, становится много больше дрейфового. Через p-n -переход протекает прямой ток

I р-n =I пр =I диф +I др I диф .

При протекании прямого тока основные носители заряда р-области переходят в n-область, где становятся неосновными. Диффузионный процесс введения основных носителей заряда в область, где они становятся неосновными, называется инжекцией , а прямой ток – диффузионным током или током инжекции. Для компенсации неосновных носителей заряда накапливающихся в p и n-областях во внешней цепи возникает электронный ток от источника напряжения, т.е. принцип электронейтральности сохраняется.

При увеличении U ток резко возрастает, - температурный потенциал, и может достигать больших величин т.к. связан с основными носителями концентрация которых велика.

2) Обратное смещение , возникает когда к р -области приложен минус, а к n -области плюс, внешнего источника напряжения (рис.1.3).

Такое внешнее напряжение U включено согласно  к . Оно: увеличивает высоту потенциального барьера до величины  к + U ; напряженность электрического поля возрастает; ширина p-n перехода возрастает, т.к. l p-n ≈( к + U) 1/2 ; процесс диффузии полностью прекращается и через p-n переход протекает дрейфовый ток, ток неосновных носителей заряда. Такой ток p-n -перехода называют обратным, а поскольку он связан с неосновными носителями заряда, которые возникают за счет термогенерации то его называют тепловым током и обозначают - I 0 , т.е.

I р-n =I обр =I диф +I др I др = I 0 .

Этот ток мал по величине т.к. связан с неосновными носителями заряда, концентрация которых мала. Таким образом, p-n перехода обладает односторонней проводимостью.

При обратном смещении концентрация неосновных носителей заряда на границе перехода несколько снижается по сравнению с равновесной. Это приводит к диффузии неосновных носителей заряда из глубины p и n -областей к границе p-n перехода. Достигнув ее неосновные носители попадают в сильное электрическое поле и переносятся через p-n переход, где становятся основными носителями заряда. Диффузия неосновных носителей заряда к границе p-n перехода и дрейф через него в область, где они становятся основными носителями заряда, называется экстракцией . Экстракция и создает обратный ток p-n перехода – это ток неосновных носителей заряда.

Величина обратного тока сильно зависит: от температуры окружающей среды, материала полупроводника и площади p-n перехода.

Температурная зависимость обратного тока определяется выражением , где - номинальная температура, - фактическая температура, - температура удвоения теплового тока .

Тепловой ток кремниевого перехода много меньше теплового тока перехода на основе германия (на 3-4 порядка). Это связано с  к материала.

С увеличением площади перехода возрастает его обьем, а следовательно возрастает число неосновных носителей появляющихся в результате термогенерации и тепловой ток.

Итак, главное свойство p-n -перехода – это его односторонняя проводимость.

4. Вольтамперная характеристика p-n – перехода.

Получим вольт-амперную характеристику p-n перехода. Для этого запишем уравнение непрерывности в общем виде:

Будем рассматривать стационарный случай dp/dt = 0.

Рассмотрим ток в квазинейтральном объеме полупроводника n-типа справа от обедненной области p-n перехода (x > 0). Темп генерации G в квазинейтральном объеме равен нулю: G = 0. Электрическое поле E тоже равно нулю: E = 0. Дрейфовая компонента тока также равна нулю: I E = 0, следовательно, ток диффузионный . Темп рекомбинации R при малом уровне инжекции описывается соотношением:

Воспользуемся следующим соотношением, связывающим коэффициент диффузии, длину диффузии и время жизни неосновных носителей: Dτ = L p 2 .

С учетом отмеченных выше допущений уравнение непрерывности имеет вид:

Граничные условия для диффузионного уравнения в p-n переходе имеют вид:

Решение дифференциального уравнения (2.58) с граничными условиями (*) имеет вид:

Соотношение (2.59) описывает закон распределения инжектированных дырок в квазинейтральном объеме полупроводника n-типа для электронно-дырочного перехода (рис. 2.15). В токе p-n перехода принимают участие все носители, пересекшие границу ОПЗ с квазинейтральным объемом p-n перехода. Поскольку весь ток диффузионный, подставляя (2.59) в выражение для тока, получаем (рис. 2.16):

Соотношение (2.60) описывает диффузионную компоненту дырочного тока p-n перехода, возникающую при инжекции неосновных носителей при прямом смещении. Для электронной компоненты тока p-n перехода аналогично получаем:

При V G = 0 дрейфовые и диффузионные компоненты уравновешивают друг друга. Следовательно, .

Полный ток p-n перехода является суммой всех четырех компонент тока p-n перехода:

Выражение в скобках имеет физический смысл обратного тока p-n перехода. Действительно, при отрицательных напряжениях V G < 0 ток дрейфовый и обусловлен неосновными носителями. Все эти носители уходят из цилиндра длиной L n со скоростью L n /τ p . Тогда для дрейфовой компоненты тока получаем:

Рис. 2.15. Распределение неравновесных инжектированных из эмиттера носителей по квазинейтральному объему базы p-n перехода

Нетрудно видеть, что это соотношение эквивалентно полученному ранее при анализе уравнения непрерывности.

Если требуется реализовать условие односторонней инжекции (например, только инжекции дырок), то из соотношения (2.61) следует, что нужно выбрать малое значение концентрации неосновных носителей n p0 в p-области. Отсюда следует, что полупроводник p-типа должен быть сильно легирован по сравнению с полупроводником n-типа: N A >> N D . В этом случае в токе p-n перехода будет доминировать дырочная компонента (рис. 2.16).

Рис. 2.16. Токи в несимметричном p-n nереходе при прямом смещении

Таким образом, ВАХ p-n перехода имеет вид:

Плотность тока насыщения J s равна:

ВАХ p-n перехода, описываемая соотношением (2.62), приведена на рисунке 2.17.

Рис. 2.17. Вольт-амперная характеристика идеального p-n перехода

Как следует из соотношения (2.16) и рисунка 2.17, вольт-амперная характеристика идеального p-n перехода имеет ярко выраженный несимметричный вид. В области прямых напряжений ток p-n перехода диффузионный и экспоненциально возрастает с ростом приложенного напряжения. В области отрицательных напряжений ток p-n перехода - дрейфовый и не зависит от приложенного напряжения.

5. Емкость p-n – перехода.

Любая система, в которой при изменении потенциала φ меняется электрический заряд Q, обладает емкостью. Величина емкости С определяется соотношением: .

Для p-n перехода можно выделить два типа зарядов: заряд в области пространственного заряда ионизованных доноров и акцепторов Q B и заряд инжектированных носителей в базу из эмиттера Q p . При различных смещениях на p-n переходе при расчете емкости будет доминировать тот или иной заряд. В связи с этим для емкости p-n перехода выделяют барьерную емкость C B и диффузионную емкость C D .

Барьерная емкость C B - это емкость p-n перехода при обратном смещении V G < 0, обусловленная изменением заряда ионизованных доноров в области пространственного заряда.

Величина заряда ионизованных доноров и акцепторов Q B на единицу площади для несимметричного p-n перехода равна:

Дифференцируя выражение (2.65), получаем:

Из уравнения (2.66) следует, что барьерная емкость C B представляет собой емкость плоского конденсатора, расстояние между обкладками которого равно ширине области пространственного заряда W. Поскольку ширина ОПЗ зависит от приложенного напряжения V G , то и барьерная емкость также зависит от приложенного напряжения. Численные оценки величины барьерной емкости показывают, что ее значение составляет десятки или сотни пикофарад.

Диффузионная емкость C D - это емкость p-n перехода при прямом смещении V G > 0, обусловленная изменением заряда Q p инжектированных носителей в базу из эмиттера Q p .

Зависимость барьерной емкости С B от приложенного обратного напряжения V G используется для приборной реализации. Полупроводниковый диод, реализующий эту зависимость, называется варикапом. Максимальное значение емкости варикап имеет при нулевом напряжении V G . При увеличении обратного смещения емкость варикапа уменьшается. Функциональная зависимость емкости варикапа от напряжения определяется профилем легирования базы варикапа. В случае однородного легирования емкость обратно пропорциональна корню из приложенного напряжения V G . Задавая профиль легирования в базе варикапа N D (x), можно получить различные зависимости емкости варикапа от напряжения C(V G) - линейно убывающие, экспоненциально убывающие.

6. Полупроводниковые диоды: классификация, особенности конструкции, условные обозначения и маркировка.

Полупроводниковый диод - полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n -перехода.

Полупроводниковые приборы, обладающие рядом свойств, которые делают их применение предпочтительным перед вакуумными приборами, все более широко используются в электронной технике. В последние годы, характеризующиеся прогрессом в полупроводниковой электронике, разрабатываются приборы на новых физических принципах.

К полупроводникам относят многие химические элементы, такие, как кремний, германий, индий, фосфор и др., большинство оксидов, сульфидов, селенидов и теллуридов, некоторые сплавы, ряд минералов. По словам академика А. Ф. Иоффе, "полупроводники - это почти весь окружающий нас неорганический мир".

Полупроводники бывают кристаллические, аморфные и жидкие. В полупроводниковой технике обычно используют только кристаллические полупроводники (монокристаллы с примесями не более одного атома примеси на 1010 атомов основного вещества). Обычно к полупроводникам относят вещества, по удельной электрической проводимости занимающие промежуточное положение между металлами и диэлектриками (отсюда происхождение их названия). При комнатной температуре удельная электрическая проводимость их составляет от 10-8 до 105 См/м (для металлов - 106-108 См/м, для диэлектриков - 10-8-10-13 См/м). Основная особенность полупроводников - возрастание удельной электрической проводимости при повышении температуры (для металлов она падает). Электропроводность полупроводников значительно зависит от внешних воздействий: нагревания, облучения, электрического и магнитного полей, давления, ускорения, а также от содержания даже незначительного количества примесей. Свойства полупроводников хорошо поясняются с помощью зонной теории твердого тела.

Атомы всех веществ состоят из ядра и электронов, движущихся по замкнутой орбите вокруг ядра. Электроны в атоме группируются в оболочки. У основных полупроводников, используемых для создания полупроводниковых приборов - кремния и германия, кристаллическая решетка тетраэдрическая (имеет форму правильной треугольной пирамиды) (рис. 16.1). Проекция структуры Ge на плоскость показана на рис. 16.2. Каждый валентный электрон, т. е. электрон, находящийся на внешней, незаполненной, оболочке атома, в кристалле принадлежит не только своему, но и ядру соседнего атома. Все атомы в кристаллической решетке расположены на одинаковом расстоянии друг от друга и связаны ковалентными связями (ковалентной называется связь между парой валентных электронов двух атомов, на рис. 16.2 она показана двумя линиями). Эти связи являются прочными; чтобы их разорвать, нужно извне приложить энергию.

Энергия электрона W дискретна, или квантована, поэтому электрон может двигаться только по той орбите, которая соответствует его энергии. Возможные значения энергии электрона можно представить на диаграмме энергетическими уровнями (рис. 16.3). Чем более удалена орбита от ядра, тем больше энергия электрона и тем более высок его энергетический уровень. Энергетические уровни разделены зонами II, соответствующими запрещенной энергии для электронов (запрещенные зоны). Так как в твердом теле соседние атомы находятся очень близко друг от друга, это вызывает смещение и расщепление энергетических уровней, в результате чего образуются энергетические зоны, называемые разрешенными (I, III, IV на рис. 16.3). Ширина разрешенных зон обычно равна нескольким электрон-вольт. В энергетической зоне число разрешенных уровней равно числу атомов в кристалле. Каждая разрешенная зона занимает определенную область энергии и характеризуется минимальным и максимальным уровнями энергии, которые называются соответственно дном и потолком зоны.

Разрешенные зоны, в которых электроны отсутствуют, называются свободными (I). Свободная зона, в которой при температуре 0 К электронов нет, а при более высокой температуре они могут в ней находиться, называется зоной проводимости.

Она находится выше валентной зоны (III) - верхней из заполненных зон, в которых все энергетические уровни заняты электронами при температуре 0 К.

В зонной теории подразделение твердых тел на металлы, полупроводники и диэлектрики основано на ширине запрещенной зоны между валентной зоной и зоной проводимости и степени заполнения разрешенных энергетических зон (рис. 16.4). Ширина запрещенной зоны ΔWa называется энергией активации собственной электропроводности. Для металла ΔWa = 0 (рис. 16.4, а); условно при ΔWa ≤ 2 эВ кристалл является полупроводником (рис. 16.4,6), при ΔWa ≥ 2 эВ - диэлектриком (рис. 16.4, в). Так как у полупроводников значение ΔWa сравнительно невелико, то достаточно сообщить электрону энергию, сравнимую с энергией теплового движения, чтобы он перешел из валентной зоны в зону проводимости. Этим объясняется особенность полупроводников - увеличение электропроводности при повышении температуры.

Электропроводность полупроводников. Собственная электропроводность. Для того чтобы вещество обладало электропроводностью, оно должно содержать свободные носители заряда. Такими носителями заряда в металлах являются электроны. В полупроводниках - электроны и дырки.

Рассмотрим электропроводность собственных полупроводников (i-тип), т. е. таких веществ, в которых не содержатся примеси и нет структурных дефектов кристаллической решетки (пустых узлов, сдвигов решетки и др.) При температуре 0 К в таком полупроводнике свободных носителей заряда нет. Однако с повышением температуры (или при другом энергетическом воздействии, например освещении) часть ковалентных связей может быть разорвана и валентные электроны, став свободными, могут уйти от своего атома (рис. 16.5). Потеря электрона превращает атом в положительный ион. В связях на том месте, где раньше был электрон, появляется свободное ("вакантное") место - дырка. Заряд дырки положительный и по абсолютному значению равен заряду электрона.

Свободное место - дырку - может заполнить валентный электрон соседнего атома, на месте которого в ковалентной связи образуется новая дырка, и т. д. Таким образом, одновременно с перемещением валентных электронов будут перемещаться и дырки. При этом следует иметь в виду, что в кристаллической решетке атомы "жестко" закреплены в узлах. Уход электрона из атома приводит к ионизации, а последующее перемещение дырки означает поочередную ионизацию "неподвижных" атомов. Если электрическое поле отсутствует, электроны проводимости совершают хаотическое тепловое движение. Если полупроводник поместить во внешнее электрическое поле, то электроны и дырки, продолжая участвовать в хаотическом тепловом движении, начнут перемещаться (дрейфовать) под действием поля, что и создаст электрический ток. При этом электроны перемещаются против направления электрического поля, а дырки, как положительные заряды,- по направлению поля. Электропроводность полупроводника, возникающая за счет нарушения ковалентных связей, называется собственной электропроводностью.

Электропроводность полупроводников может быть объяснена и с помощью зонной теории. В соответствии с ней все энергетические уровни валентной зоны при температуре 0 К заняты электронами. Если электронам сообщить извне энергию, превышающую энергию активации ΔWa, то часть валентных электронов перейдет в зону проводимости, где они станут свободными, или электронами проводимости. Вследствие ухода электронов из валентной зоны в ней образуются дырки, число которых, естественно, равно числу ушедших электронов. Дырки могут быть заняты электронами, энергия которых соответствует энергии уровней валентной зоны. Следовательно, в валентной зоне перемещение электронов вызывает перемещение в противоположном направлении дырок. Хотя в валентной зоне перемещаются электроны, обычно удобнее рассматривать движение дырок.

Процесс образования пары "электрон проводимости - дырка проводимости" называется генерацией пары носителей заряда (1 на рис. 16.6). Можно сказать, что собственная электропроводность полупроводника - это электропроводность, вызванная генерацией пар "электрон проводимости - дырка проводимости". Образовавшиеся электронно-дырочные пары могут исчезнуть, если дырка заполняется электроном: электрон станет несвободным и потеряет возможность перемещения, а избыточный положительный заряд иона атома окажется нейтрализованным. При этом одновременно исчезают и дырка, и электрон. Процесс воссоединения электрона и дырки называется рекомбинацией (2 на рис. 16.6). Рекомбинацию в соответствии с зонной теорией можно рассматривать как переход электронов из зоны проводимости на свободные места в валентную зону. Отметим, что переход электронов с более высокого энергетического уровня на более низкий сопровождается высвобождением энергии, которая либо излучается в виде квантов света (фотоны), либо передается кристаллической решетке в виде тепловых колебаний (фононы). Среднее время существования пары носителей заряда называется временем жизни носителей заряда. Среднее расстояние, которое проходит носитель заряда за время жизни, называется диффузионной длиной носителя заряда (Lр, - для дырок, Ln - для электронов).

При постоянной температуре (и в отсутствие других внешних воздействий) кристалл находится в состоянии равновесия: число генерированных пар носителей заряда равно числу рекомбинированных пар. Число носителей заряда в единице объема, т. е. их концентрация, определяет значение удельной электрической проводимости. Для собственного полупроводника концентрация электронов ni равна концентрации дырок pi (ni = pi).

Примесная электропроводность. Если в полупроводник внести примесь, он будет обладать помимо собственной электропроводности еще и примесной. Примесная электропроводность может быть электронной или дырочной. В качестве примера рассмотрим случай, когда в чистый германий (четырехвалентный элемент) вводится примесь пятивалентного элемента, например мышьяка (рис. 16.7, а). Атом мышьяка связывается в кристаллической решетке германия ковалентными связями. Но в связи могут участвовать только четыре валентных электрона мышьяка, а пятый электрон оказывается "лишним", менее сильно связанным с атомом мышьяка. Для того чтобы этот электрон оторвать от атома, нужно значительно меньше энергии, поэтому уже при комнатной температуре он может стать электроном проводимости, не оставляя при этом в ковалентной связи дырки. Таким образом, в узле кристаллической решетки появляется положительно заряженный ион примеси, а в кристалле - свободный электрон. Примеси, атомы которых отдают свободные электроны, называются донорными (донорами).

На рис. 16.7,б показана диаграмма энергетических зон полупроводника с донорной примесью. В запрещенной зоне вблизи дна зоны проводимости создается разрешенный энергетический уровень (примесный, донорный), на котором при температуре, близкой к 0 К, располагаются "лишние" электроны. Для перевода электрона с примесного уровня в зону проводимости требуется меньше энергии, чем для перевода электрона из валентной зоны. Расстояние от донорного уровня до дна зоны проводимости называется энергией ионизации (активации) доноров ΔWиd.

Внесение в полупроводник донорной примеси существенно увеличивает концентрацию свободных электронов, а концентрация дырок остается такой же, какой она была в собственном полупроводнике. В таком примесном полупроводнике электропроводность обусловлена в основном электронами, ее называют электронной, а полупроводники - полупроводниками n-типа. Электроны в полупроводниках n-типа являются основными носителями заряда (их концентрация высока), а дырки - неосновными.

Если в германий ввести примесь трехвалентного элемента (например, индия), то для образования восьмиэлектронной ковалентной связи с германием индию не хватит одного электрона. Одна связь останется незаполненной. При незначительном повышении температуры в незаполненную валентную связь может перейти электрон соседнего атома германия, оставив на своем месте дырку (рис. 16.8, а), которая может быть также заполнена электроном и т. д. Таким образом, дырка как бы перемещается в полупроводнике. Примесный атом превращается в отрицательный ион. Примеси, атомы которых способны при возбуждении принять валентные электроны соседних атомов, создав в них дырку, называют акцепторными или акцепторами.

На рис. 16.8,б показана диаграмма энергетических зон полупроводника с акцепторной примесью. В запрещенной зоне вблизи потолка валентной зоны создается примесный энергетический уровень (акцепторный). При температурах, близких к 0 К, этот уровень свободен, при повышении температуры он может быть занят электроном валентной зоны, в которой после ухода электрона образуется дырка. Расстояние от потолка валентной зоны до акцепторного уровня называется энергией ионизации (активации) акцепторов ΔWиa. Внесение в полупроводник акцепторной примеси существенно увеличивает концентрацию дырок, а концентрация электронов остается такой же, какой она была в собственном полупроводнике. В этом примесном полупроводнике электропроводность обусловлена в основном дырками, ее называют дырочной, а полупроводники - полупроводниками р-типа. Дырки для полупроводника р-типа - основные носители заряда, а электроны - неосновные.

В примесных полупроводниках наряду с примесной электропроводностью существует и собственная, обусловленная наличием неосновных носителей. Концентрация неосновных носителей в примесном полупроводнике уменьшается во столько раз, во сколько увеличивается концентрация основных носителей, поэтому для полупроводников n-типа справедливо соотношение nnpn = nipi = ni2 = pi2 , а для полупроводников р-типа - соотношение ppnp = ni2 = pi2 , где nn и pn - концентрация основных, a pp и np - концентрация неосновных носителей заряда соответственно в полупроводнике n и р-типа.

Удельная электрическая проводимость примесного полупроводника определяется концентрацией основных носителей и тем выше, чем больше их концентрация. На практике часто встречается случай, когда полупроводник содержит и донорные, и акцепторные примеси. Тогда тип электропроводности будет определяться примесью, концентрация которой выше. Полупроводник, у которого концентрации доноров Nd и акцепторов Na равны (Nd = Na)), называют скомпенсированным.