Ученый впервые получивший антибактериальный препарат. Открытые дважды

Московская Медицинская Академия им. И.М. Сеченова

Кафедра Общей хирургии на базе ГКБ№23 (2 гнойное отделение)

«История открытия антибиотиков.»

Исполнитель:

Студентка III-ого курса

Лечебного факультета

4ой группы

Лабутина Юлия Олеговна

Преподаватель: Вавилова Г.С.

Москва 2004

Противомикробные препараты.

Сдерживание или прекращение роста микробов достигается различными методами (комплексами мер): антисептикой, стерилизацией, дезинфекцией, химиотерапией . Соответственно, химические вещества, которые применяются для осуществления этих мер, называются стерелизующими агентами, дезинфектантами, антисептиками и противомикробными химиопрепаратами . Противомикробные химические средства подразделяют на две группы: не обладающие избирательностью действия – губительны в отношении большинства микробов, но при этом токсичны для клеток макроорганизма (антисептики и дезинфектанты), и обладающие избирательностью действия (химиотерапевтические средства).

Химиотерапевтические противомикробные лекарственные средства – это химические препараты, которые применяют при инфекционных заболеваниях для этиотропного лечения (т.е. направленного на микроб как на причину болезни), а также для профилактики инфекций.

К антимикробным химиотерапевтическим средствам относят следующие группы препаратов:

    Антибиотики (действуют только на клеточные формы микроорганизмов; также известны противоопухолевые антибиотики)

    Синтетические химиопрепараты разного химического строения (среди них есть препараты, которые действуют или на клеточные микроорганизмы, или на неклеточные формы микробов)

Антибиотики – это химиотерапевтические препараты из химических соединений биологического происхождения (природные), а также их полусинтетические производные и синтетические аналоги, которые в низких концентрациях оказывают избирательное повреждающее или губительное действие на микроорганизмы и опухоли. Антибиотики, применяемые в медицинской практике, продуцируются актиномицетами (лучистыми грибами), плесневыми грибами, а также некоторыми бактериями. Как уже было сказано, противомикробное действие антибиотиков имеет избирательный характер: на одни организмы они действуют сильнее, на другие – слабее или вообще не действуют. Избирательно и воздействие антибиотиков и на животные клетки, вследствие чего они различаются по степени токсичности и влиянию на кровь и другие биологические жидкости. Некоторые антибиотики представляют значительный интерес для химиотерапии и могут применяться для лечения различных микробных инфекций у человека и животных.

Проблема лечения инфекционных заболеваний имеет такую же долгую историю, как и изучение самих болезней. С точки зрения современного человека, первые попытки в этом направлении были наивны и примитивны, хотя некоторые из них и не были лишены здравого смысла (например, прижигание ран или изоляция больных). Тот факт, что одни микробы могут каким-то образом задерживать рост других, был хорошо известен издавна. В народной медицине для обработки ран и лечения туберкулеза издавна применяли экстракты лишайников. Позднее в состав мазей для обработки поверхностных ран стали включать экстракты бактерий Pseudomonas aeruginosa . Опыт, накопленный тяжёлым путём проб и ошибок, вооружил знахарей знаниями целебных свойств вытяжек из трав и тканей животных, а также различных минералов. Изготовление настоев и отваров из растительного сырья было широко распространено в античном мире, их пропагандировал Клавдий Галён. В средневековье репутацию препаратов из лекарственного сырья значительно уменьшили всевозможные зелья, «изыскания» алхимиков и, конечно, убеждённость в неизлечимости «кар Господних». В этой связи следует упомянуть верование в целительное действие рук «помазанников Божьих», через прикосновение царствующей особы проходили толпы больных. Например, Людовик XIV возложил руки на 10 000 больных, а Карл II Стюарт - на 90 000. По мере понимания врачами правильности концепции лечение болезней принимало всё более «этиотропный» характер. Основателем химиотерапии с полным правом должен считаться Парацельс, названный А. И. Герценым «первым профессором химии от сотворения мира». Парацельс не без успеха применял для лечения инфекций человека и животных различные неорганические вещества (например, соли ртути и мышьяка). После открытия Нового Света стало известно о свойствах коры дерева «кина - кина», использовавшейся индейцами для лечения малярии. Популярности этого средства способствовало чудесное излечение жены вице-короля Америки, графини Цинхон, и в Европу кора прибыла уже под названием «порошок графини», а позднее её имя присвоили и самому хинному дереву. Такую же славу снискало и другое заокеанское средство - ипекакуана, применявшееся индейцами для лечения «кровавых» поносов.

Еще в 1871-1872 гг. российские ученые В.А. Манассеин и А.Г. Полотебнов наблюдали эффект при лечении зараженных ран прикладыванием плесени, хотя почему они помогают, никто не знал, и феномен антибиоза был неизвестен.

Однако некоторые из первых ученых-микробиологов сумели обнаружить и описать антибиоз (угнетение одними организмами роста других). Дело в том, что антагонистические отношения между разными микроорганизмами проявляются при их росте в смешанной культуре. До разработки методов чистого культивирования разные бактерии и плесени выращивались вместе, т.е. в оптимальных для проявления антибиоза условиях. Луи Пастер еще в 1877 при изучении сибирской язвы заметил, что заражение животного смесью возбудителя и других бактерий часто мешает развитию заболевания, что позволило ему предположить, что конкуренция между микробами может блокировать патогенные свойства возбудителя. Он описал антибиоз между бактериями почвы и патогенными бактериями – возбудителями сибирской язвы и даже предположил, что антибиоз может стать основой методов лечения. Наблюдения Л. Пастера (1887) подтвердили, что антагонизм в мире микробов – это распространенное явление, однако природа его была неясна.

Первые антибиотики были выделены еще до того, как стала известной их способность угнетать рост микроорганизмов. Так, в 1860 был получен в кристаллической форме синий пигмент пиоцианин , вырабатываемый небольшими подвижными палочковидными бактериями рода Pseudomonas , но его антибиотические свойства были обнаружены лишь через много лет. В 1899г. – Р. Эммерих и О. Лоу сообщили об антибиотическом соединении, образуемом бактериями Pseudomonas pyocyanea , и назвали его пиоцианазой ; препарат использовался как местный антисептик. В 1896 Б. Гозио из жидкости, содержащей культуру грибка из рода Penicillium (Penicillium brevicompactum ) , удалось кристаллизовать еще одно химическое вещество, получившее название микофеноловая кислота , подавляющая рост бактерий сибирской язвы.

Но ни одно лекарство не спасло столько жизней, сколько пенициллин . С открытием этого вещества началась новая эра в лечении инфекционных болезней – эра антибиотиков. Открытие лекарств антибиотиков, к которым мы уже так привыкли в наше время, сильнейшим образом изменило человеческое общество. Отступили заболевания еще не давно считавшиеся безнадежными. Еще удивительнее история самого открытия.

Выдающийся биолог Александр Флеминг родился 6 августа 1881 г. в Шотландии, в графстве Эршир. Мальчик рос на ферме своих родителей, со всех сторон окружённой вересковыми пустошами. Природа давала юному Александру гораздо больше, чем школа. В возрасте 13 лет юный Александр переехал в столицу Великобритании - Лондон. В то время как его сверстники учились, Флеминг 5 лет проработал в местной пароходной компании, зарабатывая себе на жизнь.

В 1901 г. Флеминг поступил в медицинское училище Святой Марии, сдав сложные экзамены. Ему не помешало то, что прошло уже 5 лет, как он перестал учиться. Более того, он был признан лучшим из поступающих во всём Соединённом королевстве! Флеминг никогда не делал бесполезной работы. Он умел извлечь из учебника только необходимое, пренебрегая остальным.

После завершения учёбы Флеминга пригласили работать в бактериологической лаборатории больницы Св. Марии. Бактериология в то время находилась на переднем крае науки.

Рабочий день Флеминга в первые годы его научной деятельности был едва ли не круглосуточным. По его приходу на работу проверяли часы. И даже в два часа ночи задержавшиеся на работе сотрудники могли зайти к нему побеседовать и выпить кружку пива.

В августе 1914 г. разразилась Первая мировая война. Флеминг получил звание офицера медицинской службы и был послан создавать бактериологическую лабораторию во Францию, в город Булонь.

Каждый день, поднимаясь на чердак госпиталя, где разместилась лаборатория, Флеминг проходил через госпитальные палаты, где лежали раненые. Ежедневно прибывали всё новые и новые их группы. Здесь, в госпитале, они сотнями умирали от инфекции. Переломы, разрывы внутренних тканей... Кусочки земли и одежды, попавшие в раны, довершали работу бомб. Лицо раненого приобретало серый цвет, дыхание затруднялось - начиналось заражение крови. Результат - неизбежная смерть.

Флеминг стал исследовать эту инфекцию. Он рассказывал:

«Мне советовали обязательно накладывать повязки с антисептиками: карболовой, борной кислотами или перекисью водорода. Я видел, что антисептики убивают не все микробы, но мне говорили, что они убивают некоторые из них, и лечение проходит успешнее, чем в том случае, когда не применяют антисептики».

Флеминг решил поставить простой опыт, чтобы проверить, насколько антисептики помогают бороться с инфекцией.

Края большинства ран были неровными, со многими изгибами и извилинами. Микробы скапливались в этих изгибах. Флеминг сделал муляж раны из стекла: раскалил пробирку и изогнул её конец наподобие извилин раны. Затем он наполнил эту пробирку сывороткой, загрязнённой навозом. Это была как бы общая схема обычного боевого ранения. На следующий день сыворотка стала мутной и издавала неприятный запах. В ней размножилось огромное количество микробов. Затем Флеминг вылил сыворотку и наполнил пробирку раствором обычного сильного антисептика, после чего снова заполнил промытую таким образом пробирку чистой, незаражённой сывороткой. И что же? Сколько бы раз Флеминг ни промывал пробирку антисептиками, чистая сыворотка через день становилась такой же зловонной и мутной.

В изгибах пробирки микробы сохранялись, несмотря ни на что. Из этого опыта Флеминг сделал вывод, что обычные антисептики нисколько не помогают при фронтовых ранениях. Его совет военным врачам был следующим: удалять все омертвевшие ткани, где легко могут развиваться микробы, и помогать организму самому бороться с инфекцией посредством выделения белых кровяных телец, из которых образуется гной. Белые кровяные клетки (свежий гной) уничтожают колонии микробов.

Флеминг писал о своих чувствах в те дни:

«Глядя на заражённые раны, на людей, которые мучились и умирали и которым мы не в силах были помочь, я сгорал от желания найти, наконец, какое-нибудь средство, которое способно было бы убить эти микробы, нечто вроде сальварсана...»

В ноябре 1918 г. закончилась война, Флеминг вернулся в Англию, в свою лабораторию.

Флеминга часто высмеивали за беспорядок в лаборатории. Но этот беспорядок, как выяснилось, был плодотворным. Один из его сотрудников рассказывал:

«Флеминг сохранял выделенные им культуры микроорганизмов по две-три недели и, прежде чем уничтожить, внимательно их изучал, чтобы проверить, не произошло ли случайно какого-нибудь неожиданного и интересного явления. Дальнейшая история показала, что, если бы он был таким же аккуратным, как я, он скорее всего не открыл бы ничего нового».

Как-то раз в 1922 г., страдая насморком, Флеминг посеял в лабораторной посуде - чашке Петри - собственную носовую слизь. В той части чашки Петри, куда попала слизь, колонии бактерий погибли. Флеминг стал исследовать это явление и выяснил, что такое же действие оказывают слёзы, обрезки ногтя, слюна, кусочки живой ткани. Когда капля слезы попадала в пробирку с раствором, мутным от множества бактерий, он за несколько секунд становился совершенно прозрачным!

Сотрудникам Флеминга пришлось перенести немало «мучений», добывая слёзы для опытов. Они срезали цедру с лимона, выжимали её себе в глаза и собирали выступавшие слёзы. В больничной газете был даже помещён юмористический рисунок, на котором дети за небольшую плату дают лаборанту себя высечь, а другой лаборант собирает у них слёзы в сосуд с надписью « антисептики ».

Флеминг назвал открытое им вещество «лизоцим » - от греческих слов «растворение» и «закваска» (имелось в виду растворение бактерий). К сожалению, лизоцим убивал далеко не все вредные, болезнетворные бактерии.

Совершить самое важное открытие в его жизни Флемингу также помогли случай и творческий беспорядок в лаборатории. Как-то в 1928 г. Флеминга навестил его коллега Прайс. Флеминг перебирал чашки Петри со старыми культурами. Во многие из них залетела плесень, что бывает довольно часто. Флеминг говорил Прайсу: «Как только вы открываете чашку с культурой, вас ждут неприятности: обязательно что-нибудь попадёт из воздуха...» Вдруг он замолчал и сказал, как всегда, спокойно: «Странно...»

В чашке Петри, которую он держал в руках, тоже выросла плесень, но здесь колонии бактерий вокруг неё погибли, растворились.

С этого момента Флеминг стал исследовать смертоносную для бактерий плесень, а чашку Петри, в которую она залетела, он сохранил до самой смерти.

Александр Флеминг наблюдая антагонизм Penicillium notatum и стафилококка в смешанной культуре открыл штамм плесневого гриба пеницилла (Penicillium notatum ), выделяющего химическое вещество, которое задерживает рост стафилококка. Вещество было названо «пенициллин». Правда, впереди было самое важное испытание: не окажется ли это вещество таким же вредным для человека и животных, как для бактерий? Если бы это было так, пенициллин ничем бы не отличался от множества известных и до того антисептиков. Его нельзя было бы вводить в кровь. К величайшей радости Флеминга и его сотрудников, пенициллиновый бульон, смертоносный для бактерий, был не более опасен для подопытных кроликов и мышей, чем обычный бульон.

Но чтобы применять пенициллин для лечения, его нужно было получить в чистом виде, выделить его из бульона. Бульон, содержащий чужеродные для организма белки, нельзя было вводить в кровь человека.

В феврале 1929 г. Флеминг сделал сообщение о своём открытии в медицинском обществе. Ему не было задано ни одного вопроса! Учёные встретили открытие абсолютно равнодушно, без малейшего интереса. Ещё в 1952 г. Флеминг вспоминал об этой «ужасной минуте».

Так прошло одиннадцать лет! Те немногие химики, которые заинтересовались пенициллином, так и не смогли выделить его в чистом виде. Флеминг, впрочем, не терял надежды и верил, что у открытого им вещества большое будущее.

В 1940 г. неожиданно произошло одно из самых счастливых событий в жизни Флеминга. Из медицинского журнала он узнал, что оксфордским учёным Флори и Чейну удалось получить стабильный препарат пенициллин в очищенном виде. Флеминг ничем не выдал своей радости и только позже заметил, что о работе с такими химиками он и мечтал уже 11 лет.

История открытия пенициллина поистине удивительна. Кто бы мог подумать, что талантливый еврейский мальчик-музыкант, отец которого был выходцем из России, а мать немкой, в конечном итоге бросит стезю профессионального пианиста и найдет совершенно иной путь к всемирной славе. Речь идет об Эрнесте Каине, которого мы знаем под его англицированным именем Чейн. Трудно сказать, правы ли те, кто видит судьбу человека в его имени, но в данном случае имя Эрнест, которое переводится как «искренний, правдивый», полностью соответствовало характеру и моральным достоинствам его носителя.

Отец Эрнеста был талантливым химиком, организовавшим в Берлине собственное производство. И хотя сын окончил гимназию и университет, родители видели его за роялем. Он стал талантливым концертирующим пианистом, а также музыкальным критиком берлинской газеты, однако любовь к науке пересилила. В промежутках между концертами и репетициями молодой человек пропадал в лаборатории химической патологии известнейшей берлинской клиники «Шарите» - «Милосердие».

В апреле 1933 г. Э. Чейн был вынужден покинуть Германию, чтобы больше никогда не возвращаться на родину. Его друг, знаменитый английский биолог Дж. Холдейн, устроил его в Кембридж, где в ходе своей работы над диссертацией Э. Чейн доказал, что нейротоксин змеиного яда является пищеварительным ферментом. Работа сделала ему имя, поэтому в 1935 г. он был приглашен профессором патологии Г. Флори в Оксфорд, чтобы развернуть работу по лизоциму - антибактериальному ферменту. Э. Чейн предлагает Г. Флори сконцентрироваться на более обещающем пенициллине, открытом А. Флемингом. Энтузиазм Э. Чейна заразил Г. Флори, который не мог дождаться проверки действия антибиотика на микробах. Именно Флори достал первые 35 фунтов правительственных фондов для финансирования работы, поддержанной Э. Мелланби из Совета медицинских исследований.

25 мая 1940 г. под грохот бомб, падающих на улицы Лондона, был завершен решающий опыт на 50 белых мышах. Каждой из них ввели смертельную дозу микроба стрептококка. Половина мышей не получала никакого лечения, остальным каждые три часа в течение двух суток вводили пенициллин. Через 16 ч 25 подопытных животных погибли, а 24 мыши, получавшие лечение, выжили. Погибла только одна. Затем наступил биохимический триумф Э. Чейна, показавшего, что пенициллин имеет структуру беталактама. Оставалось только наладить производство нового чудо - лекарства.

Его чудодейственные свойства были доказаны в том же Оксфорде, в одну из клиник которого 15 октября того же года поступил местный полицейский, жаловавшийся на непроходящую «заеду» в углу рта (ранка была инфицирована золотистым стафилококком и нагноилась). К середине января инфекция захватила лицо мужчины, шею и перекинулась на руку и легкое. И тогда врачи отважились вколоть бедняге неслыханный до сего момента пенициллин. В течение месяца больной чувствовал себя неплохо: но драгоценные кристаллы, полученные из Оксфорда, кончились, и 15 марта 1941 г. полицейский скончался. Но не смотря на неудачный опят Г. Флори стал собираться в Америку в поисках коммерческой помощи в налаживании массового производства продукта. Известная фармацевтическая компания «Мерк» из города Рауэй штат Нью-Джерси, спонсировала работы С. Ваксмана из университета Руттерса, который, начиная с 1939 г, вел работы по изучению «антибиозиса» стрептомицетов. Его первая работа была опубликована 24 августа 1940 г. в авторитетнейшем «Ланцете», выходящем в Лондоне. Поэтому приезд Г. Флори с готовыми наработками был подобен манне небесной. «Американцы украли пенициллин у британцев!» Это верно лишь отчасти, поскольку Англия вследствие военного истощения ресурсов, не смогла бы быстро наладить промышленное производство антибиотиков, с помощью которых лечили и британских солдат. Недаром же на вручении Нобелевской премии по медицине за 1945 г. говорили, что «Флеминг сделал для победы над фашизмом больше, чем 25 дивизий».

Первое применение пенициллина в США произошло в феврале 1942 г. Внезапно заболела Анна Миллер, молодая 33-летняя жена администратора Йельского университета, мать троих детей. Будучи медсестрой по образованию, она сама лечила четырехлетнего сына от стрептококковой ангины. Мальчик выздоровел, но вот у его мамы внезапно случился выкидыш, осложнившийся лихорадкой с высокой температурой. Женщина была доставлена в главный госпиталь Нью-Хейвена в том же штате Нью-Джерси с диагнозом стрептококковый сепсис: в миллилитре ее крови бактериологи насчитали 25 колоний микроба! Но что могли сделать в те дни врачи против грозного сепсиса? Если бы не чудо в лице Дж. Фултона, друга Флори, лежавшего в другой палате, который подхватил какую-то легочную инфекцию, обследуя солдат в Калифорнии. 12 марта лечащий врач рассказал Дж.Фултону о приближающейся кончине Анны, у которой температура 41° держалась уже в течение 11 дней! «А нельзя ли получить лекарство у Флори», - высказал он робкую надежду. Дж. Фултон считал, что он вправе обратиться к другу. В конце концов именно он помогал ему в 1939 г. получить грант фонда Рокфеллера на 5 тысяч долларов. (Деньги отпускались на исследование бактерицидного действия пенициллина).

Дж. Фултон позвонил в «Мерк», разрешение было получено, и первые дозы пенициллина были посланы в госпиталь Нью-Хейвена. Бесценный груз сопровождала полиция. В 3 часа пополудни Анне сделали первый укол. К 9 часам следующего утра ее температура стала нормальной! В ноябре 1942 г. «Мерк» провела уже массовые испытания пенициллина на людях, когда получателями антибиотика стали полтысячи людей, пострадавших на пожаре в ночном клубе Бостона.

A в мае 1942 г. Анна Миллер, потерявшая в весе 16 кг, но счастливая и здоровая, выписалась из больницы. В августе свою «крестницу» посетил А. Флеминг. В 1990 г. ее, 82-летнюю, чествовали в Смитсонианском музее естественных наук в Вашингтоне.

В 1942 г. Флемингу также пришлось ещё раз проверить действие пенициллина на своём близком друге, заболевшем воспалением мозга. В течение месяца Флемингу удалось полностью вылечить безнадёжного больного.

В 1941-1942 гг. в Америке и Англии налаживалось промышленное производство пенициллина.

Крошечная спора, случайно занесённая ветром в лабораторию Флеминга, теперь творила настоящие чудеса. Она спасала жизнь сотням и тысячам больных и раненных на фронтах людей. Она положила начало целой отрасли фармацевтической промышленности - производству антибиотиков. Позднее как-то раз, говоря об этой споре, Флеминг привёл поговорку: «Могучие дубы вырастают из малых желудей». Война придала открытию Флеминга особое значение.

Имя учёного было окружено славой, которая всё возрастала. Его, как и его лекарство, знал теперь весь мир. Действие нового лекарства превзошло самые смелые ожидания. Многим тяжелым больным он приносил полное исцеление. С этого момента началось триумфальное шествие пенициллина по всем странам мира. Его называли «чудесная плесень», «желтая магия» и т. п. Он излечивал заражение крови, воспаление легких, всевозможные нагноения и другие тяжелые недуги. Раньше от заражения крови (сепсиса) погибало 50-80 человек из каждых 100 заболевших людей. Это была одна из самых опасных болезней, перед которой медицина чаще всего оказывалась бессильной. Сейчас пенициллин спасает почти всех больных сепсисом. Смерть от заражения крови теперь уже чрезвычайное происшествие. От воспаления легких погибало много людей, особенно детей и стариков, теперь от этой болезни умирают редко. Нужно только вовремя применить пенициллин.

Английский король возвёл учёного в дворянское достоинство. А в 1945 году А. Флеминг, Х. Флори и Э. Чейн были удостоены Нобелевской премии по медицине за открытие пенициллина.

Александр Флеминг скоропостижно скончался 11 марта 1955 г. Его смерть заставила скорбеть едва ли не весь мир. В испанском городе Барселоне, который посещал Флеминг, цветочницы высыпали все цветы из корзин к мемориальной доске с его именем. В Греции, где тоже бывал учёный, объявили траур. Флеминг был погребён в лондонском соборе Св. Павла.

Хотя существуют сведения что в 1985 г. в архивах Лионского университета была найдена диссертация рано скончавшегося студента-медика (Эрнест Августин Дюшене), за сорок лет до Флеминга подробно характеризующая открытый им препарат из плесени Р. notatum , активный против многих патогенных бактерий.

В 1937 г. – М. Вельш описал первый антибиотик стрептомицетного происхождения – актиномицетин . В 1939 г. – Н.А. Красильников и А.И. Кореняко получили мицетин ;

Среди первых исследователей, занявшихся целенаправленным поиском антибиотиков, был Р.Дюбо. Проведенные им и его сотрудниками эксперименты привели к открытию антибиотиков, вырабатываемых некоторыми почвенными бактериями, их выделению в чистом виде и использованию в клинической практике. В 1939 Дюбо получил тиротрицин – комплекс антибиотиков, состоящий из грамицидина и тироцидина; это явилось стимулом для других ученых, которые обнаружили еще более важные для клиники антибиотики.

Таким образом, к моменту получения пенициллина в очищенном виде было известно пять антибиотических средств (микофеноловая кислота, пиоцианаза, актиномицетин, мицетин и тиротрицин ).

Так начиналась эра антибиотиков. В нашей стране большой вклад в учение об антибиотиках внесли З. В Ермольева и Г.Ф. Гаузе. Зинаида Виссарионовна Ермольева (1898 – 1974) – автор первого советского пенициллина (крустозин ), полученного из P . Crustosum

Сам термин «антибиотики » (от греч. Anti, bios – против жизни) был предложен С. Ваксманом в 1942 году для обозначения природных веществ, продуцируемых микроорганизмами и в низких концентрациях антагонистичных к росту других бактерий. З.Ваксман со своими студентами в Университете Ратджерса, США, занимался актиномицетами (такими, как Streptomyces) и в 1944 открыл стрептомицин, эффективное средство лечения туберкулеза и других заболеваний. Сильнее всего действует стрептомицин при туберкулезном поражении оболочек мозга - менингите, при туберкулезе гортани, кожи. Раннее почти все заболевшие туберкулезным менингитом погибали, а теперь с помощью стрептомицина большинство больных выздоравливают. На туберкулез легких стрептомицин действует слабее. И все-таки он до сих пор остается одним из лучших средств лечения этой болезни. Стрептомицин помогает также при коклюше, воспалении легких, заражении крови.

В последующем число антибиотиков быстро росло. После 1940 было получено множество клинически важных антибиотиков, в их числе бацитрацин, хлорамфеникол (левомицетин), хлортетрациклин, окситетрациклин, амфотерицин В, циклосерин, эритромицин, гризеофульвин, канамицин, неомицин, нистатин, полимиксин, ванкомицин, виомицин, цефалоспорины, ампициллин, карбенициллин, аминогликозиды, стрептомицин, гентамицин.

Микроорганизмы есть везде, можно сказать - всегда. На данный момент подсчитано, что возраст Земли насчитывает около 4,6 миллиарда лет. Океаны появились около 4,4 миллиарда лет назад. Затем на Земле появились первые бактериальные клетки. Чтобы представить себе, как это долго - только в последние 500 миллионов лет развивалась жизнь в форме, напоминающей нынешние формы.

Таким образом, микроорганизмы составляют многочисленную группу организмов, без которых не обошлось открытие антибиотиков - и дальнейшее совершенствование их форм не было бы возможно. Открытие и введение этих веществ естественного происхождения для лечения инфекционных заболеваний человека, положило начало новой эпохе - спасения жизни и здоровья миллионов людей по всему миру.

История исследований

В научных исследованиях можно найти информацию о том, что микроорганизмы окружающей среды - имеют антибиотические свойства. Уже в древности интуитивно считалось, что существуют в природе вещества, которые помогают в лечении многих заболеваний, в частности инфекций. Есть также доказательства, что люди, еще тогда, пытались использовать антибиотики природного происхождения для лечения различных заболеваний. Следы тетрациклина - для примера, были найдены в останках костей человека в районе Нуби (исторической земли расположенной в настоящее время на территории южного Египта и северного Судана), датируется началом нашей эры (350 - 550).

Другим примером применения антибиотиков в древние времена, является утверждение их присутствия при анализе гистологических образцов, взятых из тела бедренной кости скелета времен Римской Империи, в Ливийской пустыне в Египте. В исследуемых образцах было выявлено наличие тетрациклина. Тот факт, что эти вещества попали в кости, доказывает, что в рационе древних цивилизаций находились вещества богатые на антибиотики природного происхождения. Есть также упоминания, что более 2000 лет назад заплесневелый хлеб в Китае, Греции, Сербии, Египте использовался для лечения некоторых патологических состояний, в частности, при плохо заживающих и инфицированных ранах. Тогда действия природных антибиотиков воспринимались как влияние духов или богов, ответственных за болезни и страдания.

В России существовали подобные применения. Медики давали больным пациентам пиво, смешанное с оболочками черепов и кожей змеи, а вавилонские врачи вылечили больному глаза, используя смесь желчи лягушки и кислого молока. В XVII веке, промывали раны смесью на базе пшеничного хлеба с плесенью. Однако научные размышления над специфическими свойствами микроорганизмов начались лишь в конце XIX века.

В 1870 году в Англии Сэр Джон Скотт Бурдон-Сандерсон начал наблюдения над свойствами плесени. Год спустя, Джозеф Листер экспериментировал с влиянием того, что он назвал Penicillium glaucium на ткани человека. Последовательно, в 1875 году Джон Тинделл пояснил антибактериальное действие гриба Penicillium на страницах Royal Society. Во Франции в 1877 году Луи Пастер провел тезис о том, что бактерии могут убивать другие бактерии. 20 лет спустя, в 1897 году Эрнест Дюшен, на защите диссертации "Антагонизм между плесенью и микроорганизмами", констатировал факт наличия веществ, которые могут привести к подавлению размножения некоторых патогенных бактерий. Дальнейшие исследования плесени и микробов были прерваны в связи со смертью, вызванной туберкулезом ученого.

В 1899 году Рудольф Эммерих и Оскар Лев описали в статье результаты своей работы с микроорганизмами. Они доказали, что бактерии, которые являются источниками одной болезни, могут быть выходом и лечением для другой болезни. Они вели примитивное исследование, применяя зараженные бактериями (Bacillus pyocyaneus - в настоящее время Pseudomonas aeruginosa) бинты. Образцы из этих используемых штаммов бактерий были в состоянии устранить другие штаммы. Из этих экспериментов Эммерих и Лев создали препарат, основанный на штаммах бактерий B. pyocyaneus, который назвали pyocyanase. Это был первый антибиотик для применения в больницах. К сожалению, его эффективность была низкой. Кроме того, наличие большого количества акридизина (вещество токсичное для человека), повлияло на факт прекращения применения данного препарата.

Изобретатель антибиотиков

Важной вехой и, одновременно, началом настоящей эры антибиотиков был 1928 год. Тогда изобретатель антибиотиков Александр Флеминг - шотландский бактериолог, исследователь (1922) - открыл белок со свойствами антисептика, после возвращения из отпуска, случайно обратил внимание на странные аномалии, которые произошли на чашке с колониями Золотистого стафилококка, предназначенной для утилизации. Его внимание привлекла голубая плесень (Penicillium notatum) и связанное с этим интересное наблюдение, что фрагмент на питательной среде колоний бактерий, рос в пространстве, что окружает мицелий, подвергаясь дезинтеграции. Тогда он начал разведение плесени, одновременно начал проводить исследования для того, чтобы использовать плесень в борьбе с патогенами. Исследования продолжались достаточно долго. Спустя 10 лет уже в 1939 году Говард Флори, Эрнст Чейн и Норман Хитл внедрили в производство пенициллин.

Сначала пенициллин производили на нескольких чашках, но со временем они внедрили масштабную промышленность данного вещества. Да, именно антибиотик под названием пенициллин вошел в клиническую практику в 1940 году. Пенициллин начали использовать во время боевых действий в Северной Африке, в 1943 году. Доступен он был в форме кальциевой соли (CaPn) в виде порошка, который представлял собой смесь CaPn и сульфонамиды. Применяли его для засыпки ран, в виде мазей, а также в чистом виде, предназначенном для приготовления растворов для промывания полостей тела и ран, а также в виде таблеток натриевой соли (NaPn), которые после преобразования в волокнистую солевую массу предназначались для инъекций. Вначале на фронт попадали ограниченные ресурсы данного антибиотика, кроме того, детально документировалось каждое его использование. Применяли его, в частности, для лечения газовой гангрены, тяжелых ран грудной клетки с повреждением внутренних органов, ран головы и сложных, открытых ран, при повреждениях суставов. Его использовали также для лечения тяжелых форм воспаления легких, менингита и септицемии - после предварительной проверки на чувствительность бактерий которые вызвали эти инфекции, к пенициллину. В более поздний период, когда на фронт попадало больше препарата, его использовали также для лечения гонореи.

Развитие и проведение дальнейших анализов

Еще один ученый, который навсегда вошел в историю как первооткрыватель антибиотиков, полученных из микроорганизмов - Сельман Ваксман. Это он первым употребил название "антибиотик" (anti - против и biotikos - жизненный) - химическое вещество, вырабатываемое бактериями, обладает способностью убивать или задерживать рост других микроорганизмов. Ваксман, еще, будучи студентом, систематически брал пробы грунта с территории своего учебного заведения и занимался наблюдением роста различных микроорганизмов. Во время своих долго продолжающихся исследований отметил возникновение колоний микробов, количество которых зависит от типа почвы, рн, глубины добычи и назначения грунта. Эти открытия повлияли на тот факт, что этот человек на постоянной основе занялся разведением грамм-положительных бактерий. Следствием долгих исследований Ваксмана, в дальнейшем стало открытие стрептомицина, его учеником - Альбертом Шатцом.

Он отметил, что Streptomyces griseus (S. griseus) производит связь активности в отношении грамотрицательных бактерий и микобактерий туберкулеза. Стрептомицин был самым важным открытием с момента открытия пенициллина. Благодаря этому началась эффективная борьба с туберкулезом. Открытия первых антибиотиков дало толчок для проведения дальнейших анализов и изготовления многих новых веществ. В связи с этим, период между 1950 и 1970 годом стал поистине «золотой эрой» открытий новых классов антибиотиков. Из числа многочисленных препаратов, в которых предшественниками были вещества, вырабатываемые микроорганизмами, следует отметить, в частности, те, что относятся к классам b-лактамов, аминогликозидов или тетрациклинов.

Заключение

Как видно из приведенных выше кратких сведений, микроорганизмы дали начало великим открытиям, но с момента введения массового производства антибиотиков, их применение в медицине и в других областях, к сожалению, показало сопротивление организма на несколько классов антибиотиков. Однако фактом является то, что в настоящее время это глобальная проблема и огромная опасность современной медицины.

Несмотря на большой прогресс, который наблюдается в области генетики, микробиологии или молекулярной биологии, еще нет достаточных знаний о механизмах, ответственных за устойчивость к антибиотикам. Не определенно, какие факторы отвечают за устойчивость к антибиотикам и не известно, какие барьеры ограничивают передачу таких генов другим видам микроорганизмов.

С того момента, когда Александр Флеминг открыл антибиотик, прошло почти 100 лет. Этот период можно назвать временем большого развития фармацевтической промышленности, богатого на новые лекарственные препараты для лечения многих болезней, которые совсем недавно считались неизлечимыми. Не было бы всего этого без маленьких микроорганизмов, которые стали великими союзниками человечества.

Большинство доступных сегодня препаратов было обнаружено во время так называемой «золотой эры» антибиотиков. Еще недавно казалось, что с концом этого периода возможности поиска новых бактерий прошли уже все возможные способы. Ничего более далекого от истины - в настоящее время уже известно, что существуют еще большие залежи непроверенных микроорганизмов. Есть много "фабрик", где возможно есть потенциал альтернативных веществ в терапии различных заболеваний. До сих пор продолжаются активные поиски новых мест обитания микроорганизмов, а также новых методов, способов и возможностей их привлечения и разведения. Подсчитано, что к настоящему времени удалось выделить и охарактеризовать только 1% всех антимикробных соединений, которые вырабатываются в природе, и только 10%, естественно, производимых антибиотиков.

Всемирно известный изобретатель антибиотиков – шотландский ученый Александр Флеминг, которому приписывают открытие пенициллинов из плесневых грибов. Это был новый поворот в развитии медицины. За такое грандиозное открытие изобретатель пенициллина получил даже Нобелевскую премию. Ученый достиг истины исследовательским путем, спас от смерти ни одно поколение людей. Гениальное изобретение антибиотиков позволило истреблять патогенную флору организма без серьезных последствий для здоровья.

Что такое антибиотики

С момента появления первого антибиотика прошло уже много десятилетий, но об этом открытии хорошо знают медицинские работники во всем мире, простые обыватели. Сами по себе антибиотики – это отдельная фармакологическая группы с синтетическими компонентами, цель которых – нарушить целостность мембран патогенных возбудителей, прекратить их дальнейшую активность, незаметно вывести из организма, предотвратить общую интоксикацию. Первые антибиотики и антисептики появились в 40-х годах прошлого века, с того времени их ассортимент значительно пополнился.

Полезные свойства плесени

От повышенной активности болезнетворных бактерий хорошо помогают антибиотики, которые были выработаны из плесневых грибов. Лечебное действие антибактериальных препаратов в организме системное, все это благодаря полезным свойствам плесени. Первооткрывателю Флемингу лабораторным методом удалось выделить пенициллин, польза такого уникального состава представлена ниже:

  • зеленая плесень подавляет бактерии устойчивые к другим лекарственным средствам;
  • польза плесневого грибка очевидна при лечении брюшного тифа;
  • плесень истребляет такие болезненные бактерии, как стафилококки, стрептококки.

Медицина до изобретения пенициллина

В средние века человечество знало о колоссальной пользе плесневого хлеба и отдельного вида грибов. Такие лекарственные компоненты активно использовали для обеззараживания гнойных ран участников боевых действий, исключения заражения крови после оперативного вмешательства. До научного открытия антибиотиков было еще много времени, поэтому положительный аспект пенициллинов медики черпали из окружающей природы, определили путем многочисленных экспериментов. Проверяли эффективность новых средств на раненых бойцах, женщинах в состоянии родильной горячки.

Как лечили инфекционные заболевания

Не зная мир антибиотиков, люди жили по принципу: «Выживает только сильнейший», по принципу естественного отбора. Женщины умирали от сепсиса при родах, а бойцы – от заражения крови и нагноения открытых ран. Найти средство для эффективного очищения ран и исключения инфицирования в то время не могли, поэтому чаще знахари и врачеватели пользовались местными антисептиками. Позже, в 1867 году хирург из Великобритании определил инфекционные причины появления нагноения и пользу карболовой кислоты. Тогда это было основное лечение гнойных ран, без участия антибиотиков.

Кто изобрел пенициллин

На главный вопрос, кто открыл пенициллин, имеется несколько противоречивых ответов, однако официально считается, что создатель пенициллина – шотландский профессор Александр Флеминг. С детства будущий изобретатель мечтал найти уникально лекарство, поэтому поступил в медицинскую школу на базе госпиталя Святой Марии, которую окончил в 1901 году. Колоссальную роль при открытии пенициллина сыграл Алмрот Райт, изобретатель вакцины против брюшного тифа. С ним Флемингу посчастливилось посотрудничать в 1902 году.

Учился молодой микробиолог в академии Килмарнок, затем переехал в Лондон. Уже в статусе дипломированного ученого Флемминг открыл существование penicillium notatum. Научное открытие было запатентовано, ученый после окончания Второй Мировой войны в 1945 году даже получил Нобелевскую премию. До этого работа Флеминга была не раз отмечена премиями и ценными наградами. Принимать антибиотики в целях эксперимента человек начал в 1932 году, а до этого исследования проводились преимущественно на лабораторных мышах.

Разработки европейских ученых

Основателем бактериологии и иммунологии является французский микробиолог Луи Пастер, который в девятнадцатом веке подробно описал пагубное воздействие почвенных бактерий на возбудителей туберкулеза. Всемирно известный ученый лабораторными методами доказал, что одни микроорганизмы – бактерии могут быть истреблены другими – плесневыми грибами. Начало научных открытий было положено, перспективы открывались грандиозные.

Известный итальянец Бартоломео Гозио в 1896 году в своей лаборатории изобрел микофеноловую кислоту, которую стали называть одним из первых антибиотических средств. Тремя годами позднее немецкие врачи Эммерих и Лов открыли пиоценазу – синтетическое вещество, способное снижать патогенную активность возбудителей дифтерии, тифа и холеры, демонстрировать устойчивую химическую реакцию против жизнедеятельности микробов в питательной среде. Поэтому споры в науке на тему, кто изобрел антибиотики, не стихают и в настоящее время.

Кто изобрел пенициллин в России

Два российских профессора – Полотебнов и Манассеин спорили на тему происхождения плесни. Первый профессор утверждал, что от плесени пошли все микробы, а второй был категорически против. Манассеин стал исследовать зеленую плесень и обнаружил, что вблизи ее локализации полностью отсутствуют колонии патогенной флоры. Второй ученый занялся изучением антибактериальных свойств такого натурального состава. Такая нелепая случайность в перспективе станет истинным спасением для всего человечества.

Русский ученый Иван Мечников изучил действие ацидофильных бактерий с кисломолочными продуктами, которые благотворно воздействуют на системное пищеварение. Зинаида Ермольева вообще стояла у истоков микробиологии, стала основательницей известного антисептика лизоцима, а в истории известна, как «Госпожа пенициллин». Свои открытия Флеминг реализовал в Англии, параллельно над разработкой пенициллина трудились отечественные ученые. Американские ученые тоже не сидели зря.

Изобретатель пенициллина в США

Американский исследователь Зельман Ваксман параллельно занимался разработкой антибиотиков, но на территории США. В 1943 году ему удалось получить эффективный в отношении туберкулеза и чумы синтетический компонент широкого спектра действия под названием стрептомицин. в дальнейшем было налажено его промышленное производство, чтобы с практической позиции уничтожить вредную бактериальную флору.

Хронология открытий

Создание антибиотиков было постепенным, при этом использовался колоссальный опыт поколений, доказанные общенаучные факты. Чтобы антибактериальная терапия в современной медицине получилась настолько успешной, многие ученые «приложили к этому руку». Изобретателем антибиотиков официально считается Александр Флеминг, но помощь пациентам оказали и другие легендарные личности. Вот что необходимо знать:

  • 1896 г - Б. Гозио создал микофеноловую кислоту против сибирской язвы;
  • 1899 г - Р. Эммерих и О. Лоу открыли местный антисептик на основе пиоценазы;
  • 1928 г - А. Флеминг открыл антибиотик;
  • 1939 г - Д. Герхард получил Нобелевскую премию по физиологии и медицине за антибактериальное действие пронтозила;
  • 1939 г - Н. А. Красильников и А. И. Кореняко стали изобретателями антибиотика мицетин, Р. Дюбо открыл тиротрицин;
  • 1940 г - Э. Б. Чейн и Г. Флори доказали существование стабильного экстракта пенициллина;
  • 1942 г - З. Ваксман предложил создание медицинского термин «антибиотик».

История открытия антибиотиков

Стать медиком изобретатель решил по примеру своего старшего брата Томаса, который в Англии получил диплом и работал врачом-офтальмологом. В его жизни случилось много интересных и судьбоносных событий, которые позволили ему сделать это грандиозное открытие, предоставили возможность продуктивно уничтожать патогенную флору, обеспечить гибель целых колоний бактерий.

Исследования Александра Флеминга

Открытию европейских ученых предшествовала необычная история, произошедшая в 1922 году. Простудившись, изобретатель антибиотиков не надел при работе маску и случайно чихнул в чашку Петри. Через некоторое время неожиданно обнаружил, что в месте попадания слюны вредные микробы погибли. Это был существенный шаг в борьбе с болезнетворной инфекций, возможность вылечить опасную болезнь. Результату такого лабораторного исследования был посвящен научный труд.

Следующее судьбоносное совпадение в трудовой деятельности изобретателя произошло шестью годами позднее, когда в 1928 году ученый уехал на месяц отдыхать с семьей, предварительно сделав посевы стафилококка в питательной среде из агар-агара. По возвращению обнаружил, что плесень отгородилась от стафилококков прозрачной жидкостью, нежизнеспособной для бактерий.

Получение активного действующего вещества и клинические исследования

Учитывая опыт и достижения изобретателя антибиотиков, ученые микробиологии Говард Флори и Эрнст Чейн в Оксфорде решили пойти дальше и занялись получением пригодного к массовому использованию препарата. Лабораторные исследования проводились на протяжении 2 лет, в результате чего было определено чистое действующее вещество. Испытывал его в обществе ученых сам изобретатель антибиотиков.

При помощи такой инновации Флори и Чейн вылечили несколько осложненных случаев прогрессирующего сепсиса и пневмонии. В дальнейшем разработанные в лабораторных условиях пенициллины начали успешно лечить такие страшные диагнозы, как остеомиелит, газовая гангрена, родильная горячка, стафилококковая септицемия, сифилис, сифилис, другие инвазивные инфекции.

В каком году изобрели пенициллин

Официальная дата общенародного признания антибиотика – 1928 год. Однако такого рода синтетические вещества были выявлены и раньше – на внутреннем уровне. Изобретатель антибиотиков – Александр Флеминг, но за это почетное звание могли посоперничать европейские, отечественные ученые. Шотландцу удалось прославить свое имя в истории, благодаря этому научному открытию.

Запуск в массовое производство

Поскольку открытие было официально признано в период Второй Мировой войны, очень сложно было наладить производство. Однако все понимали, что с его участием можно спасти миллионы жизней. Поэтому в 1943 году в условиях боевых действий серийным выпуском антибиотических средств занялась ведущая американская компания. Таким способом удалось не только сократить показатели смертности, но и увеличить продолжительность жизни мирного населения.

Применение в годы второй мировой войны

Такое научное открытие было особенно уместно в период боевых действий, поскольку люди тысячами умирали от гнойных ран и масштабного заражения крови. Это были первые эксперименты на людях, которые давали устойчивый терапевтический эффект. После окончания войны производство таких антибиотиков не просто продолжилось, но и в разы повысилось по объемам.

Значение изобретения антибиотиков

Современное общество по сей день должно быть благодарно, что ученые своего времени сумели придумать эффективные против инфекций антибиотики и воплотили свои разработки в жизнь. Таким фармакологическим назначением могут смело воспользоваться взрослые и дети, вылечить ряд опасных заболеваний, избежать потенциальных осложнений, летального исхода. Изобретатель антибиотиков не забыт в нынешнее время.

Положительные моменты

Благодаря антибиотическим средствам, смерть от пневмонии и родовой горячки стала редкостью. Кроме того, наблюдается положительная динамика при таких опасных заболеваниях, как брюшной тиф, туберкулез. С помощью уже современных антибиотиков можно истребить патогенную флору организма, вылечить опасные диагнозы еще на ранней стадии инфицирования, исключить глобальное заражение крови. Заметно снизился и показатель детском смертности, женщины при родах умирают гораздо реже, чем в средние века.

Отрицательные аспекты

Изобретатель антибиотиков тогда не знал, что со временем патогенные микроорганизмы адаптируются в антибиотической среде и перестанут погибать под воздействием пенициллина. Кроме того, не существует лекарство от всех возбудителей, изобретатель такой разработки еще не появился, хотя современные ученые к этому стремятся годами, десятилетиями.

Генные мутации и проблема резистентности бактерий

Патогенные микроорганизмы по своей природе оказались так называемыми «изобретателями», поскольку под воздействием антибиотических препаратов широкого спектра действия способны постепенно мутировать, приобретая повышенную устойчивость к синтетическим веществам. Вопрос резистентности бактерий для современной фармакологии стоит особенно остро.

Видео

Внимание! Иформация представленная в статье носит ознакомительный характер. Материалы статьи не призывают к самостоятельному лечению. Только квалифицированный врач может поставить диагноз и дать рекомендации по лечению исходя из индивидуальных особенностей конкретного пациента.

Нашли в тексте ошибку? Выделите её, нажмите Ctrl + Enter и мы всё исправим!

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

«История становления и развития антибиотикотерапии»

Введение

Жизнь против жизни

Заключение

Список литературы

Введение

Ценность антибиотиков как лекарств ни у кого не вызывает сомнения. Почти каждый взрослый человек испытал их целебное действие на себе. Кому они помогли выздороветь, а кому и спасли жизнь. Антибиотики совершенно изменили структуру заболеваемости -- острозаразные болезни, гнойные заболевания, воспаление легких, еще совсем недавно бывшие основной причиной смерти людей, теперь отодвинуты на задний план. Антибиотики преобразили хирургию, создав условия для выполнения сложных операций, позволили резко снизить детскую смертность. Они преобразовали животноводство, растениеводство, целые отрасли пищевой промышленности. Среднегодовой прирост объема потребления антибиотиков в развитых странах составляет 7--9% и пока тенденция к спаду не предвидится.

Жизнь против жизни

Все началось с обычной зеленой плесени. Первым, кто описал удивительные свойства зеленоватого пушистого налета, неведомо откуда поселяющегося на забытых пищевых остатках, был профессор Военно-медицинской академии В. А. Монассейн. Его статья «Об отношении бактерий к зеленому кистевику и о влиянии некоторых средств на развитие этого последнего», в котором рассказывалось о способности плесени убивать микробов, появилась в печати более ста лет назад -- в 1871 г. Через год в статье «Патологическое значение плесени» профессор А. Г. Полотебнов сообщил о своих попытках использовать плесень для лечения гнойных ран. Позднее способность одних микроорганизмов подавлять рост и размножение других была описана многими авторами. Луи Пастер, наблюдавший борьбу между микробами, предсказывал использование этого явления с целью лечения больных.

В 1896 г. итальянский врач Б. Гозио, изучавший причины поражения риса плесенью, выделил культуру зеленоватого микроскопического гриба. Жидкая среда, в которой рос этот гриб, оказывала губительное действие на бактерии сибирской язвы. Фактически в руках Б. Гозио был первый в мире антибиотик, однако он не получил практического применения и был забыт. Немецкие ученые Р. Эммерих и О. Лев из культуры синегнойной палочки (по-латыни она называется пиоцианеум) получил препарат пиоцианазу, который пытались использовать для лечения ран. Одновременно советский ученый Н. Ф. Гамалея из культуры той же палочки получил препарат пиокластин. Однако из-за непостоянства лечебного эффекта этих препаратов их вскоре перестали применять. В 1913 г. в Америке микробиологи Альсберг и Блек получили антибиотическое вещество из культуры гриба, принадлежавшего к семейству пенициллиумов. Они назвали это вещество пенициллиновой кислотой и собирались применить в клинике, но из-за начала первой мировой войны исследования остались незавершенными.

В 1889 г. француз Вюльмен, собрав все сведения о взаимном влиянии микробов, сформулировал очень важное положение «Когда два живых тела тесно соединяются, и одно из них оказывает разрушительное действие на другое, можно сказать, что происходит антибиоз» (от греч. «анти» -- против, «биос» -- жизнь). Так было произнесено слово, от которого произошло название «антибиотики» -- вещества, вырабатываемые одним живым организмом для разрушения другого живого организма. Борьба живого с живым оказалась очень выгодна для человека.

Самое выдающееся медицинское открытие XX века было сделано в один из сентябрьских дней 1928 года в крохотной лаборатории, теснящейся под лестницей. Вряд ли оно было случайным, как принято думать: Александр Флеминг, бактериолог лондонской больницы Святой Марии, шел к нему более полутора десятков лет -- и все-таки, наверное, было бы несправедливо вовсе отвергать элемент случайности в этом открытии.

Впоследствии Прайс, ставший известным ученым, так напишет об этом дне: «Меня поразило, что Флеминг не ограничился наблюдениями, а тотчас же принялся действовать. Многие, обнаружив какое-нибудь явление, чувствуют, что оно может быть замечательным, но лишь удивляются и вскоре забывают о нем. Флеминг был не таков...»

Что такое плесень? Это растительные организмы, крошечные грибки, размножающиеся в сырых местах. Внешне плесень напоминает войлочную массу белого, зеленого, коричневого и черного цвета. Вырастает плесень из спор -- микроскопических живых организмов, невидных невооруженным глазом. Микологии -- науке о грибах -- известны тысячи разновидностей плесени. Грибок, так заинтересовавший Флеминга, назывался Penicillium notatum. Впервые он был найден шведским фармакологом Вестлингом на сгнивших листах кустарника иссопе.

В тот день он перебирал в своей маленькой лаборатории чашки Петри со старыми культурами бактерий. Эти чашки, названные по имени их изобретателя, похожи на коробочки, в которых продается гуталин. Они только пошире и сделаны из стекла. Чашки заполняют обезжиренным бульоном с добавлением особого вещества агар-агара, получаемого из морских водорослей. Благодаря агар-агару, который очень напоминает желатин, бульон застывает и образует твердый студень. Для человека такой студень не слишком привлекателен, а для микробов -- лакомое блюдо. Стоит на поверхность студня попасть хоть одному микробу, как он начинает быстро размножаться. Особенно быстро размножение микробов происходит при температуре человеческого тела -- 37°С. Поэтому чашки Петри, после того как на них посеят микробы, ставят в специальные шкафы (термостаты), поддерживающие нужную температуру. Через сутки каждый микроб, многократно разделившись, превратится в небольшое микробное селение -- колонию. Похожа такая колония на круглую бляшку -- налет на агаре. Опытный микробиолог уже по форме, цвету и характеру поверхности колонии может определить тип микроба.

Доктор Флеминг, просматривая старые посевы, ворчал. Поскольку крышки в процессе работы многократно открывались, во многие из них залетали посторонние микробы. Особенно мешала плесень, для развития и роста которой высокая температура не требуется. Если в чашку попал один плесневый гриб, то он начинает расти, постепенно наплывая на более ранние культуры. пенициллин плесень аллергия медицина

Но вдруг Флеминг остановился. Что такое? В одной из чашек плесени вроде бы и не много, но культуры стафилококков -- микробов, вызывающих нагноения, -- вокруг нее исчезли. Они как бы растворились. Дальше шли сильно измененные колонии, желтоватые бляшки превратились в прозрачные капельки. И только совсем у края чашки сохранилось несколько микробных поселений.

Пробурчав под нос: «Это очень интересно», -- Флеминг соскоблил часть плесени и бросил в бутылку с бульоном. Через несколько дней в бутылке из отдельных крошечных грибов выросли нити, которые, разветвляясь, образовали сплошную волокнистую массу. На вид это была обычная ничем не примечательная плесень, которая вырастает на забытой корке хлеба или завалявшихся фруктах.

Позднее Флеминг ставил решающий опыт. В центре чашки он поместил маленький кусочек плесени, а вокруг -- по капельке разных бактерий. Капельки он размазал по студню в виде лучей, идущих от центра. Через пару дней и плесень, и бактерии размножились. Подавляя дрожь в руках, исследователь поднес чашку к свету и сразу увидел, что опыт удался. За счет массы бактерий лучи стали хорошо видны. Но некоторые из них проросли полностью, а другие только у края чашки. Плесень убила их на расстоянии нескольких сантиметров. Самым примечательным было то, что эта плесень -- «пенициллиум нотатум», таково было ее научное название, выделяла яд, который действовал губительно на микробов, особо опасных для человека. Погибли стрептококки, вызывающие воспаление в горле, стафилококки, вызывающие нагноения, пневмококки, вызывающие воспаление легких, погибли дифтерийные палочки и даже палочки сибирской язвы -- страшной болезни, спасения от которой не было. Но может быть яд, выделяемый плесенью, опасен и для самой человека? Бульон из бутылки отфильтровывается и вводится мыши. Никаких признаков отравления не наблюдается. Вместе с тем достаточно капнуть этот бульон в стакан с чистой культурой микробов, как все они погибают.

Все хорошо, но бульон нельзя вводить человеку ни под кожу, ни в мышцу, ни тем более в вену. Именно поэтому Флеминг предложил использовать его для лечения ран.

Вот эта работа и вызвала неудовольствие всемирно известного микробиолога, действительного члена многих академий и научных обществ, профессора Лондонского университета сэра Алмрот Эдуард Райта. В один из ноябрьских дней 1929 г. Райт был сердит как никогда. Самое худшее, что сердиться приходилось на одного из своих любимых учеников, доктора Александра Флеминга, который, несмотря на постоянные споры с учителем, пока не доставлял ему огорчения. Сегодня утром Флем, как звали Флеминга в лаборатории, принес на подпись статью, в которой значилось: «Определенный вид пенициллиум (плесневого гриба) вырабатывает в питательной среде мощное антибактериальное вещество». И дальше: «Предлагается применить его в качестве эффективного антисептика -- противогнилостного средства».

Как? Разве он, Райт, не доказал, что при лечении инфекционных и других болезней, вызываемых микробами, следует полагаться только на защитные силы самого организма и предохранительные прививки? Разве не с этим упорным шотландцем в годы первой мировой войны они доказали, что все (!!!) вещества, в том числе и карболовая кислота, убивающая микробы в пробирке, на хирургических инструментах и вообще на предметах, не способствуют, а препятствуют заживлению ран. Как не понять, что любой способ воздействия на микробы (холод, огонь, яд) обязательно должен приводить также и к гибели клеток человеческого тела. Такие вещества могут быть применены разве что на коже, которая защищена от губительного действия яда слоем роговых чешуек. «Кажется я достаточно четко писал, -- думал Райт, -- что лечение инфекционных заболеваний у человека путем введения в организм химических синтетических веществ (химиотерапия) невозможно и никогда не будет осуществлено. Флема сбил с истинного пути фантазер Пауль Эрлих. Ну, не фантазия ли? Этот австриец хочет создать такое лекарство, которое, будучи введено в кровь человека, сумело бы распознавать среди его клеток врага, миновало бы, обошло клетки тела хозяина, нашло и убило незваного микробного пришельца. Не зря Эрлих назвал свою мечту «волшебной пулей». Это действительно больше похоже на волшебство, чем на серьезную науку. Конечно, Флем начнет напоминать мне о хинине и эрлиховском сальварсане. Но что из того? Они излечивают малярию и сонную болезнь! Ведь эти болезни вызывают не настоящие микробы. Причина их -- плазмодий и трипаносомы, которые хотя действительно очень просты по строению, но все же представляют собой маленьких животных, устроенных намного сложнее, чем бактерии. Одно дело стрелять волшебной пулей в слона, окруженного охотниками, другое дело в комара, сидящего у охотника на носу».

Недовольство статья вызвала не только Райта. Даже после опубликования, статья не вызвала у медиков никакого энтузиазма. А все потому, что пенициллин оказался очень нестойким веществом. Он разрушался уже при самом кратковременном хранении, а тем более при попытке выпарить содержащий его бульон. Когда в 1939 г. Флеминг обратился за помощью в Лондонское химическое общество, то получил ответ: «Вещество слишком нестойкое и с химической точки зрения не заслуживает никакого внимания».

Может быть в том, что на пенициллин долго не обращали внимания, частично был виноват сам Флеминг. Он не был хорошим оратором, способным увлечь своей идеей окружающих. Вот что он пишет сам: «Об этом явлении чрезвычайной важности было напечатано в 1929 г. ...Я говорил о пенициллине в 1936 году..., но не был достаточно красноречив, и мои слова прошли незамеченными». А говорил-то не где-нибудь, а с трибуны Международного съезда микробиологов!

Приближение войны заставило многих ученых пересмотреть характер своих занятий. Руководитель кафедры патологии Оксфордского университета профессор Г. Флори со своими помощниками решили начать изыскание нового лекарства для борьбы с микробами. Нельзя сказать, что в 1939 г. выбор их был богат, однако поиски можно было начинать не на абсолютно пустом месте. В 1936 г. немецким ученым Домагком был получен красный стрептоцид, который, конечно, можно было усовершенствовать. Была пиоционаза, был, наконец, лизоцим, антибиотик, содержащийся в слюне и слезах человека, открытый тем же Флемингом в 1922 г. Однако выбор пал на плесневый гриб. Может быть потому, что один из основных помощников профессора Э. Чейн был биохимиком и предполагал, что действующим началом культуры плесени является фермент?

Вначале Чейна преследовали неудачи. Едва удалось обнаружить в растворе пенициллин, как последний бесследно исчез. Прежде всего, был установлен факт, что пенициллин сохраняется в щелочных растворах, в слабом растворе соды, например. Было выявлено и другое свойство этого неуловимого вещества -- его способность переходить в эфир. Чейн ставил раствор в ящик со льдом. Пенициллин смешивался с эфиром, и в сосуде образовывалось два слоя. Чейн удалял водяной слой. В сосуде оставался пенициллин, растворенный в эфире. Для того чтобы сохранить его, добавлялась щелочь, и реакция шла в обратном направлении -- пенициллин переходил в щелочной раствор. Вода осторожно выпаривалась, и на дне сосуда оставалась слизистая масса, содержащая в себе пенициллин. Чейн замораживал ее, потом высушивал и, наконец, получал ничтожное количество коричневого порошка. Это и был пенициллин.

Первые же опыты с веществом, выделенным Чейном из плесневого бульона, буквально ошеломили ученых. Хитли разводил его в сотни тысяч раз, и всего лишь одной капли этого раствора оказывалось достаточно, чтобы остановить рост самых патогенных микробов, засеянных в чашках Петри. Пенициллин оказался в МИЛЛИОН раз активнее, чем плесневой фильтрат, с которым экспериментировал Флеминг.

Уже через год оксфордская группа ученых получила первые порции препарата. По правде говоря, пенициллина в той желтоватой жидкости, которую демонстрировали радостные ученые своим коллегам, содержалось всего 1%. Но все же это было лекарство. Сначала с его помощью были излечены мыши, зараженные смертельной дозой стафилококка, а потом очередь дошла и до человека. 12 февраля 1941 г. с помощью пенициллина была сделана попытка спасти мужчину, который погибал от заражения крови. Он неосторожно расковырял ранку в углу рта, и теперь был обречен на смерть. Несколько инъекций пенициллина в течение одного дня улучшили его состояние, однако имеющегося количества пенициллина оказалось недостаточным. Таким образом, спасти первого больного не удалось.

Несмотря на трагический исход, ценность препарата стала совершенно очевидной, что и было отмечено во всех газетах Англии. Газета «Тайме» поместила статью А. Райта: «Лавровый венок должен быть присужден Александру Флеммингу. Это он первым открыл пенициллин и первый предсказал, что это вещество может найти широкое применение в медицине». Профессор вместе со всем человечеством склонил голову пред своим гениальным учеником.

Дальнейший путь пенициллина, тем не менее, отнюдь не был усыпан розами. Несмотря на то, что война уже шла, и кругом миллионы людей погибали от гнойных ран, правительство Великобритании не хотело раскошелиться на строительство специального завода, отговариваясь тем, что якобы Англия подвергается слишком усиленным бомбежкам. Может быть, дела так и не сдвинулись с мертвой точки, если бы не энергия и не активность сотрудника Флеминга Г. Флори. Он быстро нашел и деньги для работы, и людей, которые ему помогли, в США. Исследования закипели. Для получения более активного гриба, выделяющего пенициллин в достаточных количествах, была организована доставка образцов плесени не то что изо всех уголков страны, но и со всех частей света. Самое забавное в том, что найдена такая плесень была буквально под самым носом, она росла на дыне, принесенной с городской свалки. Вскоре дело продвинулось так далеко, что был начат промышленный выпуск пенициллина.

Первым человеком, вылеченным с помощью пенициллина, была маленькая девочка, болезнь которой началась с горла, а потом распространилась на сердце. Микробы, которые вызвали у нее ангину, проникли в кровь и осели на внутренней оболочке сердечной мышцы. Как и всех других больных, пораженных таким недугом, ее ждала неминуемая смерть. Врач, который лечил девочку, упросил Флори дать ему пенициллин. Хотя никто о таком применении пенициллина раньше не думал, но очень уж жаль было девочку. Раствор пенициллина был введен ей, когда она уже умирала. Полученный эффект превзошел все ожидания -- девочке сразу стало лучше, и она стала поправляться.

Вскоре после этого случая Флеминг сам впервые ввел раствор пенициллина в спинномозговой канал своему другу, который заболел гнойным воспалением мозговых оболочек. Неминуемая, казалось бы, смерть отступила и на этот раз. Потом уже пенициллином начали лечить английских летчиков, получивших ранения в воздушных боях над Лондоном. Под влиянием антибиотика гнойные раны очищались, ожоги зарастали кожей, гангрена отступала. Действие лекарства было похоже на мановение волшебной палочки.

Первооткрыватели пенициллина Флеминг, Флори и Чейн, понимая все значение этого лекарства для человечества, не засекретили свое лекарство, как это обычно делается, однако каждая страна должна была получить свой пенициллин. В Советском Союзе эту трудную и почетную работу выполнила Зинаида Виссарионовна Ермольева со своими помощниками. Под бомбежками, в тяжелых условиях военного времени, были собраны образцы плесени, и каждый из них испытан на способность выделять пенициллин. Наконец, полученный гриб, который оказался даже лучше американского, но назывался не нотатум, а крустозум, помещен в ферментатор. В кратчайшие сроки выпуск пенициллина был налажен в промышленных масштабах, и первые его порции начали поступать в госпитали и непосредственно на фронт. Вместе со своим лекарством отправилась на фронт и профессор З. В. Ермольева. Там, на поле боя, нашлось новое применение пенициллину -- предупреждение нагноения. Рана только что получена, гноя еще нет, но микробы уже внутри раны, вместе с осколком, землей, обрывками одежды. Если пенициллин ввести сразу после ранения, то и размножения микробов не происходит -- рана зарастает без всяких осложнений. Благодаря новому методу, врачи сумели не просто вылечить, а возвратить в строй 72% раненых! Пенициллин, таким образом, тоже воевал.

Сорок лет назад был осуществлен первый промышленный выпуск пенициллина. С этого же времени и поныне продолжается его триумфальное шествие по земному шару. А человек, открывший новую эпоху в жизни человечества, был необычайно скромен. В 1945 г. по поводу вручения ему Нобелевской премии Флеминг сказал: «Мне говорят, что я изобрел пенициллин. Нет, я только обратил на него внимание людей и дал ему название».

Когда в 1945 г. Американская медицинская ассоциация поставила перед учеными вопрос: «Какое лекарство вы считаете наиболее ценным?», то 99% опрошенных ответили: «Антибиотики». Но ведь это было только начало. Весну делали только первые ласточки-. В 1945 г. был открыт четвертый антибиотик -- хлортетрациклин, а 1947 г. -- пятый -- левомицетин, а уже к 1950 г. было описано более 100 антибиотиков. В 1955 г. их было уже более 500. Сейчас открыто и изучено примерно 4000 соединений, причем 60 из них нашли широкое применение в медицине. Среди этого набора можно найти антибиотики, которые действуют на микробов, вызывающих нагноение, и на микробов, повинных в заболевании легких, и на микробов, поселяющихся в желудочно-кишечном тракте. Есть антибиотики, пригодные для лечения детей и для лечения стариков.

Кстати сказать, многие из них выделены из земли. Советский ученый Н. А. Красильников, изучив свойства бактерий чуть ли не всех областей нашей страны, обнаружил, что наиболее богаты производителями антибиотиков земли Казахстана -- в каждом грамме пахотной земли содержится 380 000 микроскопических фармацевтических фабрик. Так что кладовая антибиотиков не исчерпана.

И все же, несмотря на достоинства новых препаратов, пенициллин до сих пор остается самым распространенным. Только в США этот препарат ежегодно выпускается в количестве 1500 т! Почему?

Во-первых, он очень активен. Судите сами. Для того чтобы подавить жизнедеятельность микроба в ведре воды, в него нужно добавить не менее 10 г карболовой кислоты (она обычно используется как стандарт) или 1 г фурациллина, или 0,1 г норсульфазола, или 0,01 г пенициллина. Речь идет, разумеется, о чувствительных к этим препаратам микробах. Но главное, пожалуй, все же не активность, так как существуют другие не менее активные антибиотики.

Во-вторых, и это главное, пенициллин почти совсем не оказывает на человека токсического действия. Обычно для оценки степени ядовитости того или иного вещества определяют его смертельную дозу для мышей. Чем больше эта доза, тем вещество менее ядовито. Так вот, чтобы вызвать гибель мыши, ей необходимо ввести внутривенно один из следующих антибиотиков: нистатин в дозе 0,04 мг, грамицидин -- 0,4 мг, тетрациклин -- 1 мг, стрептомицин -- 5 мг, а пенициллин -- 40 мг. Учитывая, что человек в 3500 раз больше мыши, то в 1 мг содержится 1660 ЕД (единица действия) пенициллина, что самые большие ампулы препарата, используемые лишь при крайне тяжелых заболеваниях, содержат по 1 000 000 ЕД, не трудно подсчитать опасную для человека дозу. Она содержится в 233 ампулах при условии, что содержимое этих ампул будет вводиться единовременно. Согласитесь, что это говорит о полной безвредности пенициллина.

В-третьих, пенициллин можно назначать не только взрослым, но и детям, он безопасен и для беременных женщин, чего нельзя сказать о других антибиотиках. Некоторые из них, например левомицетин, просто запрещено назначать новорожденным, другие назначают с большой осторожностью и по особым показаниям. Стрептомицин, неомицин и подобные им антибиотики вызывают у людей глухоту, поражая слуховой нерв. Дети обладают повышенной чувствительностью к стрептомицину, а обнаружить начальные стадии поражения нерва у них труднее, чем у взрослых. Как ни стараются ограничить его применение, а все же 12% глухонемых детей являются жертвами стрептомицина. Тетрациклин опасен для беременных женщин. В первые месяцы беременности он может вызвать возникновение уродства плода, а при приеме в последние месяцы -- отложиться в костях и зачатках зубов будущего ребенка. Кости с тетрациклином медленнее растут, а зубы окрашиваются в коричневый цвет и быстрее портятся. По этой же причине тетрациклин стараются не назначать детям до 5 лет.

Как ни хорош пенициллин, но и он не идеален в отношении безвредности. Оказывается, что при повторном применении у людей развивается к нему не только повышенная, но и извращенная чувствительность. Такое состояние в медицине носит название аллергии. Чем дольше пенициллин применяется, тем больше становится аллергизированных людей, которым он противопоказан.

Кроме того, пенициллин действует лишь на сравнительно небольшое число микробов, а потому эффективен лишь при строго определенных болезнях. Набор микроорганизмов, которые могут быть обезврежены при применении антибиотиков, называется спектром их действия. У пенициллина спектр противомикробного действия намного уже, чем, скажем, у тетрациклина. Это является его недостатком.

Самый же большой недостаток пенициллина состоит в том, что микробы к нему сравнительно быстро привыкают. Если в первые годы его действие напоминало мановение волшебной палочки, чудо, воскрешение из мертвых, то теперь такие чудесные выздоровления встречаются все реже. Иногда приходится слышать, что пенициллин «ныне пошел не тот». Это неверно. Пенициллин тот же, но микробы стали другие. Они научились вырабатывать особое вещество, фермент, который разрушает пенициллин. Называется он пенициллиназа. Если микроб вырабатывает пенициллиназу, то пенициллин на него не действует.

Особенно быстро устойчивость к пенициллину развивается у стафилококков, которые образно называют «чумой XX века». За годы, прошедшие с начала применения пенициллина, их чувствительность к этому антибиотику снизилась в 2000 раз! В 1944 г. только 10% штаммов стафилококков были устойчивы к пенициллину. В 1950 г. их число возросло до 50, в 1965 г. -- до 80, а в 1975 г. -- до 95%. Можно считать, что на стафилококки пенициллин больше не действует.

Интересно, что не все препараты сдают свои позиции одинаково быстро. Медленно теряют активность тетрациклины и левомицетин, а вот устойчивость микробов к стрептомицину, к сожалению, развивается очень быстро. Уступая просьбам фтизиатров (специалистов по лечению туберкулеза), врачи прочих специальностей почти совсем прекратили его применение, чтобы он не утратил своего действия полностью. Так же быстро теряет эффективность эритромицин. В результате к пенициллину теперь не чувствительно приблизительно 75% штаммов, к левомицетину -- 50%, к тетрациклину -- 40%. Отличаются по способности приобретать устойчивость и микробы. Наиболее быстро привыкают к антибиотикам микробы, вызывающие заболевания желудочно-кишечного тракта, наиболее медленно -- пневмококки (легочные кокки).

В 1977 г. группа канадских специалистов проанализировала использование антибиотиков в больнице города Гамильтона. Оказалось, что хирурги применяли антибиотики неправильно в 42%, а терапевты -- в 12% случаев. Случаи неправильного применения антибиотиков отмечались, во-первых, при назначении их с профилактическими целями. За исключением особых ситуаций, которые можно пересчитать по пальцам, такое назначение не приводит к успеху. Второе место занимают случаи назначения антибиотиков в недостаточных дозах или реже, чем это нужно для поддержания высокой концентрации в крови. На третьем месте стоит использование антибиотиков для местного лечения. Как теперь точно установлено именно при таком способе применения устойчивость микробов развивается особенно быстро. Существует много других лекарств (йодинол, раствор перекиси водорода, фурацилин, препараты ртути и серебра, краски), которые следует использовать для местного лечения.

Чтобы повысить эффективность лечения и предупредить развитие чувствительности в большинстве стран, как и в нашей стране, продажа антибиотиков без рецепта врача запрещена. Понятно почему? Если уж врачи иногда могут использовать их неправильно, то несведущие в медицине люди и подавно. Все антибиотики разделены на две подгруппы: основные -- пенициллин, левомицетин, тетрациклины, эритромицин, неомицин и резервные -- все остальные. Основными антибиотиками начинают лечить сразу, до того как будет установлена чувствительность микробов. Резервные антибиотики применяются только по особым показаниям, когда эффект основных антибиотиков уже полностью исчерпан. Наиболее часто применяют комбинацию тетрациклина с олеандомицином -- препарат олететрин. Тут сразу в одной таблетке содержатся оба антибиотика в наиболее выгодной пропорции.

При сочетании двух антибиотиков требуется максимум осторожности и делать это можно только по назначению врача. В некоторых случаях сочетание двух препаратов может не усилить, а ослабить действие каждого из них. Примером такого неудачного сочетания может служить смесь из пенициллина с левомицетином или тетрациклином. В некоторых случаях комбинация антибиотиков между собой или с другими препаратами может повести к резкому усилению побочного эффекта и отравлению. Совместное применение левомицетина и сульфаниламидных препаратов приводит к подавлению кроветворения. Одновременное применение стрептомицина с неомицином может привести к глухоте. Антибиотики -- лучший пример для иллюстрации того, что одно и то же лекарство может быть спасением для одного и ядом для другого.

Еще в то время, когда пенициллин продолжал свое триумфальное шествие по миру, ученые начали искать ему достойную смену. Вскоре после войны в лаборатории Флори был изучен новый гриб Цефалоспорум, который был выловлен в одной из сточных труб острова Сардинии. Оказалось, что гриб вырабатывает не один, а сразу семь антибиотиков. Один из них под названием цефалоспорин «С» стал использоваться в клинике вместо пенициллина. Основное его достоинство заключалось в том, что он был еще менее ядовит (если так можно выразиться), чем пенициллин, действовал на тех же микробов, но его можно было назначать больным, обладающим к пенициллину повышенной чувствительностью. Поскольку цефалоспорин очень похож на пенициллин, условно можно назвать его «внуком» первого антибиотика.

Вслед за «внуком» появились и «правнуки». Ученые разложили цефалоспорин на составные части и из них уже синтетическим путем получили новые препараты -- полусинтетические цефалоспорины. В нашей стране популярен антибиотик цепорин, который отличается очень высокой активностью и действует на утративших чувствительность к пенициллину стафилококков.

Заключение

С открытием пенициллина началась новая эра в лечении больных. Современным врачам трудно понять, насколько бессильны были их предшественники в борьбе с некоторыми инфекциями. Им незнакомо отчаяние, овладевавшее докторами, когда они сталкивались с болезнями, смертельными в те времена, а теперь излечимыми. Некоторые из этих заболеваний даже перестали существовать. Пенициллин и все антибиотики, открытые после него, дают возможность хирургу производить такие операции, на которые раньше никто бы не решился. Средняя продолжительность жизни человека настолько возросла, что изменилась вся общественная структура. Только Эйнштейн - но в другой области - и еще Пастер оказали такое же, как Флеминг, влияние на современную историю человечества. Государственные деятели трудятся изо дня в день над устройством мира, но лишь люди науки своими открытиями создают условия для их деятельности.

Пенициллин в борьбе с инфекциями привел к ослаблению вирулентности микробов. Только отдельные штаммы их еще сопротивляются и усиливают свою вирулентность, основные же отряды повержены в прах. Многие болезни, как пневмония, менингит, стали более легкими в своем течении.

Заражение крови и гнойные воспаления брюшины (перитонит), от которых раньше наступала неминуемая смерть, перестали пугать врачей, вооруженных ампулами с пенициллином.

Отступили и другие смертельные враги человечества. Эпидемический менингит перестал страшить нас, так как пенициллин дает почти 100-процентное исцеление от него, а ведь раньше появление эпидемии этой болезни вызывало у родителей панический ужас. Они знали, что 90 процентов заболевших должны были быть принесены в жертву ненасытному молоху смерти.

Пенициллин излечивает не только смертельные болезни, но и многие тяжелые заболевания, которые еще недавно делали человека инвалидом.

Он с успехом применяется при скарлатине и дифтерии. Он в несколько дней вылечивает от гонореи, убивает спирохету сифилиса, без осечки помогает при всех воспалительных процессах, вызываемых кокками...

Сейчас уже официально признано, что средняя продолжительность жизни в цивилизованных странах резко повысилась благодаря пенициллину, победившему самые злые инфекции.

Средняя продолжительность жизни человека равнялась в Европе XVI века 21 году, XVII века - 26 годам, XVIII века - 34 годам, в Европе конца XIX века - 50 годам. А теперь в отдельных странах средняя продолжительность жизни человека достигает 60 лет (в нашей же стране, учитывая еще благоприятные социальные условия, - 67 лет).

Таковы заслуги А. Флеминга перед человечеством. Но они не исчерпываются этим. Получив пенициллин, Флеминг открыл новую эру в истории медицины - эру антибиотической терапии.

Открытие Флеминга - одно из самых удивительных в науке. Оно, на наш взгляд, по своей значимости и масштабу вполне отвечает нашему атомному веку, и есть нечто глубоко справедливое в том, что оно пришло вместе с развитием атомной физики. Медикам, следовательно, тоже есть чем гордиться.

Литература

Прозоровский В.Б. «Рассказы о лекарствах» - М.: Медицина, 1986.

Моруа А. «Жизнь А. Флеминга». - М. Молодая гвардия. «ЖЗЛ» - 1964.

Семенов-Спасский Л.Г. «Вечный бой». - Л.: Детская литература, 1989

Размещено на Allbest.ru

...

Подобные документы

    Открытие одного из первых антибиотиков - пенициллина, спасшего не один десяток жизней. Оценка состояния медицины до пенициллина. Плесень как микроскопический грибок. Очистка и массовое производство пенициллина. Показания для применения пенициллина.

    презентация , добавлен 25.03.2015

    Значение открытий Флеминга, краткие биографические сведения об ученом, его путь к открытиям в медицине. Открытие лизоцима, его перспективы использования в медицинской практике. Получение Нобелевской премии по физиологии и медицине за открытие пенициллина.

    презентация , добавлен 16.04.2010

    Источники получения антибиотиков, их классификация по направленности и механизму фармакологического действия. Причины резистентности к антибиотикам, принципы рациональной антибиотикотерапии. Бактерицидные свойства пенициллина, его побочные эффекты.

    презентация , добавлен 16.11.2011

    Общая характеристика антибиотиков и особенности их получения. Схема производства пенициллина. Использование рДНК-биотехнологии. Применение антибиотиков в пищевой промышленности и сельском хозяйстве. Классификация антибиотиков по штаммам-продуцентам.

    презентация , добавлен 04.12.2015

    Разработка и производство антибиотиков, хронология изобретений. История открытия пенициллина и его целебного воздействия при различных инфекционных болезнях. Бактериостатические и бактерицидные антибиотики, их свойства и применение; побочные действия.

    презентация , добавлен 18.12.2016

    Понятие и назначение, физические и химические свойства пенициллина, история его открытия и значение в лечении разнообразных заболеваний. Характер воздействия пенициллина на микроорганизмы. Синтетические аналоги данного лекарства, их использование.

    презентация , добавлен 07.11.2016

    Применение антибиотиков в медицине. Оценка качества, хранение и отпуск лекарственных форм. Химические строение и физико-химические свойства пенициллина, тетрациклина и стрептомицина. Основы фармацевтического анализа. Методы количественного определения.

    курсовая работа , добавлен 24.05.2014

    Общая характеристика антимикробных препаратов. Классификация химиотерапевтических средств. Открытие пенициллина в 1928г. Механизмы развития антибиотикорезистентности. Механизм действия антибиотиков. Характеристика и применение антибактериальных средств.

    презентация , добавлен 23.01.2012

    История открытия пенициллина. Классификация антибиотиков, их фармакологические, химиотерапевтические свойства. Технологический процесс получения антибиотиков. Устойчивость бактерий к антибиотикам. Механизм действия левомицетина, макролидов, тетрациклинов.

    реферат , добавлен 24.04.2013

    Характеристика положительных и негативных свойств антибиотиков. Обобщение основных осложнений, вызванных приемом антибиотиков и объединенных одним названием "лекарственная болезнь": аллергические реакции, токсические явления, дисбактериозы, суперинфекция.