Терморегуляция, виды терморегуляции. Терморегуляция и ее значение для организма человека Что такое терморегуляция организма человека кратко

Между человеком и окружающей его средой постоянно происходит теплообмен. Факторы окружающей среды воздействуют на организм комплексно, и в зависимости от их конкретных значений вегетативные центры (полосатое тело, серый бугор промежуточного мозга) и ретикулярная формация, взаимодействуя с корой головного мозга и посылая по симпатическим волокнам импульсы к мышцам, обеспечивают оптимальное соотношение процессов теплообразования и теплоотдачи.

Терморегуляцией организма называется совокупность физиологических и химических процессов, направленных на поддержание температуры тела в определенных пределах (36,1...37,2 °С). Перегрев тела или его переохлаждение приводит к опасным нарушениям жизненных функций, а в некоторых случаях — к заболеваниям. Терморегуляция обеспечивается изменением двух составляющих теплообмен процессов — теплопродукции и теплоотдачи. На тепловой баланс организма существенно влияет теплоотдача, как наиболее управляемая и изменчивая.

Теплота вырабатывается всем организмом, но более всего поперечнополосатыми мышцами и печенью. Теплообразование организма человека, одетого в домашнюю одежду и находящегося в состоянии относительного покоя при температуре воздуха 15...25°С, сохраняется приблизительно на одном и том же уровне. С понижением температуры оно увеличивается, а при ее повышении с 25 до 35 °С несколько уменьшается. При температуре более 40 °С выработка теплоты начинает увеличиваться. Эти данные свидетельствуют о том, что регуляция производства теплоты в организме главным образом происходит при пониженных температурах окружающей среды.

Теплопродукция возрастает при выполнении физической работы, причем тем больше, чем тяжелее работа. Количество вырабатываемой теплоты зависит также от возраста и состояния здоровья человека. Усредненные значения теплопродукции взрослого человека в зависимости от температуры окружающего воздуха и тяжести выполняемой работы приведены в таблице 14.3.

14.3. Теплопродукция человека в зависимости от температуры воздуха и тяжести выполняемой работы

Температура воздуха, "С

Теплопродукция, Дж/с

Температура воздуха, °С

Теплопродукция, Дж/с

Состояние покоя

Работа средней тяжести

Легкая работа

Тяжелая и очень тяжелая работа

Различают три вида теплоотдачи организма человека:

излучение (в виде инфракрасных лучей, испускаемых поверхностью тела в направлении предметов с меньшей температурой);

конвекция (нагревание омывающего поверхность тела воздуха);

испарение влаги с поверхности кожи, слизистых оболочек верхних дыхательных путей и легких.

Процентное соотношение между этими видами теплоотдачи человека, находящегося в нормальных условиях в состоянии покоя, выражается следующими цифрами: 45/30/25. Однако указанное соотношение может изменяться в зависимости от конкретных значений параметров микроклимата и тяжести выполняемой работы.

Теплоотдача излучением происходит только в том случае, когда температура окружающих предметов ниже температуры открытых участков кожи (32. ..34, 5 °С) или наружных слоев одежды (27. ..28 °С для легко одетого человека и приблизительно 24 °С для человека в зимней одежде). Основная часть излучения относится к инфракрасному диапазону с длиной волны (4. ..50) * 10-6м. При этом теряемое организмом в единицу времени количество теплоты, Дж/с (1 Дж/с = 1 Вт),

Pp = Sδ(Tч4 - То4),

где S— площадь поверхности тела человека, определяемая по графику (рис. 14.1), м2. Если масса и рост человека неизвестны, то принимают S= 1,5м2; δ — приведенный коэффициент излучения, Вт/(м2*К4): для хлопчатобумажной ткани 5 = 4,2*10-8, для шерсти и шелка δ = 4,3*10 , для кожных покровов человека δ = 5,1*10-8; Тч — температура поверхности тела человека: для раздетого человека 306 К (это соответствует 33 °С); Тo — температура окружающей среды, К.

Рис. 14.1. График для определения площади поверхности тела человека в зависимости от его массы и роста


Теплоотдача конвекцией также происходит в случае, если температура поверхности кожи или верхних слоев одежды выше температуры омывающего их воздуха. При отсутствии ветра прилегающий к поверхности кожи раздетого человека слой воздуха толщиной 4...8 мм нагревается за счет его теплопроводности. Более отдаленные слои нагреваются вследствие естественного движения воздуха или принудительного побуждения. С увеличением скорости движения воздуха толщина окружающего человека пограничного слоя уменьшается до 1 мм, а теплоотдача поверхности тела возрастает в несколько раз. Потери теплоты конвекцией через дыхательные пути меньше, чем от кожного покрова, и происходят в тех случаях, когда температура вдыхаемого воздуха ниже температуры тела. Теплоотдача конвекцией повышается с ростом барометрического давления.

Приближенно потери теплоты в единицу времени конвекцией, Дж/с, можно определить по формуле

Pк1 = 7(0,5 + √v)S(Tч - То)

Рк2 = 8,4(0,273 + √v)S(Tч - То)

где v — скорость движения воздуха, м/с.

Первую формулу используют при скорости движения воздуха v ≤ 0,6 м/с, вторую — при v > 0,6 м/с.

Испарение — это теплоотдача при повышенной температуре воздуха, когда указанные ранее способы теплоотдачи затруднены или невозможны. В обычных условиях на большей части поверхности тела человека происходит неощутимое потоотделение, возникающее в результате диффузии воды без активного участия потовых желез. Исключение составляют поверхности ладоней, подошв и подмышечных впадин (составляющие примерно 10 % поверхности тела), на которых пот выделяется непрерывно.

В результате испарения организм в сутки теряет в среднем около 0,6 л воды. Так как на испарение 1 г воды затрачивается приблизительно 2,5 кДж теплоты, то потери ее за сутки составят приблизительно 1500кДж. С увеличением температуры воздуха и степени тяжести работы за счет более активного проникновения жидкости через стенки оплетающих потовые железы артериальных сосудов и нервной регуляции потоотделение усиливается, достигая за смену 5 л, а в некоторых случаях 10... 12 л. Отдача теплоты также возрастает.

При слишком интенсивном выделении пот не всегда успевает испариться и может выделяться в виде капель. В этом случае влажный слой на коже препятствует теплоотдаче, приводя в дальнейшем к перегреванию организма. Кроме влаги с потом человек теряет большое количество солей (в 1 л пота содержится 2,5...2,6 г хлорида натрия) и водорастворимых витаминов (С, BI, 62), что приводит к сгущению крови и ухудшению работы сердца. Следует отметить, что при потере количества воды, равного 1 % общей массы тела, у человека возникает чувство сильной жажды; утрата 5 % воды приводит к потере сознания, 10% — к смерти.

Количество выделяемого пота зависит и от индивидуальных особенностей организма, а также от степени его приспособляемости к данным климатическим условиям. На интенсивность испарения влаги влияют температура и скорость движения воздуха.

Через дыхательные пути испаряется около 300...350 г влаги в сутки, что приводит к потере 750...875 кДж теплоты.

Общие потери теплоты испарением в единицу времени, Дж/с, можно приближенно определить по формуле

Ри = 0,6547q(1 + kл), где q — интенсивность выделения пота, г/ч, определяемая взвешиванием человека; kл — коэффициент пересчета теплоотдачи через легкие, зависящий от температуры окружающего воздуха: при О "С kл = 0,43, при 18 °С — 0,3, при 28 °С — 0,23, при 35 °С - 0,035 и при 45°С kл = 0,015.

Для нормального протекания физиологических процессов в организме человека требуется поддержание практически постоянной температуры его внутренних органов (приблизительно 36,5 °С). Процессы регулирования тепловыделений для поддержания нормальной температуры тела человека называются терморегуляцией. С помощью терморегуляции поддерживается относительное динамическое постоянство функций организма при различных метеоусловиях и разной тяжести выполняемой работы, которое обеспечивается установлением определенного соотношения между теплообразованием (химическая терморегуляция) и теплоотдачей (физическая терморегуляция).

При анализе теплового состояния организма в зависимости от метеоусловий окружающей среды отмечено несколько наиболее характерных зон термического воздействия на организм, и связанных с ними соотношение теплообразования и теплоотдачи.

На рис. 3.2 схематически представлены изменения теплообразования (по потреблению кислорода). Наиболее высокий уровень потребления кислорода соответствует зоне низких температур окружающей среды от -15 до -20 °С. При температуре окружающей среды от 0 до 15 °С потребление кислорода снижается. При температуре окружающей среды от 15 до 25 °С наблюдается постоянный уровень

Рис. 3.2.

потребления кислорода (зона безразличия). При таких температурных условиях устойчивое тепловое состояние организма обеспечивается главным образом физической терморегуляцией. В интервале между 25 и 35 °С находится зона пониженного потребления кислорода. А при еще более высокой температуре (35...45 °С) снова наблюдается повышенное теплообразование, что ведет к повышению температуры тела.

Терморегуляция осуществляется биохимическим путем, изменением интенсивности кровообращения и потоотделением. При этом в регулировании процесса теплообмена участвуют одновременно все виды терморегуляции.

Терморегуляция биохимическим путем состоит в изменении интенсивности окислительных процессов, происходящих в организме человека. Внешним проявлением этих регулирующих процессов является мышечная дрожь, которая возникает при переохлаждении и повышает тепловыделение в организме.

Терморегуляция изменением интенсивности кровообращения заключается в способности организма регулировать объем подаваемой крови. В данном случае кровь можно рассматривать как переносчик тепла от внутренних органов к поверхности тела человека. Объем подаваемой крови в организме регулируется за счет сужения или расширения кровеносных сосудов. При высокой температуре окружающей среды периферические кровеносные сосуды расширяются, приток крови к коже увеличивается, температура кожи повышается, и увеличивается интенсивность теплоотдачи за счет теплопроводности, конвекции и излучения. При низкой температуре происходит обратное явление: кровеносные сосуды ссужаются, количество крови, подаваемой к коже, уменьшается. Следовательно, уменьшается и отдача тепла от организма человека окружающей среде.

Терморегуляция изменением интенсивности выделения пота заключается в изменении теплоотдачи за счет испарения. Теплоотдача за счет испарения может иметь большое значение для охлаждения организма. Так, при температуре окружающей среды 36 °С отвод тепла от человека в окружающую среду осуществляется практически только за счет испарения пота.

Различают острые и хронические формы нарушения терморегуляции. Острые формы нарушения терморегуляции :

  • Тепловая гипертермия - теплоотдача при относительной влажности воздуха 75...80% - легкое повышение температуры тела, обильное потоотделение, жажда, небольшое учащение дыхания и пульса. При более значительном перегреве возникает также одышка, головная боль и головокружение, затрудняется речь и др.
  • Судорожная болезнь - преобладание нарушения водно-солевого обмена - различные судороги, особенно икроножных мышц, и сопровождаемые большой потерей пота, сильным сгущением крови. Вязкость крови увеличивается, скорость ее движения уменьшается, и поэтому клетки не получают необходимого количества кислорода.
  • Тепловой удар - дальнейшее протекание судорожной болезни - потеря сознания, повышение температуры до 40-41 °С, слабый учащенный пульс. Признаком тяжелого поражения при тепловом ударе является полное прекращение потоотделения.

Тепловой удар и судорожная болезнь могут заканчиваться и смертельным исходом.

Хронические формы нарушения терморегуляции приводят к изменениям в состоянии нервной, сердечно-сосудистой и пищеварительной системе человека, формируя производственно-обусловленные заболевания.

Основное требование, обеспечивающее нормальные условия жизнедеятельности человека при длительном пребывании в помещении, это оптимальное сочетание параметров микроклимата, которые, прежде всего, должны исключить напряжение механизмов терморегуляции организма или свести к минимуму физиологические приспособительные возможности организма, позволяющие сохранить здоровье и работоспособность.

Отклонения отдельных параметров микроклимата от медико-биологически обоснованных значений могут привести к различным заболеваниям, особенно у людей с ослабленным иммунитетом. Например, известно, что понижение температуры вызывает повышенную теплоотдачу в окружающую среду, что вызывает охлаждение организма, понижает его защитные функции и способствует возникновению простудных заболеваний, наоборот - повышение температуры приводит к повышенному выделению солей из организма, а нарушение солевого баланса организма также ведет к снижению иммунитета, значительной потере внимания, а следовательно, к значительному повышению вероятности несчастного случая.

Повышение влажности воздуха нарушает баланс испарения влаги из организма человека, что ведет к нарушению терморегуляции с вышеупомянутыми последствиями. С другой стороны, понижение относительной влажности (до 20 и менее процентов) нарушает нормальное функционирование слизистых оболочек верхних дыхательных путей. Повышенная влажность (85%) затрудняет теплообмен между организмом человека и внешней средой вследствие уменьшения испарения влаги с поверхности кожи, а низкая влажность (

Скорость движения воздуха также является фактором, влияющим на механизм терморегуляции организма. Установлено, что действие воздушного потока зависит от температуры помещения и сказывается на состоянии человека при скорости 0,15 м/с. Такой поток при температуре менее 36 °С оказывает освежающее действие и способствует терморегуляции, а при температуре более 40 °С оказывает противоположное действие. Движение воздуха в производственном помещении улучшает теплообмен между телом человека и внешней средой, но излишняя скорость движения воздуха (сквозняки) повышает вероятность возникновения простудных заболеваний.

Условия воздушной среды, которые обусловливают оптимальный обмен веществ в организме человека и при которых отсутствуют неприятные ощущения и напряженность системы терморегуляции, а физическая и интеллектуальная работоспособность человека высоки и организм устойчив к воздействию вредных факторов окружающей среды, называют комфортными (оптимальными) условиями.

Условия, при которых нормальное тепловое состояние человека нарушается, называются дискомфортными. Условия небольшой дискомфортное™ определяются допустимыми значениями параметров микроклимата. При превышении допустимых значений микроклиматических параметров человек испытывает сильный дискомфорт, возникает перегрев или переохлаждение организма.


Нарушение терморегуляции организма или расстройство постоянства температуры тела провоцируется дисфункцией ЦНС. При нарушении процессов терморегуляции возможны два типа реакции. Если температура тела идет на повышение, периферические сосуды расширяются, начинается потоотделение. Если температура, наоборот, снижается, сосуды сужаются, мышцы сокращаются, конечности холодеют, появляется дрожь.

Обладающие свойством постоянства температуры тела высшие животные имеют систему поддержания температуры в равновесии. Терморегуляция осуществляет баланс между теплообразованием и тепловыделением. Существует два основных вида терморегуляции: химический (главный его механизм - усиление теплообразования при мышечных сокращениях - мышечной дрожи) и физический (усиление теплообмена за счет испарения жидкости с поверхности тела при потоотделении). Кроме того, определенное значение для теплопродукции и теплоотдачи имеет интенсивность обменных процессов и сужение или расширение кожных сосудов.

Центр терморегуляции расположен в стволе головного мозга. Кроме того, в терморегуляции определенную роль играют гормоны желез внутренней секреции, в частности . Нарушение терморегуляции тела, связанное с понижением температуры, именуется гипотермией. Нарушение терморегуляции тела у человека, связанное с повышением температуры, называется гипертермией.

Нарушение процессов терморегуляции: гипертермия

Гипертермия (перегревание) возникает при нарушении механизмов терморегуляции, при котором теплопродукция преобладает над теплоотдачей. Температура тела может достичь 43 °С и более.

Наиболее частыми причинами такого нарушения терморегуляции человека являются повышение температуры внешней среды и появление факторов, препятствующих адекватной теплоотдаче (например, излишне теплая одежда, повышенная влажность воздуха и т.п.).

При появлении этого вида нарушений терморегуляции включаются механизмы адаптации: поведенческие реакции, с помощью которых человек пытается избежать воздействия излишнего тепла (например, включает вентилятор), усиление механизмов теплоотдачи, уменьшение теплопродукции и стресс-реакция. В соответствии с результатами взаимодействия гипертермии и процессов адаптации выделяют стадию компенсации и стадию декомпенсации гипертермии.

В стадии компенсации происходит расширение артериальных сосудов кожи и связанное с этим усиление теплоотдачи. При дальнейшем повышении температуры теплоотдача начинает происходить в основном только за счет потоотделения.

В стадии декомпенсации наблюдается нарушение механизмов адаптации, потоотделение значительно снижается, температура тела может повыситься до 41-43 °С. Возникает нарушение функций и структур клеток в связи с непосредственным повреждающим воздействием высокой температуры, что приводит к выраженным нарушениям функций систем и органов, в первую очередь ЦНС и сердечно-сосудистой системы.

Тепловой удар - это вариант гипертермии, при котором механизмы адаптации быстро истощаются. Это может происходить как при высокой интенсивности теплового фактора, так и в результате низкой эффективности механизмов адаптации конкретного организма. Симптомы такого нарушения терморегуляции такие же, как и в стадии декомпенсации гипертермии в общем, но более тяжелые и значительно быстрее нарастающие, в связи, с чем тепловой удар сопровождается высокой летальностью. Ведущие механизмы патогенеза изменений в организме при этом соответствуют таковым при гипертермии вообще. Но особое значение при таком нарушении терморегуляции организма человека придается интоксикации, острой сердечной недостаточности, остановке дыхания, отеку и кровоизлияниям в головной мозг.

Солнечный удар - это одна из форм гипертермии. Он возникает вследствие непосредственного воздействия тепла солнечных лучей на организм. При такой патологии терморегуляции включаются вышеописанные механизмы гипертермии, но ведущим является повреждение головного мозга.

Патология терморегуляции организма: лихорадка

От гипертермии следует отличать лихорадку. Лихорадка - это реакция организма на раздражители инфекционной и неинфекционной природы, характеризующаяся повышением температуры тела. При лихорадке (в отличие от гипертермии) сохраняется баланс между теплообразованием и теплоотдачей, но на более высоком, чем обычно, уровне.

Причиной такого нарушения терморегуляции является появление в организме пирогенных веществ (пирогенов). Они подразделяются на экзогенные (продукты жизнедеятельности бактерий) и эндогенные (продукты распада поврежденных клеток, измененные белки сыворотки крови и т.п.).

Различают следующие стадии такой патологии терморегуляции человека:

  • стадия повышения температуры;
  • стадия стояния температуры на более высоком уровне, чем в норме;
  • стадия снижения температуры.

Лихорадка до 38 °С называется субфебрильной, до 39 °С умеренной, или фебрильной, до 41 °С - высокой, или пиретической, свыше 41 °С - чрезмерной, или гиперпиретической.

Типы температурных кривых (графики суточных колебаний температуры) могут иметь диагностическое значение, так как нередко значительно отличаются при различных заболеваниях.

Постоянная лихорадка характеризуется суточными колебаниями температуры не более 1 °С. При послабляющей лихорадке разница утренней и вечерней температуры составляет 1-2 °С, а при изнуряющей (гектической) - 3-5 °С. Перемежающаяся лихорадка характеризуется большими размахами утренней и вечерней температуры с периодической ее нормализацией. Возвратная лихорадка сочетает периоды в несколько дней, при которых температура нормальная, и периоды повышенной температуры, которые чередуются друг за другом. При извращенной лихорадке утренняя температура превышает вечернюю, а атипичная лихорадка вообще не имеет каких-либо закономерностей.

При резком снижении температуры говорят о критическом снижении, или кризисе (это может сопровождаться выраженным снижением - коллапсом); постепенное ее снижение называется литическим, или лизисом.

В системах и органах при лихорадке возникает ряд изменений.

Так, в центральной нервной системе при лихорадке наблюдается явление угнетения. Сопутствующим симптомом такого нарушения терморегуляции организма является тахикардия, примерно 8-10 ударов в минуту на каждый градус подъема (впрочем, при некоторых заболеваниях, например, при , может быть брадикардия, что связано с угнетающим воздействием бактериального токсина на сердце). На высоте лихорадки дыхание может быть учащено.

Лихорадка, однако, имеет и положительное значение. Так, при лихорадке тормозится размножение некоторых вирусов, подавляются процессы жизнедеятельности и деления многих бактерий, усиливается интенсивность иммунных реакций, тормозится рост опухолей, повышается устойчивость организма к инфекциям.

При схожих симптомах причины этих нарушений терморегуляции организма различны. Лихорадка вызывается пирогенами, а гипертермия - высокой температурой окружающей среды.

При такой патологии, как лихорадка, механизмы терморегуляции продолжают действовать (происходит переход баланса между теплопродукцией и теплоотдачей на более высокий уровень), при гипертермии возникает срыв механизмов терморегуляции.

Лихорадка - это реакция организма на определенные внешние и внутренние воздействия с определенными позитивными качествами, гипертермия - это, безусловно, патологический, вредный для организма процесс.

Нарушение терморегуляции тела: гипотермия

Гипотермия - это состояние, характеризующееся понижением температуры тела ниже нормы.

Ведущая причина такого нарушения терморегуляции организма - это понижение температуры окружающей среды. Кроме этого к гипотермии на фоне небольшого понижения внешней температуры приводят нарушения механизмов теплообразования: обширные параличи мышц, нарушение производства тепла вследствие снижения интенсивности обмена при пониженной продукции гормонов надпочечников (в том числе при повреждении гипоталамо-гипофизарной области), а также крайняя степень истощения. Гипотермии могут способствовать и следующие факторы: повышенная влажность воздуха, мокрая одежда, погружение в холодную воду, ветер (что способствует усилению теплоотдачи); кроме этого к снижению сопротивляемости организма к переохлаждению приводят голодание, переутомление, алкогольное опьянение, травмы и болезни. Последствиями нарушения терморегуляции могут быть общее переохлаждение и местная холодовая травма - отморожение.

По времени наступления смерти различают острое (в течение часа), подострое (в течение 4 часов), медленное (свыше 4 часов) переохлаждение.

Так же, как и при гипертермии, развитие гипотермии подразделяется на стадию компенсации и стадию декомпенсации.

Стадия компенсации характеризуется поведенческими реакциями (человек пытается согреться), снижением теплоотдачи (сужаются сосуды кожи, прекращается потоотделение), повышением продукции тепла (повышается АД, ЧСС, увеличивается кровоток во внутренних органах и интенсивность обменных процессов в органах и тканях, появляется мышечная дрожь). Температура тела снижается незначительно.

Если холод продолжает действовать, а механизмы адаптации не могут справиться с его патогенным воздействием, то наступает стадия декомпенсации. Происходит срыв системы терморегуляции, угнетение центров регуляции головного мозга, что ведет к падению сердечной деятельности, ослаблению интенсивности дыхания, гипоксии и ацидозу, расстройству функций органов и тканей, а также микроциркуляции. Следствием этого являются нарушение обмена воды электролитов и появление отека головного мозга. Смерть наступает из-за остановки кровообращения и дыхания вследствие нарастающего угнетения регуляторных центров ЦНС.

Отморожению обычно подвергаются не защищенные или плохо защищенные одеждой участки тела (нос, уши, пальцы кистей и стоп). В ответ на воздействие холода возникают такие признаки нарушения терморегуляции, как спазм кожных сосудов, сменяющийся их расширением и артериальной гиперемией; при продолжающемся воздействии холода может возникнуть вторичный спазм сосудов, что приводит к ишемии тканей и их повреждению вплоть до некроза кожи и глубже лежащих тканей.

Статья прочитана 12 302 раз(a).

Терморегуляцией называется способность организма человека регулировать теплообмен с окружающей средой и сохранять температуру тела в определенных границах (36,1 - 37,2°С).

Терморегуляция обеспечивается изменением двух составляющих теплообменногопроцесса:теплопродукции итеплоотдачи.

Из двух способов поддержания теплового равновесия основное значение имеет регуляция теплоотдачи, т.к. этот путь более изменчив и управляем в организме, тогда как регуляция теплопродукции положительную роль играет главным образом при низких температурах воздуха, при высоких же возможность регуляции теплообмена за счет уменьшения продукции тепла ограничена.

Нормальное тепловое самочувствие имеет место, когда соблюдается тепловой баланс

Qт.о.= Qт.в.

Здесь Qт.о. – количество тепла выделяемого человеком, а Qт.в. – количество тепла принимаемого человеком из окружающей среды. Это соответствие характеризует окружающую среду как комфортную. В условиях комфорта у человека не возникает беспокоящих его тепловых ощущений холода или перегрева.

Уравнение теплового баланса (“человек - окружающая среда”) имеет вид

Qт.о.= q к + q т + q и + q исп + q д,

где q к – показатель конвекции;

q т – показатель теплопроводности через одежду;

q и – показатель излучения;

q исп – показатель испарения кожи;

q д – показатель испарения влаги при дыхании.

Теплообмен между человеком и окружающей средой осуществляется: конвекцией в результате омывания тела воздухом (q к ), теплопроводностью через одежду (q т ), излучением на окружающие поверхности (q и ), испарением влаги с поверхности кожи (q исп ), испарением влаги при дыхании (q д ).

Величина тепловыделения организмом человека зависит от степени физического напряжения в определенных климатических условиях и составляет от 85 (в состоянии покоя) до 500 Дж/с (тяжелая работа). В состоянии покоя при температуре окружающего воздуха +18 °С доля q к иq т составляет около 30 %, q и – 45%, q исп – 20%, q д – 5% всей отводимой теплоты.

Процессы регулирования тепловыделений осуществляются в основном тремя способами: биохимическим путем; путем изменения интенсивности кровообращения и интенсивности потовыделения.

Терморегуляция биохимическим путем заключается в изменении интенсивности происходящих в организме окислительных процессов. Например, мышечная дрожь, возникающая при сильном охлаждении организма, повышает выделение теплоты до 125...200Дж/с.

Терморегуляция путем изменения интенсивности кровообращения заключается в способности организма регулировать подачу крови (которая является в данном случае теплоносителем) от внутренних органов к поверхности тела путем сужения или расширения кровеносных сосудов. Перенос теплоты с потоком крови имеет большое значение вследствие низких коэффициентов теплопроводности тканей человеческого организма - 0,314..1,45 Вт/(м °С). При высоких температурах окружающей среды кровеносные сосуды кожи расширяются и к ней от внутренних органов притекает большое количество крови и, следовательно, больше теплоты отдается окружающей среде. При низких температурах происходит обратное явление: сужение кровеносных сосудов кожи, уменьшение притока крови к кожному покрову и, следовательно, меньше теплоты отдается во внешнюю среду. В пальцах кровоснабжение может изменяться даже в 600 раз.



Терморегуляция путем изменения интенсивности потовыделения заключается в изменении процесса теплоотдачи за счет испарения. Испарительное охлаждение тела человека имеет большое значение. Так, при 1Ж = 18°С, <р = 60 %, и» = 0 количество теплоты, отдаваемой человеком в окружающую среду при испарении влаги, составляет около 18 % общей теплоотдачи. При увеличении температуры окружающей среды до + 27°С доля (?„ возрастает до 30 % и при 36,6° С достигает 100 %.

Терморегуляция организма осуществляется одновременно всеми способами. Так, при понижении температуры воздуха увеличению теплоотдачи за счет увеличения разности температур препятствуют такие процессы, как уменьшение влажности кожи и, следовательно, уменьшение теплоотдачи путем испарения, снижение температуры кожных покровов за счет уменьшения интенсивности транспортирования крови от внутренних органов и вместе с этим уменьшение разности температур.

Экспериментально установлено, что оптимальный обмен веществ в организме и соответственно максимальная производительность труда имеют место, если составляющие процесса теплоотдачи находятся в следующих пределах: & + (?т * 30 %; О, * 45 %; (?п * 20 % и (?д * 5 %. Такой баланс характеризует отсутствие напряженности системы терморегуляции.

Параметры микроклимата воздушной среды, которые обусловливают оптимальный обмен веществ в организме и при которых нет неприятных ощущений и напряженности системы терморегуляции, называются комфортными или оптимальными. Зона, в которой окружающая среда полностью отводит тепло, выделяемое организмом, и нет напряжения системы терморегуляции, называется зоной комфорта. Условия, при которых нормальное тепловое состояние человека нарушается, называются дискомфортными. При незначительной напряженности системы терморегуляции и небольшой дискомфортности устанавливаются допустимые метеорологические условия.

Основными параметрами, обеспечивающими процесс теплообмена человека с окружающей сре­дой, являются параметры микроклимата. В естественных условиях на поверхности Земли эти параметры изменяются в существенных пределах. Так, температура окружающей среды изменяется от -88 до +60 °С; подвижность воздуха - от 0 до 100 м/с; относительная влажность - от 10 до 100% и атмосферное давление - от 680 до 810 мм рт. ст.

Процессы регулирования тепловыделений для поддержания постоянной температуры тела человека называются термо­регуляцией. Она позволяет сохранять температуру внутренних органов постоянной, близкой к 36,5 °С.

Процессы регулирования тепловыделений осуще­ствляются в основном тремя способами :

1. Биохими­ческим путем.

2. Путем изменения интенсивности кровообращения.

3. За счет интенсивности потовыделения.

Терморегуляция биохимическим путем заклю­чается в изменении интенсивности происходящих в организме окислительных процессов. Например, мышечная дрожь, возникающая при сильном ох­лаждении организма, повышает выделение тепло­ты до 125...200 Дж/с.

Терморегуляция путем изменения интенсивно­сти кровообращения заключается в способности организма регулиро­вать подачу крови (которая является в данном случае теплоносителем) от внутренних органов к поверхности тела путем сужения или расши­рения кровеносных сосудов.

Перенос теплоты с потоком крови имеет большое значение вследствие низких коэффициентов теплопроводно­сти тканей человеческого организма.

При высоких температурах окружающей среды кровеносные сосуды кожи расширяются, и к ней от внутренних органов притекает большое количество крови и, следовательно, больше теплоты отдается окружа­ющей среде.

При низких температурах происходит обратное явление: сужение кровеносных сосудов кожи, уменьшение притока крови к кожному покрову и, следовательно, меньше теплоты отдается во внешнюю среду.

Кровоснабжение при высокой температуре среды может быть в 20 - 30 раз больше, чем при низкой. В пальцах кровоснабжение может изменяться даже в 600 раз.

Терморегуляция путем изменения интенсивности потовыделения заключается в изменении процесса теплоотдачи за счет испарения

Параметры микроклимата воздушной среды, которые обуславливают оптимальный обмен веществ в организме, и, при которых нет неприятных ощущений и напряженности системы терморегуляции, называются комфортными или оптимальными .

Зона, в которой окру­жающая среда полностью отводит теплоту, выделяемую организмом, и нет напряжения системы терморегуляции, называется зоной комфорта.

Условия, при которых нормальное тепловое состояние человека нару­шается, называются дискомфортными .


Гигиеническое нормирование параметров микроклимата производст­венных помещений.

Нормы производственного микроклимата установ­лены системой стандартов безопасности труда ГОСТ 12.1.005-88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны». Они едины для всех производств и всех климатических зон с некото­рыми незначительными отступлениями.

В этих нормах отдельно нормируется каждый компонент микро­климата в рабочей зоне производственного помещения: температура, относительная влажность, скорость воздуха в зависимости от способ­ности организма человека к акклиматизации в разное время года, характера одежды, интенсивности производимой работы и характера тепловыделений в рабочем помещении.

Для оценки характера одежды (теплоизоляции ) и акклиматизации организма в разное время года введено понятие периода года.

Разли­чают теплый и холодный период года. Теплый период года характери­зуется среднесуточной температурой наружного воздуха +10 °С и выше, холодный - ниже +10 °С.

В рабочей зоне производственного помещения могут быть установлены оптимальные и допустимые микроклиматические условия.

Оптимальные микроклиматические усло­вия - это такое сочетание параметров микроклимата, которое при длительном и систематическом воздействии на человека обеспечивает ощущение теплового комфорта и создает предпосылки для высокой работоспособности.

Допустимые микроклиматические условия - это такое сочетания параметров микроклимата, которое при длительном и систематическом воздействии на человека может вызвать напряжение реакций терморегуляции и которые не выходят за пределы физиоло­гических приспособительных возможностей.

Методы снижения неблагоприятного влияния производственного микроклимата регламентируются «Санитарными правилами по орга­низации технологических процессов и гигиеническими требованиями к производственному оборудованию» и осуществляются комплексом технологических, санитарно-технических, организационных и меди­ко-профилактических мероприятий.

Ведущая роль в профилактике вредного влияния высоких темпе­ратур и инфракрасного излучения принадлежит технологическим ме­роприятиям:

1. Замена старых и внедрение новых технологических процессов и оборудования, способствующих оздоровлению неблагоп­риятных условий труда.

2. Внедрение автома­тизации и механизации дает возможность пребывания рабочих вдали от источника радиационной и конвекционной теплоты.

К группе санитарно-технических мероприятий относится приме­нение коллективных средств защиты :

1. Локализация тепловыделений, теплоизоляция поверхностей, экранирование источников либо рабочих мест.

2. Воздушное душирование, радиационное охлаждение, мелкодисперсное распыление воды.

3. Общеобменная вентиляция или кондиционирование воздуха.

Теплоизоляция поверхностей источников излучения (печей, сосудов и трубопроводов с горячими газами и жидкостями) снижает темпера­туру излучающей поверхности и уменьшает как общее тепловыделение, так и радиационное.

Конструктивно теплоизоляция может быть мастичной, оберточ­ной, засыпной, из штучных изделий и смешанной.

Мастичная изоля­ция осуществляется нанесением мастики (штукатурного раствора с теплоизоляционным наполнителем) на горячую поверхность изолиру­емого объекта.

Оберточную изоляцию изготовляют из волокнистых материалов - асбестовой ткани, минеральной ваты, войлока и др. Наиболее пригодна оберточная изоляция для трубопроводов.

Засыпную изоляцию приме­няют реже, так как необходимо устанавливать кожух вокруг изолиру­емого объекта

Теплоизоляцию штучными или формованными изделиями, скорлупами применяют для облегчения работ.

Смешанная изоляция состоит из нескольких различных слоев.

При выборе материала для изоляции необходимо принимать во внимание механические свойства материалов, а также их способность выдерживать высокую температуру. Многие теплоизоляционные мате­риалы берут в их естественном состоянии, например, асбест, слюда, торф, земля, но большинство получают в результате специальной обработки естественных материалов и представляют собой различные смеси.

Теплозащитные экраны применяют для локализации источников лучистой теплоты, уменьшения облученности на рабочих местах и снижения температуры поверхностей, окружающих рабочее место.

В зависимости от того, какая способность экрана более выражена, различают теплоотражающие, теплопоглощающие и теплоотводящие экраны.

По степени прозрач­ности экраны делят на три класса: непрозрачные, полупрозрачные и прозрачные.

К первому классу относят металлические водоохлаждаемые и фу­терованные асбестовые, альфолиевые, алюминиевые экраны.

Ко вто­рому - экраны из металлической сетки, цепные завесы, экраны из стекла, армированного металлической сеткой; все эти экраны могут орошаться водяной пленкой.

Третий класс составляют экраны из различных стекол: силикатного, кварцевого и органического, бесцвет­ного, окрашенного и металлизированного, пленочные водяные завесы, свободные и стекающие по стеклу, вододисперсные завесы.

При воздействии на работающего теплового облучения применяют воздушное душирование (подачу воздуха в виде воздушной струи, направленной на рабочее место). Воздушное душирование уст­раивают также для производственных процессов с выделением вредных газов или паров и при невозможности устройства местных укрытий.

Охлаждающий эффект воздушного душирования зависит от разно­сти температур тела работающего и потока воздуха, а также от скорости обтекания воздухом охлаждаемого тела.

Воздушные завесы предназначены для защиты от прорыва холодного воздуха в помещение через проемы здания (ворота, двери и т.п.). Воздушная завеса представляет собой воздушную струю, направленную под углом навстречу холодному потоку воздуха.

Согласно СНиП 2.04.05-91 воздушные завесы необходимо устанавливать у проемов отапливаемых помещений, открывающихся не реже, чем один раз в час либо на 40 мин единовременно при температуре наружного воздуха -15 °С и ниже.

Воздушные оазисы предназначены для улучшения метеорологиче­ских условий труда (чаще отдыха на ограниченной площади). Для этого разработаны схемы кабин с легкими передвижными перегородками, которые затапливаются воздухом с соответствующими параметрами.

Мероприятия по профилактике неблагоприятного воздействия хо­лода должны предусматривать предупреждение выхолаживания произ­водственных помещений, использование средств индивидуальной защиты, подбор рационального режима труда и отдыха. Спецодежда должна быть воздухо- и влагонепроницаемой (хлопчатобумажная, льняная, грубошерстное сукно), иметь удобный покрой.

Для работы в экстремальных условиях (ликвидация пожаров и др.) применяют спе­циальные костюмы, обладающие повышенной теплосветоотдачей. Для защиты головы от излучения применяют дюралевые, фибровые каски, войлочные шляпы; для защиты глаз - очки темные или с прозрачным слоем металла, маски с откидным экраном.