Физиология органов зрения. Глаза

АНАТОМИЯ И ФИЗИОЛОГИЯ ОРГАНА ЗРЕНИЯ

Из всех органов чувств человека глаз всегда признавался наилучшим даром и чудеснейшим произведением творческой силы природы. Поэты воспевали его, ораторы восхваляли, философы прославляли его как мерило, указывающее на то, к чему способны органические силы, а физики пытались подражать ему как непостижимому образу оптических приборов. Г. Гельмгольц

Не глазом, а посредством глаза смотреть на мир умеет разум Авиценна

Первый шаг в понимании глаукомы - это ознакомление со строением глаза и его функциями (рис. 1).

Глаз (глазное яблоко, Bulbus oculi) имеет почти правильную округлую форму, размер его передне-задней оси примерно 24 мм, весит около 7 г и анатомически состоит из трех оболочек (наружной - фиброзной, средней - сосудистой, внутренней - сетчатки) и трех прозрачных сред (внутриглазной жидкости, хрусталика и стекловидного тела).

Наружная плотная фиброзная оболочка состоит из задней, большей части - склеры, выполняющей скелетную, определяющую и обеспечивающую форму глаза функцию. Передняя, меньшая ее часть - роговица - прозрачна, менее плотная, не имеет сосудов, в ней разветвляется огромное количество нервов. Диаметр ее - 10-11 мм. Являясь сильной оптической линзой, она пропускает и преломляет лучи, а также выполняет важные защитные функции. За роговицей располагается передняя камера, заполненная прозрачной внутриглазной жидкостью.

К склере изнутри глаза прилегает средняя оболочка - сосудистый, или увеальный тракт, состоящий из трех отделов.

Первый, самый передний, видимый через роговицу, - радужка - имеет отверстие - зрачок. Радужка является как бы дном передней камеры. С помощью двух мышц радужки зрачок суживается и расширяется, автоматически регулируя величину светового потока, входящего в глаз, в зависимости от освещения. Цвет радужки зависит от различного содержания в ней пигмента: при малом его количестве глаза светлые (серые, голубые, зеленоватые), если его много - темные (карие). Большое количество радиально и циркулярно расположенных сосудов радужки, окутанных нежной соединительной тканью, образует своеобразный ее рисунок, рельеф поверхности.

Второй, средний отдел - цилиарное тело - имеет вид кольца шириной до 6-7 мм, примыкающего к радужке и обычно недоступного визуальному наблюдению. В цилиарном теле различают две части: передняя отростчатая, в толще которой лежит цилиарная мышца, при сокращении ее расслабляются тонкие нити цинновой связки, удерживающей в глазу хрусталик, что обеспечивает акт аккомодации. Около 70 отростков цилиарного тела, содержащих капиллярные петли и покрытых двумя слоями эпителиальных клеток, продуцируют внутриглазную жидкость. Задняя, плоская часть цилиарного тела является как бы переходной зоной между цилиарным телом и собственно сосудистой оболочкой.

Третий отдел - собственно сосудистая оболочка, или хориоидея - занимает заднюю половину глазного яблока, состоит из большого количества сосудов, располагается между склерой и сетчаткой, соответствуя ее оптической (обеспечивающей зрительную функцию) части.

Внутренняя оболочка глаза - сетчатка - представляет собой тонкую (0,1-0,3 мм), прозрачную пленку: оптическая (зрительная) ее часть покрывает хориоидвю от плоской части цилиарного тела до места выхода зрительного нерва из глаза, неоптическая (слепая) - цилиарное тело и радужку, слегка выступая по краю зрачка. Зрительная часть сетчатки - это сложно организованная сеть из трех слоев нейронов. Функция сетчатки как специфического зрительного рецептора тесно связана с сосудистой оболочкой (хори-оидеей). Для зрительного акта необходим распад зрительного вещества (пурпура) под влиянием света. В здоровых глазах зрительный пурпур восстанавливается немедленно. Этот сложный фотохимический процесс восстановления зрительных веществ обусловлен взаимодействием сетчатки с хори-оидеей. Сетчатка состоит из нервных клеток, образующих три нейрона.

В первом нейроне, обращенным к хориоидее, находятся светочувствительные клетки, фоторецепторы - палочки и колбочки, в которых под влиянием света происходят фотохимические процессы, трансформирующиеся в нервный импульс. Он проходит второй, третий нейрон, зрительный нерв и по зрительным путям попадает в подкорковые центры и далее в кору затылочной доли больших полушарий мозга, вызывая зрительные ощущения.

Палочки в сетчатке расположены преимущественно по периферии и отвечают за светоощущение, сумеречное и периферическое зрение. Колбочки локализуются в центральных отделах сетчатки, в условиях достаточного освещения формируя цветоощущение и центральное зрение. Наивысшую остроту зрения обеспечивает область желтого пятна и центральная ямка сетчатки.

Зрительный нерв формируется нервными волокнами - длинными отростками ганглиозных клеток сетчатки (3-й нейрон), которые, собираясь в отдельные пучки, выходят через мелкие отверстия в задней части склеры (решетчатую пластинку). Место выхода нерва из глаза называется диском зрительного нерва (ДЗН).

В центре диска зрительного нерва образуется небольшое углубление - экскавация, которая не превышает 0,2-0,3 диаметра диска (Э/Д). В центре экскавации проходят центральная артерия и вена сетчатки. В норме диск зрительного нерва имеет четкие границы, бледно-розовую окраску, округлую или слегка овальную форму.

Хрусталик - вторая (после роговицы) преломляющая среда оптической системы глаза, располагается за радужной оболочкой и лежит в ямке стекловидного тела.

Стекловидное тело занимает большую заднюю часть полости глаза и состоит из прозрачных волокон и гелеподобного вещества. Обеспечивает сохранение формы и объема глаза.

Оптическая система глаза состоит из роговицы, влаги передней камеры, хрусталика и стекловидного тела. Лучи света проходят прозрачные среды глаза, преломляются на поверхностях основных линз - роговицы и хрусталика и, фокусируясь на сетчатке, "рисуют" на ней изображение предметов внешнего мира (рис.2). Зрительный акт начинается с преобразования изображения фоторецепторами в нервные импульсы, которые после обработки нейронами сетчатки передаются по зрительным нервам в высшие отделы зрительного анализатора. Таким образом, зрение можно определить как субъективное восприятие объективного мира посредством света с помощью зрительной системы.

Выделяют следующие основные зрительные функции:центральное зрение (характеризуется остротой зрения) - способность глаза четко различать детали предметов, оценивается по таблицам со специальными знаками;

периферическое зрение (характеризуется полем зрения) - способность глаза воспринимать объем пространства при неподвижном положении глаза. Исследуется с помощью периметра, кампиметра, анализатора поля зрения и др;

цветовое зрение - это способность глаза воспринимать цвета и различать цветовые оттенки. Исследуется с помощью цветовых таблиц, тестов и аномалоскопов;

светоощущение (темновая адаптация) - способность глаза воспринимать минимальное (пороговое) количество света. Исследуется адаптометром.

Полноценное функционирование органа зрения обеспечивается также вспомогательным аппаратом. Он включает в себя ткани орбиты (глазницы), веки и слезные органы, выполняющие защитную функцию. Движения каждого глаза осуществляются шестью наружными глазодвигательными мышцами.

Зрительный анализатор состоит из глазного яблока, строение которого схематично представлено на рис. 1, проводящих путей и зрительной коры головного мозга.

Рис.1.Схема строения глаза

2-сосудистая оболочка,

3-сетчатка,

4-роговица,

5-радужка,

6-ресничная мышца,

7-хрусталик,

8-стекловидное тело,

9-диск зрительного нерва,

10-зрительный нерв,

11-желтое пятно.

Вокруг глаза расположены три пары глазодвигательных мышц. Одна пара поворачивает глаз влево и вправо, другая - вверх и вниз, а третья вращает его относительно оптической оси. Сами глазодвигательные мышцы управляются сигналами, поступающими из мозга. Эти три пары мышц служат исполнительными органами, обеспечивающими автоматическое слежение, благодаря чему глаз может легко сопровождать взором всякий движущийся вблизи и вдали объект (рис. 2).

Рис.2.Мышцы глаза

1-наружная прямая;

2-внутренняя прямая;

3-верхняя прямая;

4-мышца, поднимающая верхнее веко;

5-нижняя косая мышца;

6-нижняя прямая мышца.

Глаз, глазное яблоко имеет почти шаровидную форму примерно 2,5 см в диаметре. Он состоит из нескольких оболочек, из них три - основные:

склера - внешняя оболочка,

сосудистая оболочка - средняя,

сетчатка - внутренняя.

Склера имеет белый цвет с молочным отливом, кроме передней ее части, которая прозрачна и называется роговицей. Через роговицу свет поступает в глаз. Сосудистая оболочка, средний слой, содержит кровеносные сосуды, по которым кровь поступает для питания глаза. Прямо под роговицей сосудистая оболочка переходит в радужную оболочку, которая и определяет цвет глаз. В центре ее находится зрачок. Функция этой оболочки - ограничивать поступление света в глаз при его высокой яркости. Это достигается сужением зрачка при высокой освещенности и расширением - при низкой. За радужной оболочкой расположен хрусталик, похожий на двояковыпуклую линзу, который улавливает свет, когда он проходит через зрачок и фокусирует его на сетчатке. Вокруг хрусталика сосудистая оболочка образует ресничное тело, в котором заложена мышца, регулирующая кривизну хрусталика, что обеспечивает ясное и четкое видение разноудаленных предметов. Достигается это следующим образом (рис.3).

Рис.3.Схематическое представление механизма аккомодации

слева-фокусировка вдаль;

справа-фокусировка на близкие предметы.

Хрусталик в глазу "подвешен" на тонких радиальных нитях, которые охватывают его круговым поясом. Наружные концы этих нитей прикрепляются к ресничной мышце. Когда эта мышца расслаблена (в случае фокусировки взора Рис.5.

Ход лучей при различных видах клинической рефракции глаза

a-эметропия (норма);

b-миопия (близорукость);

c-гиперметропия (дальнозоркость);

d-астигматизм.

на удаленном предмете), то кольцо, образуемое ее телом, имеет большой диаметр, нити, держащие хрусталик, натянуты, и его кривизна, а следовательно и преломляющая сила, минимальна. Когда же ресничная мышца напрягается (при рассматривании близко расположенного объекта), ее кольцо сужается, нити расслабляются, и хрусталик становится более выпуклым и, следовательно, более сильно преломляющим. Это свойство хрусталика менять свою преломляющую силу, а вместе с этим и фокусную точку всего глаза, называется аккомодацией.

Лучи света фокусируются оптической системой глаза на особом рецепторном (воспринимающем) аппарате - сетчатой оболочке. Сетчатка глаза - передний край мозга, исключительно сложное как по своей структуре, так и по функциям образование. В сетчатке позвоночных обычно различают 10 слоев нервных элементов, связанных между собой не только структурно-морфологически, но и функционально. Главным слоем сетчатки является тонкий слой светочувствительных клеток - фоторецепторов. Они бывают двух видов: отвечающие на слабый засвет (палочки) и отвечающие на сильный засвет (колбочки). Палочек насчитывается около 130 миллионов, и они расположены по всей сетчатке, кроме самого центра. Благодаря им обнаруживаются предметы на периферии поля зрения, в том числе при низкой освещенности. Колбочек насчитывается около 7 миллионов. Они расположены главным образом в центральной зоне сетчатки, в так называемом "желтом пятне". Сетчатка здесь максимально утончается, отсутствуют все слои, кроме слоя колбочек. "Желтым пятном" человек видит лучше всего: вся световая информация, попадающая на эту область сетчатки, передается наиболее полно и без искажений. В этой области возможно лишь дневное, цветное зрение, при помощи которого воспринимаются цвета окружающего нас мира.

От каждой светочувствительной клетки отходит нервное волокно, соединяющее рецепторы с центральной нервной системой. При этом каждую колбочку соединяет свое отдельное волокно, тогда как точно такое же волокно "обслуживает" целую группу палочек.

Под воздействием световых лучей в фоторецепторах происходит фотохимическая реакция (распад зрительных пигментов), в результате которой выделяется энергия (электрический потенциал), несущая зрительную информацию. Эта энергия в виде нервного возбуждения передается в другие слои сетчатки - на клетки-биполяры, а затем на ганглиозные клетки. При этом, благодаря сложным соединениям этих клеток, происходит удаление случайных "помех" в изображении, усиливаются слабые контрасты, острее воспринимаются движущиеся предметы. Нервные волокна со всей сетчатки собираются в зрительный нерв в особой области сетчатки - "слепом пятне". Оно расположено в том месте, где зрительный нерв выходит из глаза, и все, что попадает на эту область, исчезает из поля зрения человека. Зрительные нервы правой и левой стороны перекрещиваются, причем у человека и высших обезьян перекрещиваются лишь половина волокон каждого зрительного нерва. В конечном счете вся зрительная информация в кодированном виде передается в виде импульсов по волокнам зрительного нерва в головной мозг, его высшую инстанцию - кору, где и происходит формирование зрительного образа (рис. 4).

Окружающий нас мир мы видим ясно, когда все отделы зрительного анализатора "работают" гармонично и без помех. Для того, чтобы изображение было резким, сетчатка, очевидно, должна находиться в заднем фокусе оптической системы глаза. Различные нарушения преломления световых лучей в оптической системе глаза, приводящие к расфокусировке изображения на сетчатке, называются аномалиями рефракции (аметропиями). К ним относятся близорукость (миопия), дальнозоркость (гиперметропия), возрастная дальнозоркость (пресбиопия) и астигматизм (рис. 5).

Рис.4.Схема строения зрительного анализатора

1-сетчатка,

2-неперекрещенные волокна зрительного нерва,

3-перекрещенные волокна зрительного нерва,

4-зрительный тракт,

5-наружнее коленчатое тело,

6-radiatio optici,

7-lobus opticus,

Рис.5.Ход лучей при различных видах клинической рефракции глаза

a-эметропия (норма);

b-миопия (близорукость);

c-гиперметропия (дальнозоркость);

d-астигматизм.

Близорукость (миопия) - большей частью наследственно обусловленное заболевание, когда в период интенсивной зрительной нагрузки (учебы в школе, институте) вследствие слабости цилиарной мышцы, нарушения кровообращения в глазу происходит растяжение плотной оболочки глазного яблока (склеры) в передне-заднем направлении. Глаз вместо шаровидной приобретает форму эллипсоида. Вследствие такого удлинения продольной оси глаза изображения предметов фокусируется не на самой сетчатке, а перед ней, и человек стремится все приблизить к глазам, пользуется очками с рассеивающими ("минусовыми") линзами для уменьшения преломляющей силы хрусталика. Близорукость неприятна не тем, что требует ношения очков, а тем, что при прогрессировании заболевания возникают дистрофические очаги в оболочках глаза, приводящие к необратимой, некорригируемой очками потере зрения. Чтобы этого не допустить, нужно соединить опыт и знания врача-окулиста с настойчивостью и волей пациента в вопросах рационального распределения зрительной нагрузки, периодического самоконтроля за состоянием своих зрительных функций.

Дальнозоркость. В отличие от близорукости, это не приобретенное, а врожденное состояние - особенность строения глазного яблока: это либо короткий глаз, либо глаз со слабой оптикой. Лучи при этом состоянии собираются за сетчаткой. Для того, чтобы такой глаз хорошо видел, перед ним нужно поместить собирающие - "плюсовые" очки. Это состояние может долго "скрываться" и проявиться в 20-30 лет и более позднем возрасте; все зависит от резервов глаза и степени дальнозоркости.

Правильный режим зрительного труда и систематические тренировки зрения позволят значительно отодвинуть срок проявления дальнозоркости и пользования очками. Пресбиопия (возрастная дальнозоркость). С возрастом сила аккомодации постепенно падает, за счет уменьшения эластичности хрусталика и цилиарной мышцы. Наступает состояние, когда мышца уже неспособна к максимальному сокращению, а хрусталик, потеряв эластичность, не может принять максимально шаровидную форму - в результате человек теряет возможность различать мелкие, близко расположенные предметы, стремится отодвинуть книгу или газету от глаз (чтобы облегчить работу цилиарных мышц). Для коррекции этого состояния назначаются очки для близи с "плюсовыми" стеклами. При систематическом соблюдении режима зрительного труда, активном занятии тренировкой глаз можно значительно отодвинуть время пользования очками для близи на многие годы.

Астигматизм - особый вид оптического строения глаза. Явление это врожденного или, большей частью приобретенного характера. Обусловлен астигматизм чаще всего неправильностью кривизны роговицы; передняя поверхность ее при астигматизме представляет собой не поверхность шара, где все радиусы равны, а отрезок вращающегося эллипсоида, где каждый радиус имеет свою длину. Поэтому каждый меридиан имеет особое преломление, отличающееся от рядом лежащего меридиана. Признаки болезни могут быть связаны с понижением зрения как вдаль, так и вблизь, снижением зрительной работоспособности, быстрой утомляемостью и болезненными ощущениями при работе на близком расстоянии.

Итак, мы видим, что наш зрительный анализатор, наши глаза - это исключительно сложный и удивительный дар природы. Весьма упрощенно можно сказать, что глаз человека - это, в конечном счете, прибор для приема и переработке световой информации и его ближайшим техническим аналогом является цифровая видеокамера. Относитесь к своим глазам бережно и внимательно, так же бережно, как Вы относитесь к своим дорогим фото- и видеоустройствам.

Орган зрения является самым важным из всех органов чувств человека, ведь около 90% информации о внешнем мире человек получает через зрительный анализатор или зрительную систему

Орган зрения является самым важным из всех органов чувств человека, ведь около 90% информации о внешнем мире человек получает через зрительный анализатор или зрительную систему. Основными функциями органа зрения являются центральное, периферическое, цветовое и бинокулярное зрение, а также светоощущение.

Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим.

Строение зрительной системы

Зрительная система состоит из:

* Глазного яблока;

* Защитного и вспомогательного аппарата глазного яблока (веки, конъюнктива, слезный аппарат, глазодвигательные мышцы и фасции глазницы);

* Системы жизнеобеспечения органа зрения (кровоснабжение, выработка внутриглазной жидкости, регуляция гидро и гемодинамики);

* Проводящих путей – зрительного нерва, зрительного перекреста и зрительного тракта;

* Затылочных долей коры больших полушарий головного мозга.

Глазное яблоко

Глаз имеет форму сферы, поэтому к нему стала применяться аллегория яблока. Глазное яблоко – очень нежная структура, поэтому располагается в костном углублении черепа – глазнице, где частично укрыто от возможного повреждения.

Глаз человека имеет не совсем правильную шаровидную форму. У новорожденных его размеры равны (в среднем) по сагиттальной оси 1, 7 см, у взрослых людей 2, 5 см. Масса глазного яблока новорожденного находится в пределах до 3 г, взрослого человека - до 7-8 г.

Особенности строения глаз у детей

У новорожденных глазное яблоко относительно большое, но короткое. К 7-8 годам устанавливается окончательный размер глаз. Новорожденный имеет относительно большую и более плоскую, чем у взрослых, роговицу. При рождении форма хрусталика сферичная; в течение всей жизни он растет и становится более плоским. У новорожденных в строме радужки пигмента мало или совсем нет. Голубоватый цвет глазам придает просвечивающий задний пигментный эпителий. Когда пигмент начинает появляться в радужке, она приобретает свой собственный цвет.

Строение глазного яблока

Глаз располагается в глазнице и окружен мягкими тканями (жировая клетчатка, мышцы, нервы и пр.). Спереди он покрыт конъюнктивой и прикрыт веками.

Глазное яблоко состоит из трех оболочек (наружной, средней и внутренней) и содержимого (стекловидного тела, хрусталика, а также водянистой влаги передней и задней камер глаза).

Наружная, или фиброзная, оболочка глаза представлена плотной соединительной тканью. Она состоит из прозрачной роговицы в переднем отделе глаза и белого цвета непрозрачной склеры. Обладая эластическими свойствами, эти две оболочки образуют характерную форму глаза.

Функция фиброзной оболочки – проведение и преломление лучей света, а также защита содержимого глазного яблока от неблагоприятных внешних воздействий.

Роговица – прозрачная часть (1/5) фиброзной оболочки. Прозрачность роговицы объясняется уникальностью ее строения, в ней все клетки расположены в строгом оптическом порядке и в ней отсутствуют кровеносные сосуды.

Роговица богата нервными окончаниями, поэтому она очень чувствительна. Воздействие неблагоприятных внешних факторов на роговицу вызывает рефлекторное сжимание век, обеспечивая защиту глазного яблока. Роговица не только пропускает, но и преломляет световые лучи, она имеет большую преломляющую силу.

Склера – непрозрачная часть фиброзной оболочки, которая имеет белый цвет. Ее толщина достигает 1 мм, а самая тонкая часть склеры расположена в месте выхода зрительного нерва. Склера состоит в основном из плотных волокон, которые придают ей прочность. К склере крепятся 6ть глазодвигательных мышц.

Функции склеры – защитная и формообразующая. Сквозь склеру проходят многочисленные нервы и сосуды.

Сосудистая оболочка , средний слой, содержит кровеносные сосуды, по которым кровь поступает для питания глаза. Прямо под роговицей сосудистая оболочка переходит в радужную оболочку, которая и определяет цвет глаз. В центре ее находится зрачок . Функция этой оболочки – ограничивать поступление света в глаз при его высокой яркости. Это достигается сужением зрачка при высокой освещенности и расширением – при низкой.

За радужной оболочкой расположен хрусталик , похожий на двояковыпуклую линзу, который улавливает свет, когда он проходит через зрачок и фокусирует его на сетчатке. Вокруг хрусталика сосудистая оболочка образует ресничное тело, в котором заложена цилиарная (ресничнвя) мышца, регулирующая кривизну хрусталика, что обеспечивает ясное и четкое видение разноудаленных предметов.

Когда эта мышца расслаблена, прикрепленный к цилиарному телу ресничный поясок натягивается и хрусталик уплощается. Его кривизна, а следовательно и преломляющая сила, минимальна. В таком состоянии глаз хорошо видит удаленные объекты.

Чтобы рассмотреть предметы, расположенные вблизи, цилиарная мышца сокращается, а напряжение ресничного пояска ослабевает, так что хрусталик становится более выпуклым, следовательно, более сильно преломляющим.

Это свойство хрусталика менять свою преломляющую силу луча, называется аккомодацией .

Внутренняя оболочка глаза представлена сетчаткой – высо- кодифференцированной нервной тканью. Сетчатка глаза – передний край мозга, исключительно сложное как по своей структуре, так и по функциям образование.

Что интересно, в процессе эмбрионального развития сетчатка глаза формируется из той же группы клеток, что головной и спинной мозг, поэтому справедливо утверждение, что поверхность сетчатки является продолжением мозга.

В сетчатке свет преобразуется в нервные импульсы, которые по нервным волокнам передаются в мозг. Там они анализируются, и человек воспринимает изображение.

Главным слоем сетчатки является тонкий слой светочувствительных клеток – фоторецепторов . Они бывают двух видов: отвечающие на слабый свет (палочки) и сильный (колбочки).

Палочек насчитывается около 130 миллионов, и они расположены по всей сетчатке, кроме самого центра. Благодаря им человек видит предметы на периферии поля зрения, в том числе при низкой освещенности.

Колбочек насчитывается около 7 миллионов. Они расположены главным образом в центральной зоне сетчатки, в так называемом желтом пятне . Сетчатка здесь максимально утончается, отсутствуют все слои, кроме слоя колбочек. Желтым пятном человек видит лучше всего: вся световая информация, попадающая на эту область сетчатки, передается наиболее полно и без искажений. В этой области возможно лишь дневное и цветное зрение.

Под воздействием световых лучей в фоторецепторах происходит фотохимическая реакция (распад зрительных пигментов), в результате которой выделяется энергия (электрический потенциал), несущая зрительную информацию. Эта энергия в виде нервного возбуждения передается в другие слои сетчатки – на клетки-биполяры, а затем на ганглиозные клетки. При этом, благодаря сложным соединениям этих клеток, происходит удаление случайных “помех” в изображении, усиливаются слабые контрасты, острее воспринимаются движущиеся предметы.

В конечном счете, вся зрительная информация в кодированном виде передается в виде импульсов по волокнам зрительного нерва в головной мозг, его высшую инстанцию – заднюю кору, где и происходит формирование зрительного образа.

Что интересно, лучи света, проходя сквозь хрусталик, преломляются и переворачиваются, из-за чего на сетчатке возникает перевернутое уменьшенное изображение предмета. Также картинка с сетчатки каждого глаза поступает в головной мозг не целиком, а словно разрезанная пополам. Однако мы видим мир нормально.

Следовательно, дело не столько в глазах, сколько в мозге. В сущности, глаз – это просто воспринимающий и передающий инструмент. Клетки мозга, получив перевернутое изображение, переворачивают его снова, создавая истинную картину окружающего мира.

Содержимое глазного яблока

Содержимое глазного яблока – стекловидное тело, хрусталик, а также водянистая влага передней и задней камер глаза.

Стекловидное тело по весу и объему составляет примерно 2/3 глазного яблока и более чем на 99% состоит из воды, в которой растворено небольшое количество белка, гиалуроновой кислоты и электролитов. Это прозрачное бессосудистое студенистое образование, заполняющее пространство внутри глаза.

Стекловидное тело достаточно прочно связано с цилиарным телом, капсулой хрусталика, а также с сетчаткой вблизи зубчатой линии и в области диска зрительного нерва. С возрастом связь с капсулой хрусталика ослабевает.

Вспомогательный аппарат глаза

К вспомогательному аппарату глаза относят глазодвигательные мышцы, слезные органы, а также веки и конъюнктиву.

Глазодвигательные мышцы

Глазодвигательные мышцы обеспечивают подвижность глазного яблока. Их шесть: четыре прямых и две косых.

Прямые мышцы (верхняя, нижняя, наружная и внутренняя) начинаются от сухожильного кольца, расположенного у вершины орбиты вокруг зрительного нерва, и прикрепляются к склере.

Верхняя косая мышца начинается от надкостницы глазницы сверху и кнутри от зрительного отверстия, и, направляясь несколько кзади и книзу, прикрепляется к склере.

Нижняя косая мышца начинается от медиальной стенки орбиты позади нижней глазничной щели и прикрепляется к склере.

Кровоснабжение глазодвигательных мышц осуществляется мышечными ветвями глазной артерии.

Наличие двух глаз позволяет сделать наше зрение стереоскопичным (то есть формировать трехмерное изображение).

Точная и слаженная работа мышц глаза позволяет нам видеть окружающий мир двумя глазами, т.е. бинокулярно. В случае нарушения функций мышц (например, при парезе или параличе одной из них) возникает двоение или же зрительная функция одного из глаз подавляется.

Также считается, что глазодвигательные мышцы участвуют в процессе подстройки глаза к процессу видения (аккомодации). Они сжимают или растягивают глазное яблоко так, чтобы лучи, поступающие от обозреваемых объектов, будь то вдали или вблизи, могли попасть точно на сетчатку. При этом хрусталик обеспечивает более тонкую настройку.

Кровоснабжение глаза

Мозговая ткань, осуществляющая проведение нервных импульсов от сетчатки до зрительной коры, а также зрительная кора, в норме почти повсеместно имеют хорошее обеспечение артериальной кровью. В кровоснабжении этих мозговых структур участвуют несколько крупных артерий, входящих в состав каротидных и вертебрально-базилярной сосудистых систем.

Артериальное кровоснабжение головного мозга и зрительного анализатора осуществляется из трех основных источников - правой и левой внутренней и наружной сонных артерий и непарной базилярной артерии. Последняя образуется в результате слияния правой и левой позвоночных артерий, расположенных в поперечных отростках шейных позвонков.

Почти вся зрительная кора и отчасти кора прилежащих к ней теменной и височной долей, а также затылочные, среднемозговые и мостовые глазодвигательные центры снабжаемых кровью за счет вертебро-базилярного бассейна (вертебра – в переводе с латинского – позвонок).

В связи с этим нарушения кровообращения в вертебрально-базилярной системе может стать причиной нарушения функций как зрительной, так и глазодвигательной систем.

Вертебробазилярная недостаточность, или синдром позвоночной артерии, – это состояние, при котором снижается кровоток в позвоночных и базилярной артериях. Причиной этих нарушений могут быть сдавливание, повышение тонуса позвоночной артерии, в т.ч. в следствие сдавливания костной тканью (остеофиты, грыжа межпозвоночного диска, подвывих шейных позвонков и др.).

Как видите, наши глаза – это исключительно сложный и удивительный дар природы. Когда все отделы зрительного анализатора работают гармонично и без помех, окружающий нас мир мы видим ясно.

Относитесь к своим глазам бережно и внимательно!

Министерство здравоохранения Российской Федерации

Саратовский Государственный Медицинский Университет

Кафедра глазных болезней

Заведующий кафедрой:

Преподаватель:

Реферат на тему:

Физиология глаза.

Саратов 2003 г.

Зрительная сенсорная система, как и любая другая, состоит из трех отделов:

1. Периферический отдел –глазное яблоко, в частности - сетчатка глаза (воспринимает световое раздражение)

2. Проводниковый отдел - аксоны ганглиозных клеток - зрительный нерв - зрительный перекрест - зрительный тракт - промежуточный мозг (коленчатые тела)- средний мозг (четверохолмие) -таламус

3. Центральный отдел - затылочная доля область шпорной борозды и прилегающих извилин

Периферический отдел зрительной сенсорной системы .

Глаз - комплексное образование, состоящее из глазного яблока и вспомогательного аппарата (брови, веки, слезные железы). С точки зрения сенсорной системы основным структурным компонентом глазного яблока является сетчатка, в которой заложены не только рецепторные клетки – палочки и колбочки, но и часть проводящей и управляющей системы - цепь нейронов: биполярные, горизонтальные, амакриновые и ганглиозные клетки. Кроме того в сетчатке есть глиальные клетки, которые выполняют трофическую, опорную, разграничительную и защитную функции.

Остальные структуры глаза выполняют вспомогательные функции: светопроводящую, светопреломляющую, увлажняющую, различные виды защиты. Хотя эти функции не являются основными, но нарушение любой из них отражается на качестве и количестве зрительной информации вплоть до полного прекращения ее поступления в ЦНС.

ОПТИЧЕСКАЯ СИСТЕМА ГЛАЗА, СТРОЕНИЕ И ФИЗИОЛОГИЯ СЕТЧАТКИ

К оптической системе глаза относятся: роговица, водянистая влага, радужка, зрачок, хрусталик и стекловидное тело

Глазное яблоко, имеет шаровидную форму и помещается в костной воронке - глазнице. Спереди он защищен веками. По свободному краю века растут ресницы, которые защищают глаз от попадания в него частиц пыли. У верхненаружного края глазницы расположена слезная железа, выделяющая слезную жидкость, омывающую глаз. Глазное яблоко имеет несколько оболочек, одна из которых - наружная - склера, или белочная оболочка (белого цвета). В передней части глазного яблока она переходит в прозрачную роговицу (преломляет лучи света)

Под белочной оболочкой расположена сосудистая оболочка, состоящая из большого количества сосудов. В переднем отделе глазного яблока сосудистая оболочка переходит в ресничное тело и радужную оболочку (радужку). Она содержит пигмент, придающий цвет глазу. В ней имеется круглое отверстие - зрачок. Здесь расположены мышцы, которые изменяют величину зрачка и, в зависимости от этого, в глаз попадает большее или меньшее количество света, т.е. происходит регуляция поступления потока света. Позади радужки в глазу располагается хрусталик, представляющий собой эластичную, прозрачную двояковыпуклую линзу, окруженную ресничной мышцей. Его оптической функцией является преломление и фокусировка лучей, кроме того он отвечает за аккомодацию глаза. Хрусталик может менять свою форму - становиться более или менее выпуклые и соответственно сильнее или слабее преломлять лучи света. Благодаря этому человек способен отчетливо видеть предметы, расположенные на разном расстоянии. Роговица и хрусталик обладают светопреломляющей способностью

За хрусталиком полость глаза заполняется прозрачной желеобразной массой - стекловидным телом, которое пропускает лучи света и является светопреломляющей средой.

Светопроводящие и светопреломляющие среды (роговица, водянистая влага, хрусталик, стекловидное тело) выполняют также функцию фильтрации света, пропуская только световые лучи с диапазоном длин волн от400 до 760 мкм. При этом ультрафиолетовые лучи задерживаются роговицей, а инфракрасные - водянистой влагой.

Внутренняя поверхность глаза выстлана тонкой, сложной по строению и наиболее функционально важной оболочкой - сетчаткой . В ней выделяют два отдела: задний отдел или зрительную часть и передний отдел – слепую часть. Граница, их отделяющая называется зубчатой линией. Слепая часть прилежит изнутри к цилиарному телу и к радужной оболочке и представляет собой два слоя клеток:

Внутренний – слой кубических пигментных клеток

Внешний – слой призматических клеток, лишенных пигмента меланина.

В сетчатке (в зрительной ее части) содержатся не только периферический отдел анализатора - рецепторные клетки, но и значительная часть его промежуточного отдела. Фтоторецепторные клетки (палочки и колбочки) по данным большинства исследователей, являются своеобразно измененными нервными клетками и потому относятся к первично чувствующим или нейросенсорным рецепторам. Нервные волокна, отходящие от этих клеток, собираются вместе и образуют зрительный нерв.

Микроскопически в сетчатке выделяют 10 слоев:

1. Слой пигментных клеток

2. Слой палочек и колбочек

3. Наружная глиальная пограничная мембрана

4. Наружный ядерный слой

5. Наружный сетчатый слой

6. Внутренний ядерный слой

7. Внутренний сетчатый слой

8. Ганглиозный слой

9. Слой нервных волокон

10. Внутренняя глиальная пограничная мембрана

В структурно-функциональном отношении ведущими элементами сетчатки являются нервные клетки, которые располагаются в три слоя:

Существует два типа связи между структурными элементами сетчатки:

Вертикальные – образуют своеобразные вертикальные колонки, которые обеспечивают главным образом передачу нервных импульсов в центростремительном направлении.

Горизонтальные - обеспечивают обработку нервных импульсов

а) Фоторецепторами являются палочки и колбочки расположенные в наружном слое сетчатки Палочки и колбочки сходны по своему строению, они состоят из четырех участков:

· Наружный сегмент - светочувствительный участок, где световая энергия преобразуется в рецепторный потенциал Наружный сегмент заполнен мембранными дисками, образованными плазматической мембраной. В палочках в каждом наружном сегменте содержится 600 - 1000 дисков, которые представляют собой уплощенные мембранные мешочки, уложенные как столбик монет. В колбочках мембранных дисков меньше, они представляют собой складки плазматической мембраны.

· Перетяжка - место, где наружный сегмент почти полностью отделен от внутреннего впячиванием наружной мембраны. Связь между двумя сегментами осуществляется через цитоплазму и пару ресничек, переходящих из одного сегмента в другой.

· Внутренний сегмент - область активного метаболизма, заполненная митохондриями.

На уровне рецепторов происходит торможение и сигнал колбочки перестает отражать число поглощенных фотонов, а несет информацию о цвете, распределении и интенсивности света, падающего на сетчатку в окрестностях рецептора.

б) Горизонтальные клетки отвечают на свет гиперполяризацией с ярко выраженной пространственной суммацией. Суммация осуществляется по всему полю: и в центре, и на периферии. Одновременное включение пятна (возбуждает только центр рецепторного поля) и кольца (возбуждает только периферию поля) вызывает сложение ответов.

Горизонтальные клетки не генерируют нервных импульсов, но мембрана обладает нелинейными свойствами, обеспечивающими безимпульсное проведение сигнала без затухания. Существует 2 типа горизонтальных клеток:

1) Клетки В-типа, или яркостные, всегда отвечают гиперполяризацией вне зависимости от длины волны света.

2) Клетки С-типа, или хроматические, делятся на двух- и трехфазные.

Хроматические клетки отвечают гипер- или деполяризацией в зависимости от длины волны стимулирующего света.

o Двухфазные клетки бывают либо красно-зеленые (деполяризуются красным светом, гиперполяризуются зеленым), либо зелено-синие (деполяризуются зеленым светом, гиперполяризуются синим).

o Трехфазные клетки деполяри­зуются зеленым светом, а синий и красный свет вызывает гиперполяризацию мембраны.

в) В биполярных клетках гиперполяризация возникает при стимуляции центра поля, а возбуждение периферии приводит к деполяризации мембраны клетки У клетки другого типа мембрана деполяризуется при стимуляции пятном и гиперполяризуется при включении кольца. Сигналы от рецепторов, поступающие на входы биполярных клеток, регулируются горизонтальными клетками.

г) Амакриновые клетки генерируют градуальные и импульсные потенциалы. Эти клетки отвечают быстротекущей деполяризацией на включение и выключение света и демонстрируют слабый пространственный антагонизм между центром и периферией Спайки появляются при включении и выключении пятна и кольца. Во внутреннем синаптическом слое биполярные клетки управляют амакриновыми клетками и за счет обратной связи через синапсы с амакриновых на биполярные клетки медленные потенциалы (тонический характер ответа) биполярных клеток преобразуются в быс­тротекущую активность (фазный характер ответа) амакриновых клеток.

д) Ганглиозные клетки по своим свойствам являются нейронами обычного типа. В них возникают возбуждающие (деполяризационные) и тормозные (гиперполяризацонные) постсинаптические; потенциалы, которые и определяют частоту импульсов, распространяющихся по аксонам клетки в мозг. Ганглиозные клетки, получающие сигналы непосредственно от биполярных генерируют ответы тонического типа - импульсы возникают в течение действия стимула при стимуляции центра поля. При дополнительном раздражении периферии происходит торможение разряда на включение стимула, а при выключении возникает длительный ответ.

Орган зрения (oculus) состоит из глазного яблока со зрительным центром и вспомогательного аппарата.

Орган зрения (зрительный анализатор) выделяют 4 части:

- периферическая часть (воспринимающая)

· глазное яблоко+придатки

- проводящие пути:

· зрительный нерв (состоящий из аксонов ганглионарных клеток)

· зрительный тракт

- подкорковые центры

· наружные коленчатые тела

· зрительная лучистость

- высшие зрительные центры

· затылочная доля

Глазное яблоко

Парное образование, располагающееся в глазных впадинах – орбитах. Имеет неправильную шаровидную форму. Для осмотра доступен лишь его передний отдел.

Длина сагиттальной оси в среднем 24 мм, горизонтальной 23,6 мм; вертикальной – 23,3 мм. Масса глазного яблока примерно 7-8 г.

Глазное яблоко состоит из ядра , которое покрыто 3-мя оболочками :

· - наружная (фиброзная)

· - средняя (сосудистая)

· - внутренняя (сетчатка)

Наружная оболочка (фиброзная капсула, фиброзная оболочка (ФО)

Тонкая 0,3-1 мм оболочка, достаточно плотная

Функции ФО:

· обуславливает форму глаза

· поддерживает определенный тургор

· защитная

· место прикрепления глазодвигательных мышц

В свою очередь в ФО выделяют 2 отдела:

· роговица

Представляет передний отдел наружной оболочки глаза. Занимает меньшую часть – 1/6 протяженности ФО. Она тонкая и прозрачная. Имеет вид часового стекла, выпуклостью направленного кпереди. в норме гладкая, прозрачная, зеркальная, блестящая. Функция: преломление света (оптическая сила = 40 диоптрий) + ф-ции ФО смотри

Размер роговицы диаметр горизонт. 11 мм, вертик. 10 мм

Средний радиус кривизны 7,8 мм (это нужно знать для диагностики аномалии роговицы)

например гипоплазия челюстной системы сопровождается офтальмологическими патологиями.

Гистологически в роговице выделяют 5 слоев:

Передний эпителий

Передняя пограничная мембрана

Строма (в основном воспалительные заболевания проявляются)

Задняя пограничная мембрана

Эндотелий (дистрофические процессы)

Клетки эндотелия не исчезают с возрастом, а уменьшается их плотность. так же встречается такое заболевание как «роговичный синдром», при котором набухают клетки эндотелия (передний слой эндотелия)

Для замены роговицы производят такую операцию как кератопластика

Роговица не имеет кровеносных сосудов, процессы обмена происходят за счет краевой петлистой сосудистой сети, слезы (имеет три слоя а) водный, б) белковый, в) липидный), влаги передней камеры.

Полупрозрачная зона перехода роговицы в склеру – лимб

· склера

Задняя большая часть. Занимает 5/6 глазного яблока. Образована соединительной тканью – белочная оболочка. Плотная, имеет беловатый вид, непрозрачная.

Выделяют три слоя:

Эписклера

Собственно склера

Бурая пластинка

Толщина склеры 0,3 – 1 мм. В области прохождения зрительного нерва затянута решетчатой пластинкой.

Собственными сосудами бедна. Через неё проходят стволы сосудов для сосудистого тракта.

Иннервация:

ü Чувствительная:

От глазной ветви тройничного нерва

ü Симпатическая:

Из верхнего шейного симпатического узла

Средняя оболочка (сосудистая)

Оболочка сосудистого или увеального тракта.

Три отдела:

ü радужка

ü реснитчатое тело

ü собственно сосудистая оболочка (хореоидеа)

Сосудистая оболочка содержит большое количество кровеносных сосудов и черный пигмент, поглощающий свет.

Радужка

Передний отдел сосудистого тракта. Радужка определяет цвет глаз, имеет вид диска, расположенного во фронтальной плоскости. Между ней и роговицей имеется передняя камера. Радужка имеет вид тонкой пластинки или диска, что писалось выше.

диаметр гориз. 12,5 мм, вертик. 12 мм.

В центре радужки имеется круглое отверстие зрачок :

Ф-ции зрачка : служит для регулирования количества световых лучей, проникающих в глаз.

Средний диаметр зрачка равен 3 мм, макс. 8 мм, миним. 1 мм.

В толще радужки находятся 2 мышцы: суживающая зрачок(sphincter pupillae) и расширяющая зрачок(dilatator pupillae)

Кровоснабжение:

из длин. задних реснитч. и перед реснич. артерий

Чувствит. иннервация: тройнич. нерв.

М. суживающая зрачок: от глазодвигательного нерва для топического определения

м. расширяющая зрачок: от симпатического нерва нервныз заб-й

Реснитчатое тело (цилиарное тело)

Занимает промежуточное звено между собственно сосудистой оболочкой и радужкой. Имеет вид валика

Ф-ции: реснитчатая мышца (залегает в толще реснитчатого тела, состоит из пучков гладкой мышечной ткани) обеспечивает аккомодацию за счет сокращения и расслабления

реснитчатый эпителий – продукцию водянистой влаги.

Иннервация: из первой ветви тройничного нерва (чувствительная иннервация)

сосудодвигательная: из симпатического сплетения

двигательная: из глазодвигательного нерва

Выделяют три слоя.

Собственно сосудистая оболочка

Составляет заднюю самую обширную часть сосудистого тракта. Толщина 0,2-0,4 мм.



Гистологически выделяют 5 слоев

1) супрахориоидеа;

2) слой крупных сосудов (Галлера);

3) слой средних сосудов (Заттлера);

4) хориокапиллярный слой (clioriocapillaris);

5) стекловидная оболочка (lamina vitrea s. lamina elastica), или мембрана Бруха.

Ф-ция: энергетическая база, обеспечивающая восстановление непрерывно распадающегося зрительного пурпура (пигмента) необходимого для зрения

На всем протяжении сетчатка и соственно сосудистая оболочка (хориоидеа), учавствует в физаологическом акте зрения.

Внутренняя оболочка (сетчатка)

Специализированная часть головной коры, вынесенная на преферию. Сетчатка является непосредственно нервной тканью.

Сетчатка имеет 2 части:

ü Слепая зона – покрывает радужку и ресничное тело и лишена светочувствительных клеток.

ü Зрительная зона – содержит палочки и колбочки. Палочек около 130 млн., они более чувствительны к свету и обеспечивают сумеречное зрение. Колбочек около 7 млн., они менее чувствительны к свету и отвечают за дневное и цветовое зрение.

Диск зрительного нерва – место выхода зрительного нерва из сетчатки. кнаружи от диска на расстоянии 4ех мм находится желтое пятно (напротив зрачка), в центре которого находится центральная ямка. Она содержит только колбочки. Кнаружи от ямки появляются палочки, а в сетчатке на периферии их количество увеличивается. В месте выхода зрительного нерва находится слепое пятно, где отсутствуют палочки и колбочки.

Ф-ции желтого пятна : ответственно за центральное зрение

В сетчатке выделяют 10 слоев:

ü Пигментный эпителий

ü Слой палочек и колбочек

ü Наружная пограничная пластинка

ü Наружный ядерный слой

ü Наружный плексиформный слой

ü Внутренний ядерный слой

ü Внутренний плексиформный слой.

ü Слой ганглиозных клеток.

ü Слой нервных волокон

ü Внутренняя пограничная мембрана

Во втором слое имеются палочки и колбочки. Палочки отвечают за сумеречное зрение, колбочки – за центральное и цветное зрение.

Выделяют 2 части зрительного аппарата:

- проводящие (зрительные) пути

состоят из зрительного нерва, хиазма (где происходит частичный перекрест нервов), зрительного тракта, наружного коленчатого тела, оптического центра восприятия (затылочная доля коры головного мозга)

- сетчатка

Ядро глазного яблока включает в себя:

ü Хрусталик;

ü Стекловидное тело;

ü Водянистую влагу.

Хрусталик состоит из прозрачных волокон и имеет форму двояковыпуклой линзы. От хрусталика к ресничной мышце натягивается ресничный поясок.

Стекловидное тело занимает пространство между хрусталиком и сетчаткой, имеет желеобразную консистенцию и так же как хрусталик не содержит сосудов.

Водянистая влага вырабатывается ресничками реснитчатого тела. Она поступает вначале в заднюю камеру, а затем через зрачок в переднюю. Водянистая влага выполняет функции: участвует в обменных процессах, создает внутриглазное давление.

Отток происходит в вены глаза. Передняя камера ограничена радужкой и роговицей, а задняя – радужкой, реснитчатым телом, реснитчатым пояском и хрусталиком.

Вспомогательный аппарат глаза. К нему относят:

брови – кожные валики, покрытые волосами. Функция: защитная.

Веки – верхние и нижние, соединенные друг с другом в углах глаза. Снаружи веко покрыто тонкой кожей, а изнутри соединительно-тканой оболочкой – конъюнктивой. С верхнего и нижнего века конъюнктива переходит на глазное яблоко, при этом образуется верхний нижний своды конъюнктивы. В толще века залегает вековая часть, круговая мышца глаза и соединительно-тканая пластинка.

По свободному краю век растут - ресницы. Функция – защитная.

При сомкнутых веках между конъюнктивой век и глазным яблоком находится конъюнктивальный мешок.

Внутреннее содержание глазного яблока

- передняя камера (между роговицей и радужкой)

- хрусталик (прозрачное, слегка желтоватое тело, форма двояковыпуклой линзы)

Ф-ция: преломляющая (сила приломления – 18 диоптрий)

Между радужкой и стекловидным телом гелеобразная масса. заполняющая весь объем. Объем 3,5-4 мм, масса 4 г. Состав: геалуроновая кислота и вода.

Позади радужки имеется задняя камера

Придаточный аппарат:

Мышцы глаза образованы поперечнополосатой мышечной тканью. Выделяют 4 прямые мышцы глаза: верхнюю прямую, нижнюю прямую, латеральную прямую и медиальную прямую; 2 косые мышцы: верхнюю и нижнюю косую. А так же мышцу, поднимающую верхнее веко. Все мышцы сокращаются произвольно, обеспечивая произвольное движение глазного яблока.+веки (верх. и нижн.)

Слезный аппарат глаза состоит из:

1. Слезной железы с выводными протоками, расположенной в верхнелатеральном углу глазницы.

2. Слезовыводящих путей:

Слезного озерца;

Верхних и нижних слезных канальцев;

Слезного мешка;

Носослезного протока, который открывается в носовой полости, под нижней носовой раковиной.

Слеза, омывая глазное яблоко, предотвращает высыхание, способствует удалению инородных частиц. Затем скапливается в слезном озерце. Далее через точки верхнего и нижнего века поступает в канальцы, затем в слезный мешок и затем в полость носа.

Орган зрения


Орган зрения - один из главных органов чувств, он играет значительную роль в процессе восприятия окружающей среды. В многообразной деятельности человека, в исполнении многих самых тонких работ органу зрения принадлежит первостепенное значение. Достигнув совершенства у человека, орган зрения улавливает световой поток, направляет его на специальные светочувствительные клетки, воспринимает черно-белое и цветное изображение, видит предмет в объеме и на различном расстоянии.

Орган зрения расположен в глазнице и состоит из глаза и вспомогательного аппарата (рис. 144).


Рис. 144. Строение глаза (схема):

1 - склера; 2 - сосудистая оболочка; 3 - сетчатка; 4 - центральная ямка; 5 - слепое пятно; 6 - зрительный нерв; 7- конъюнктива; 8- цилиар-ная связка; 9-роговица; 10-зрачок; 11, 18- оптическая ось; 12 - передняя камера; 13 - хрусталик; 14 - радужка; 15 - задняя камера; 16 - ресничная мышца; 17- стекловидное тело


Глаз (oculus) состоит из глазного яблока и зрительного нерва с его оболочками. Глазное яблоко имеет округлую форму, передний и задний полюсы. Первый соответствует наиболее выступающей части наружной фиброзной оболочки (роговицы), а второй - наиболее выступающей части, которая находится латеральное выхода зрительного нерва из глазного яблока. Линия, соединяющая эти точки, называется наружной осью глазного яблока, а линия, соединяющая точку на внутренней поверхности роговицы с точкой на сетчатке, получила название внутренней оси глазного яблока. Изменения соотношений этих линий вызывают нарушения фокусировки изображения предметов на сетчатке, появление близорукости (миопия) или дальнозоркости (гиперметропия).

Глазное яблоко состоит из фиброзной и сосудистой оболочек, сетчатки и ядра глаза (водянистая влага передней и задней камер, хрусталик, стекловидное тело).

Фиброзная оболочка - наружная плотная оболочка, которая выполняет защитную и светопроводящую функции. Передняя ее часть называется роговицей, задняя - склерой. Роговица - это прозрачная часть оболочки, которая не имеет сосудов, а по форме напоминает часовое стекло. Диаметр роговицы - 12 мм, толщина - около 1 мм.

Склера состоит из плотной волокнистой соединительной ткани, толщиной около 1 мм. На границе с роговицей в толще склеры находится узкий канал - венозный синус склеры. К склере прикрепляются глазодвигательные мышцы.

Сосудистая оболочка содержит большое количество кровеносных сосудов и пигмента. Она состоит из трех частей: собственной сосудистой оболочки, ресничного тела и радужки. Собственно сосудистая оболочка образует большую часть сосудистой оболочки и выстилает заднюю часть склеры, срастается рыхло с наружной оболочкой; между ними находится околососудистое пространство в виде узкой щели.

Ресничное тело напоминает среднеутолщенный отдел сосудистой оболочки, который лежит между собственной сосудистой оболочкой и радужкой. Основу ресничного тела составляет рыхлая соединительная ткань, богатая сосудами и гладкими мышечными клетками. Передний отдел имеет около 70 радиально расположенных ресничных отростков, которые составляют ресничный венец. К последнему прикрепляются радиально расположенные волокна ресничного пояса, которые затем идут к передней и задней поверхности капсулы хрусталика. Задний отдел ресничного тела - ресничный кружок - напоминает утолщенные циркулярные полоски, которые переходят в сосудистую оболочку. Ресничная мышца состоит из сложнопереплетенных пучков гладких мышечных клеток. При их сокращении происходят изменение кривизны хрусталика и приспособление к четкому видению предмета (аккомодация).

Радужка - самая передняя часть сосудистой оболочки, имеет форму диска с отверстием (зрачком) в центре. Она состоит из соединительной ткани с сосудами, пигментных клеток, которые определяют цвет глаз, и мышечных волокон, расположенных радиально и циркулярно.

В радужке различают переднюю поверхность, которая формирует заднюю стенку передней камеры глаза, и зрачковый край, который офаничивает отверстие зрачка. Задняя поверхность радужки составляет переднюю поверхность задней камеры глаза, ресничный край соединяется с ресничным телом и склерой при помощи гребенчатой связки. Мышечные волокна радужки, сокращаясь или расслабляясь, уменьшают или увеличивают диаметр зрачков.

Внутренняя (чувствительная) оболочка глазного яблока - сетчатка - плотно прилегает к сосудистой. Сетчатка имеет большую заднюю зрительную часть и меньшую переднюю «слепую» часть, которая объединяет ресничную и радужковую части сетчатки. Зрительная часть состоит из внутренней пигментной и внутренней нервной частей. Последняя имеет до 10 слоев нервных клеток. Во внутреннюю часть сетчатки входят клетки с отростками в форме колбочек и палочек, которые являются светочувствительными элементами глазного яблока. Колбочки воспринимают световые лучи при ярком (дневном) свете и являются одновременно рецепторами цвета, а палочки функционируют при сумеречном освещении и играют роль рецепторов сумеречного света. Остальные нервные клетки выполняют связующую роль; аксоны этих клеток, соединившись в пучок, образуют нерв, который выходит из сетчатки.

На заднем отделе сетчатки находится место выхода зрительного нерва - диск зрительного нерва, а латеральное от него располагается желтоватое пятно. Здесь находится наибольшее количество колбочек; это место является местом наибольшего видения.

В ядро глаза входят передняя и задняя камеры, заполненные водянистой влагой, хрусталик и стекловидное тело. Передняя камера глаза - это пространство между роговицей спереди и передней поверхностью радужки сзади. Место по окружности, где находится край роговицы и радужки, ограничено гребенчатой связкой. Между пучками этой связки расположено пространство радужно-роговичного узла (фонтановы пространства). Через эти пространства водянистая влага из передней камеры оттекает в венозный синус склеры (шлеммов канал), а затем поступает в передние ресничные вены. Через отверстие зрачка передняя камера соединяется с задней камерой глазного яблока. Задняя камера в свою очередь соединяется с пространствами между волокнами хрусталика и ресничным телом. По периферии хрусталика лежит пространство в виде пояска (петитов канал), заполненное водянистой влагой.

Хрусталик - это двояковыпуклая линза, которая расположена сзади камер глаза и обладает светопреломляющей способностью. В нем различают переднюю и заднюю поверхности и экватор. Вещество хрусталика бесцветное, прозрачное, плотное, не имеет сосудов и нервов. Внутренняя его часть - ядро - намного плотнее периферической части. Снаружи хрусталик покрыт тонкой прозрачной эластичной капсулой, к которой прикрепляется ресничный поясок (циннова связка). При сокращении ресничной мышцы изменяются размеры хрусталика и его преломляющая способность.

Стекловидное тело - это желеобразная прозрачная масса, которая не имеет сосудов и нервов и покрыта мембраной. Расположено оно в стекловидной камере глазного яблока, сзади хрусталика и плотно прилегает к сетчатке. Сбоку хрусталика в стекловидном теле находится углубление, называемое стекловидной ямкой. Преломляющая способность стекловидного тела близка к таковой водянистой влаги, которая заполняет камеры глаза. Кроме того, стекловидное тело выполняет опорную и защитную функции.

Вспомогательные органы глаза. К вспомогательным органам глаза относятся мышцы глазного яблока (рис. 145), фасции глазницы, веки, брови, слезный аппарат, жировое тело, конъюнктива, влагалище глазного яблока.


Рис. 145. Мышцы глазного яблока:

А - вид с латеральной стороны: 1 - верхняя прямая мышца; 2 - мышца, поднимающая верхнее веко; 3 - нижняя косая мышца; 4 - нижняя прямая мышца; 5 - латеральная прямая мышца; Б - вид сверху: 1 - блок; 2 - влагалище сухожилия верхней косой мышцы; 3 - верхняя косая мышца; 4- медиальная прямая мышца; 5 - нижняя прямая мышца; 6 - верхняя прямая мышца; 7 - латеральная прямая мышца; 8 - мышца, поднимающая верхнее веко


Двигательный аппарат глаза представлен шестью мышцами. Мышцы начинаются от сухожильного кольца вокруг зрительного нерва в глубине глазницы и прикрепляются к глазному яблоку. Выделяют четыре прямые мышцы глазного яблока (верхняя, нижняя, латеральная и медиальная) и две косые (верхняя и нижняя). Мышцы действуют таким образом, что оба глаза поворачиваются согласованно и направлены в одну и ту же точку. От сухожильного кольца начинается также мышца, поднимающая верхнее веко. Мышцы глаза относятся к поперечнополосатым мышцам и сокращаются произвольно.

Глазница, в которой находится глазное яблоко, состоит из надкостницы глазницы, которая в области зрительного канала и верхней глазничной щели срастается с твердой оболочкой головного мозга. Глазное яблоко покрыто оболочкой (или теноновой капсулой), которая рыхло соединяется со склерой и образует эписклеральное пространство. Между влагалищем и надкостницей глазницы находится жировое тело глазницы, которое выполняет роль эластичной подушки для глазного яблока.

Веки (верхнее и нижнее) представляют собой образования, которые лежат впереди глазного яблока и прикрывают его сверху и снизу, а при смыкании - полностью его закрывают. Веки имеют переднюю и заднюю поверхность и свободные края. Последние, соединившись спайками, образуют медиальный и латеральные углы глаза. В медиальном углу находятся слезное озеро и слезное мясцо. На свободном крае верхнего и нижнего век около медиального угла видно небольшое возвышение - слезный сосочек с отверстием на верхушке, которая является началом слезного канальца.

Пространство между краями век называется глазной щелью. Вдоль переднего края век расположены ресницы. Основу века составляет хрящ, который сверху покрыт кожей, а с внутренней стороны - конъюнктивой века, которая затем переходит в конъюнктиву глазного яблока. Углубление, которое образуется при переходе конъюнктивы век на глазное яблоко, называется конъюнктивальным мешком. Веки, кроме защитной функции, уменьшают или перекрывают доступ светового потока.

На границе лба и верхнего века находится бровь, представляющая собой валик, покрытый волосами и выполняющий защитную функцию.

Слезный аппарат состоит из слезной железы с выводными протоками и слезоотводящих путей. Слезная железа находится в одноименной ямке в латеральном углу, у верхней стенки глазницы и покрыта тонкой соединительно-тканной капсулой. Выводные протоки (их около 15) слезной железы открываются в конъюнктивальный мешок. Слеза омывает глазное яблоко и постоянно увлажняет роговицу. Движению слезы способствуют мигательные движения век. Затем слеза по капиллярной щели около края век оттекает в слезное озеро. В этом месте берут начало слезные канальцы, которые открываются в слезный мешок. Последний находится в одноименной ямке в нижнемедиальном углу глазницы. Книзу он переходит в довольно широкий носослезный канал, по которому слезная жидкость попадает в полость носа.

Проводящие пути зрительного анализатора (рис. 146). Свет, который попадает на сетчатку, проходит вначале через прозрачный светопреломляющий аппарат глаза: роговицу, водянистую влагу передней и задней камер, хрусталик и стекловидное тело. Пучок света на своем пути регулируется зрачком. Светопреломляющий аппарат направляет пучок света на более чувствительную часть сетчатки - место наилучшего видения - пятно с его центральной ямкой. Пройдя через все слои сетчатки, свет вызывает там сложные фотохимические преобразования зрительных пигментов. В результате этого в светочувствительных клетках (палочках и колбочках) возникает нервный импульс, который затем передается следующим нейронам сетчатки - биполярным клеткам (нейроцитам), а после них - нейроцитам ганглиозного слоя, ганглиозным нейроцитам. Отростки последних идут в сторону диска и формируют зрительный нерв. Пройдя в череп через канал зрительного нерва по нижней поверхности головного мозга, зрительный нерв образует неполный зрительный перекрест. От зрительного перекреста начинается зрительный тракт, который состоит из нервных волокон ганглиозных клеток сетчатки глазного яблока. Затем волокна по зрительному тракту идут к подкорковым зрительным центрам: латеральному коленчатому телу и верхним холмикам крыши среднего мозга. В латеральном коленчатом теле волокна третьего нейрона (ганглиозных нейроцитов) зрительного пути заканчиваются и вступают в контакт с клетками следующего нейрона. Аксоны этих нейроцитов проходят через внутреннюю капсулу и достигают клеток затылочной доли около шпорной борозды, где и заканчиваются (корковый конец зрительного анализатора). Часть аксонов ганглиозных клеток проходит через коленчатое тело и в составе ручки поступает в верхний холмик. Далее из серого слоя верхнего холмика импульсы идут в ядро глазодвигательного нерва и в дополнительное ядро, откуда происходит иннервация глазодвигательных мышц, мышц, которые суживают зрачки, и ресничной мышцы. Эти волокна несут импульс в ответ на световое раздражение и зрачки суживаются (зрачковый рефлекс), также происходит поворот в необходимом направлении глазных яблок.



Рис. 146. Схема строения зрительного анализатора:

1 - сетчатка; 2- неперекрещенные волокна зрительного нерва; 3 - перекрещенные волокна зрительного нерва; 4- зрительный тракт; 5- корковый анализатор


Механизм фоторецепции основан на поэтапном превращении зрительного пигмента родопсина под действием квантов света. Последние поглощаются группой атомов (хромофоры) специализированных молекул - хромолипо-протеинов. В качестве хромофора, который определяет степень поглощения света в зрительных пигментах, выступают альдегиды спиртов витамина А, или ретиналь. Последние всегда находятся в форме 11-цисретиналя и в норме связываются с бесцветным белком опсином, образуя при этом зрительный пигмент родопсин, который через ряд промежуточных стадий вновь подвергается расщеплению на ретиналь и опсин. При этом молекула теряет цвет и этот процесс называют выцветанием. Схема превращения молекулы родопсина представляется следующим образом.



Процесс зрительного возбуждения возникает в период между образованием люми- и метародопсина II. После прекращения воздействия света родопсин тотчас же ресинтезируется. Вначале полностью при участии фермента рети-нальизомеразы транс-ретиналь превращается в 11-цисретиналь, а затем последний соединяется с опсином, вновь образуя родопсин. Этот процесс беспрерывный и лежит в основе темновой адаптации. В полной темноте необходимо около 30 мин, чтобы все палочки адаптировались и глаза приобрели максимальную чувствительность. Формирование изображения в глазу происходит при участии оптических систем (роговицы и хрусталика), дающих перевернутое и уменьшенное изображение объекта на поверхности сетчатки. Приспособление глаза к ясному видению на расстоянии удаленных предметов называют аккомодацией. Механизм аккомодации глаза связан с сокращением ресничных мышц, которые изменяют кривизну хрусталика.

При рассмотрении предметов на близком расстоянии одновременно с аккомодацией действует и конвергенция, т. е. происходит сведение осей обоих глаз. Зрительные линии сходятся тем больше, чем ближе находится рассматриваемый предмет.

Преломляющую силу оптической системы глаза выражают в диоптриях («Д» - дптр). За 1 Д принимается сила линзы, фокусное расстояние которой составляет 1 м. Преломляющая сила глаза человека составляет 59 дптр при рассмотрении далеких предметов и 70,5 дптр при рассмотрении близких.

Существуют три главные аномалии преломления лучей в глазу (рефракции): близорукость, или миопия; дальнозоркость, или гиперметропия; старческая дальнозоркость, или пресбиопия (рис. 147). Основная причина всех дефектов глаза состоит в том, что не согласуются между собой преломляющая сила и длина глазного яблока, как в нормальном глазу. При близорукости (миопии) лучи сходятся перед сетчаткой в стекловидном теле, а на сетчатке вместо точки возникает круг светорассеяния, глазное яблоко при этом имеет большую длину, чем в норме. Для коррекции зрения используют вогнутые линзы с отрицательными диоптриями.



Рис. 147. Ход лучей света в нормальном глазу (А), при близорукости

(Б1 и Б2), при дальнозоркости (В1 и В2) и при астигматизме (Г1 и Г2):

Б2, В2 - двояковогнутая и двояковыпуклая линзы для исправления дефектов близорукости и дальнозоркости; Г2 - цилиндрическая линза для коррекции астигматизма; 1 - зона четкого видения; 2 - зона размытого изображения; 3 - корректирующие линзы


При дальнозоркости (гиперметропии) глазное яблоко короткое, и поэтому параллельные лучи, идущие от далеких предметов, собираются сзади сетчатки, а на ней получается неясное, расплывчатое изображение предмета. Этот недостаток может быть компенсирован путем использования преломляющей силы выпуклых линз с положительными диоптриями.

Старческая дальнозоркость (пресбиопия) связана со слабой эластичностью хрусталика и ослаблением натяжения цинновых связок при нормальной длине глазного яблока.

Исправлять это нарушение рефракции можно с помощью двояковыпуклых линз. Зрение одним глазом дает нам представление о предмете лишь в одной плоскости. Только при зрении одновременно двумя глазами возможно восприятие глубины и правильное представление о взаимном расположении предметов. Способность к слиянию отдельных изображений, получаемых каждым глазом, в единое целое обеспечивает бинокулярное зрение.

Острота зрения характеризует пространственную разрешающую способность глаза и определяется тем наименьшим углом, при котором человек способен различать раздельно две точки. Чем меньше угол, тем лучше зрение. В норме этот угол равен 1 мин, или 1 единице.

Для определения остроты зрения используют специальные таблицы, на которых изображены буквы или фигурки различного размера.

Поле зрения - это пространство, которое воспринимается одним глазом при неподвижном его состоянии. Изменение поля зрения может быть ранним признаком некоторых заболеваний глаз и головного мозга.

Цветоощущение - способность глаза различать цвета. Благодаря этой зрительной функции человек способен воспринимать около 180 цветовых оттенков. Цветовое зрение имеет большое практическое значение в ряде профессий, особенно в искусстве. Как и острота зрения, цветоощущение является функцией колбочкового аппарата сетчатки. Нарушения цветового зрения могут быть врожденными и передаваться по наследству и приобретенными.

Нарушение цветового восприятия носит название дальтонизма и определяется с помощью псевдоизохроматических таблиц, в которых представлена совокупность цветных точек, образующих какой-либо знак. Человек с нормальным зрением легко различает контуры знака, а дальтоник нет.



| |