Блокаторы серотониновых рецепторов препараты. Нейробиология депрессии: серотониновая система мозга

Большая депрессия – распространенное психическое расстройство, которое является одной из наиболее частых причин нарушения трудоспособности . Это заболевание наблюдается во всех возрастных группах и поражает людей обоих полов в любом регионе мира. Опыт последних десятилетий показал, что перспективы изучения де-прессии связаны с ее нейробиологией.

О.А. Левада, Запорожская медицинская академия последипломного образования

Для объяснения патогенетических механизмов депрессии широко используется молекулярная гипотеза. Согласно последней, неблагоприятные факторы окружающей среды, такие как стресс, воздействуют на генетическую уязвимость, что вызывает дезадаптивные изменения в цепи нейротрансмиттеров, среди которых основную роль играют моноамины. В большинстве имеющихся достижений в лечении заболевания также реализованы воздействия на расшифрованные медиаторные механизмы патогенеза .

Одной из важнейших систем церебральной нейромедиации, задействованных в патогенезе депрессии, является серотониновая система. Данная нейротрансмиттерная система имеет длительную эволюционную историю и участвует в целом ряде поведенческих актов и эмоциональных проявлений . Она является объектом изучения значительного количества исследований, обзор которых представлен в настоящей публикации.

Для лучшего понимания интеграции серотониновой системы в мозговые процессы регуляции настроения следует в первую очередь рассмотреть имеющиеся данные о влиянии различных церебральных регионов на аффективные проявления. Так, исполнительные функции, включающие модулирование эмоционального поведения, которые могут иметь отношение к формированию когнитивных симптомов депрессии (депрессивное видение будущего), ассоциируются с гипоактивацией левой фронтальной коры .

Система эмоциональной памяти, включающая миндалину и гиппокамп, также вовлечена в реализацию проявлений депрессии. Депрессивные пациенты демонстрируют преимущественную сосредоточенность на негативных событиях прошлого . Дисфункцией стриатных кругов, осуществляющих психомоторные функции, можно объяснить моторные симптомы депрессии. Расстройства пищевого поведения и нарушения ряда других соматических функций свидетельствуют о вовлечении в процесс гипоталамуса и гипоталамо-гипофизарно-надпочечниковой оси.

Названные мозговые образования анатомически и функционально связаны между собой с помощью нейрональных кругов .

Во многочисленной экспериментальной литературе указывается значение путей, объединяющих в единую сеть фронтальный, паралимбический (вентральные отделы лобной коры, цингулярная извилина, островок, передний височный полюс), стриатный и стволовый регионы в осуществлении аффективных и мотивационных процессов . В свою очередь, с помощью методов функциональной нейровизуализации были обнаружены нарушения активности указанных выше мозговых областей у депрессивных больных . Развитию нейроанатомической модели депрессии способствовали данные о возникновении депрессивных нарушений при органических поражениях различных мозговых структур. Примером могут служить ишемические поражения левой лобной доли при постинсультной депрессии , а также поражение фронто-стриатных путей у пациентов с сосудистой депрессией и болезнью Паркинсона .

Серотониновая система головного мозга является составной частью описанных нейрональных сетей регуляции настроения. Серотонинергические нейроны сгруппированы в 9 ядрах ствола мозга. Большинство из них совпадает с медиально расположенным ядром шва . Серотонин (5-гидрокситриптамин ) синтезируется в указанных ядрах из триптофана.

В регулировании аффективных процессов принимают участие восходящие терминали серотонинергических ядер, которые заканчиваются в большом количестве мозговых структур: подкорковых образованиях (хвостатое ядро, скорлупа, переднее и медиальное ядра таламуса), промежуточном, обонятельном мозге и ряде образований, связанных с ретикулярной формацией, коре больших полушарий, миндалевидном теле и гипоталамусе. При этом в коре лимбической системы серотонина значительно больше, чем в неокортикальных регионах .

Важность нарушения звена синтеза серотонина для возникновения депрессии показана в работах, исследовавших эффекты ограничения приема триптофана с пищевыми продуктами. Гипотриптофановая диета приводила к появлению депрессивных симптомов у здоровых лиц и у пациентов с депрессией в стадии ремиссии. По данным позитронной эмиссионной томографии, у обследованных пациентов обнаруживали снижение активности пре- и орбитофронтальной коры, а также таламуса . Имеются убедительные доказательства генетической детерминированности синтеза серотонина в головном мозге. Известно, что в геноме человека имеется ген 5-НТТ, активность которого регулирует уровень вырабатываемого мозгом серотонина .

Серотонин выполняет свою физиологическую роль посредством воздействия на 5-НТ-рецепторы.

В настоящее время известно более 15 видов серотониновых рецепторов , однако не все они идентифицированы в головном мозге человека.

В центральной нервной системе (ЦНС) млекопитаю-щих обнаружены серотониновые 5-НТ 1 -рецепторы и пять их подтипов – A, B, D, E, F, представляющие собой протеины, содержащие 365-422 аминокислотных остатка. Посредством ингибиторных G-протеинов данные рецепторы сопряжены с аденилатциклазой, активность которой при их активации подавляется.

5-НТ 1А -рецепторы преимущественно локализованы в гиппокампе, миндалинах, прозрачной перегородке – структурах, принимающих участие в формировании настроения. Данные рецепторы ЦНС располагаются на пре- и постсинаптической мембране . Пресинаптические 5-НТ 1А -рецепторы по принципу обратной связи регулируют интенсивность высвобождения серотонина из пресинаптических нейрональных терминалей. Посредством стимуляции постсинаптических 5-НТ 1А -рецепторов реализуется ряд важных физиологических функций серотонина: регуляция настроения, обсессивно-компульсивные реакции, сексуальное поведение, контроль аппетита, терморегуляция, кардиоваскулярное регулирование. Именно этот вид рецепторов вовлечен в реализацию антиде-прессивного эффекта селективных ингибиторов обратного захвата серотонина, антидепрессивного и противотревожного эффекта буспирона.

Подтип 5-НТ 1D -рецепторов человека (функциональный аналог 5-НТ 1В -рецепторов крысы) локализован во фронтальных отделах коры, стриатуме, базальных ганглиях . Пресинаптические 5-НТ 1D -рецепторы играют роль ауторецепторов, через которые осуществляется отрицательная обратная связь между уровнем экстра- и интранейронального серотонина. Возможно, они играют также роль гетерорецепторов, посредством которых происходит управление выделением других нейротрансмиттеров, таких как дофамин, ацетилхолин, глутамат. Стимуляция же постсинаптических рецепторов данного подтипа в экспериментальных моделях вызывала длительную гиперактивность, антидепрессивное действие, снижение болевой чувствительности и аппетита, гипотермию.

Недавно было показано, что работа 5-НТ 1В/D -рецептора зависит от пептида Р11, принадлежащего к группе белков S100. Концентрация пептида Р11 в головном мозге у больных с депрессией оказалась низкой. Длительное антидепрессивное лечение увеличивает уровень данного пептида в мозговой ткани . Функция других подтипов 5-НТ 1 -рецепторов пока не установлена.

В ЦНС человека обнаружены 5-НТ 2 -рецепторы. Их семейство состоит из трех подтипов: 5-НТ 2А, 5-НТ 2В, 5-НТ 2С . В большей степени такие рецепторы представлены в пирамидных нейронах лобной коры, скорлупе, в меньшей – в гиппокампе и хвостатом ядре. Они являются звеном системы подкрепления мозга, низкая активность которой обусловливает возникновение ангедонии – одного из ключевых симптомов депрессии . 5-НТ 2А -рецепторы опосредуют анксиогенный эффект, учавствуют в формировании полового поведения, вовлечены в регуляцию сна. Уменьшение их количества отмечено при посмертных исследованиях у лиц, страдавших депрессией и покончивших жизнь самоубийством. Активация 5-НТ 2А -рецепторов вызывает увеличение концентрации дофамина в стриатуме. Современные атипичные антипсихотики обладают большой активностью в отношении данного подтипа, с чем связывают анти-депрессивный эффект этих препаратов . Антагонисты 5-НТ 2А -рецепторов увеличивают продолжительность медленноволнового сна, улучшая его качество, а агонисты сокращают фазу быстроволнового.

5-НТ 2С -рецепторы ЦНС в наибольшем количестве находятся в гиппокампе, коре головного мозга, полосатом теле, черной субстанции. Агонисты данных рецепторов вызывают анксиогенный и панический эффекты, нарушают сон. Блокада 5-НТ 2С -рецепторов является одним из механизмов лечения депрессии.

С этим связана эффективность антидепрессантов, являющихся антагонистами данных рецепторов (миансерин, имипрамин, мапротилин, амитриптилин, дезипрамин, агомелатин) . Антагонисты 5-НТ 2С -рецепторов улучшают сон и обладают анксиолитическим свойством. Последним частично объясняется противотревожное действие селективных ингибиторов обратного захвата серотонина.

5-НТ 3 -рецепторы располагаются в солитарном тракте, желатинозной субстанции, ядрах тройничного и блуждающего нервов, гиппокампе. Их центральные антагонисты оказывают анксиолитическое действие, повышают когнитивные способности, меняют чувствительность ноцицептивных нейронов, обладают противорвотным действием.

5-НТ 4 -рецепторы максимально представлены в областях, насыщенных дофаминергическими нейронами (базальные ядра, аккумбенс). Они локализуются на ГАМК-ергических и холинергических интернейронах и ГАМК-ергических проекциях в черную субстанцию. Агонисты этих рецепторов могут повышать активность дофаминергических систем, антагонисты – блокировать данный эффект. Есть данные об анксиолитическом эффекте антагонистов 5-НТ 4 -рецепторов .

5-НТ 6 -рецепторы располагаются в стриатуме, амигдале, гиппокампе, коре, обонятельной луковице. Различные антидепрессанты (кломипрамин, амитриптилин, нортриптилин, доксепин) имеют к ним высокое сродство и являются их антагонистами.

5-НТ 7 -рецепторы представлены в гипоталамусе, таламусе, стволе головного мозга. Они могут участвовать в организации циркадных ритмов посредством воздействия на супрахиазматические ядра. В будущем 5-НТ 6 - и 5-НТ 7 -рецепторы могут стать мишенью для моделирования депрессии .

Следующим уровнем нарушений серотониновой системы при депрессии является обратный захват 5-НТ из синаптической щели в пресинаптический нейрон, который осуществляется белком-переносчиком серотонина. Плотность данного белка в мозге депрессивных пациентов уменьшалась, что выявлялось с помощью методов функциональной нейровизуализации, а у умерших вследствие суицида – по данным посмертных гистохимических исследований .

Индивидуальные особенности оборота серотонина в ЦНС в числе прочих наследственных факторов зависят от эффектов гена-переносчика серотонина (5-НТТ). Данный ген расположен на 17-й хромосоме. В нем описано несколько полиморфных участков, в том числе инсерционно-делеционный полиморфизм (5-HTTLPR), обнаруженный в области промотора и представленный двумя аллельными вариантами – l (длинный) и s (короткий – с делецией). Этот полиморфизм является функциональным .

Ряд авторов обнаружили ассоциацию между полиморфизмом 5-HTTLPR и развитием депрессивных состояний в ответ на различные стрессоры . Лица, в генотипе которых имелся хотя бы один короткий аллель, демонстрировали более выраженные депрессивные симптомы, чаще имели диагноз депрессивного эпизода по классификации DSM-IV и сообщали о большем по сравнению с гомозиготами по длинному аллелю количестве суицидальных мыслей и попыток во время депрессивных эпизодов. Роль гена-переносчика серотонина в опосредовании связи между стрессовыми событиями жизни и последующим развитием депрессивных симптомов и физического дистресса была позднее подтверждена другими авторами . Кроме того, обнаружено, что здоровым людям – носителям короткого аллеля – в большей степени присущи повышенная эмоциональная реактивность и тревожность, то есть личностные особенности, которые рассматривают как предиспозиционные по отношению к аффективным расстройствам .

Описанные выше факты свидетельствуют о большом значении серотониновой системы для функционирования областей головного мозга, имеющих прямое отношение к регуляции аффективных процессов: фронтальных регионов, модулирующих эмоциональное поведение; лимбического региона, имеющего отношение к эмоциональным и когнитивным нарушениям при депрессии; фронто-стриатных структур, определяющих возникновение ангедонии; психомоторных расстройств. Отдельно следует выделить роль серотониновой системы в функционировании гипоталамического региона – важнейшего звена нейро-эндокринной, вегетативной, циркадной регуляции.

Серотониновая дисфункция непосредственно влияет на лимбико-гипоталамо-гипофизарно-надпочечниковую регуляцию у пациентов с депрессией . Депрессия ассоциируется с повышением суточной продукции адренокортикотропного гормона. Его гиперпродукция может объясняться повышением выработки кортикотропин-релизинг-фактора, синтез которого в норме лимитируется по механизму обратной связи уровнем кортизола в плазме крови.

Нарушение тормозных влияний кортизола на выработку кортикотропин-релизинг-фактора при депрессии связано с нарушением функции глюкокортикоидных и 5-НТ 1А -рецепторов. Результатом гиперактивности гипоталамо-гипофизарно-надпочечниковой оси у больных с депрессией является повышение уровня плазменного кортизола. Гиперкортизолемия, в свою очередь, ведет к снижению активности постсинаптических 5-НТ 1А -рецепторов, одного из главных проявлений серотониновой дисфункции. Таким образом, замыкается порочный круг.

Кортизол также потенцирует увеличение продукции адреналина. С этим связывают усиление активности симпатического звена сегментарного отдела вегетативной нервной системы. Данными механизмами обусловлены многие вегетативные симптомы депрессии.

Серотонинергическая система учавствует в регуляции цикла сон-бодрствование. Неудивительно, что одним из наиболее частых симптомов депрессии является нарушение сна. Считают, что главный генератор циркадных ритмов, локализующийся в супрахиазмальном ядре переднего гипоталамуса , получает информацию об уровне активности организма из ядер шва наряду со стимулами от межколенчатых ядер латерального коленчатого тела . Блокада 5-НТ 2С -рецепторов гипоталамического региона, которые становятся сверхчувствительными при депрессии, по данным Krauchi et al. (1997) и Leproult et al. (2005), может ресинхронизировать циркадный ритм и вызывать противодепрессивные эффекты .

Воздействия на серотониновую нейротрансмиссию реализованы в механизмах действия многих современных антидепрессантов и других психотропных препаратов. Для одних препаратов эти механизмы являются основным фармакодинамическим эффектом, для других – имеют дополнительное значение.

Ингибирование обратного захвата серотонина лежит в основе фармакодинамики большого количества антидепрессантов: селективных ингибиторов обратного захвата серотонина (СИОЗС), ингибиторов обратного захвата серотонина и норадреналина (ИОЗСН), трициклических антидепрессантов (ТЦА).

СИОЗС (циталопрам, сертралин, флуоксетин, флувоксамин, пароксетин) воздействуют на основной сайт белка-переносчика серотонина. Эсциталопрам блокирует как основной, так и аллостерический сайты данного протеина. Блокада белка-переносчика серотонина вызывает инициальное возрастание концентрации 5-НТ в соматодендритной зоне (но не в зоне аксональной терминали). Это, в свою очередь, вызывает снижение активности 5-НТ 1А -ауторецепторов. Поскольку их роль заключается в подавлении импульсов, приходящих к серотонинергическим нейронам, а также в подавлении синтеза и высвобождении серотонина, блокада рецепторов вызывает освобождение нейронов от подавляющих влияний и усиливает выделение серотонина из аксонального окончания в синаптическую щель. Возрастание концентрации серотонина в синаптической щели позволяет ему осуществлять свои влияния на постсинаптические рецепторы, в чем и состоит антидепрессивный эффект данной группы препаратов. Время, необходимое для снижения активности соматодендритных ауторецепторов 5-НТ 1А и результирующего высвобождения серотонина из аксональной терминали, объясняет 2-3-недельную задержку в наступлении эффекта СИОЗС . К главным преимуществам данной группы препаратов следует отнести их избирательное влияние на серотониновую систему, и отсутствие или минимальное воздействие на другие медиаторные системы головного мозга, что позволяет минимизировать побочные эффекты . Селективность препаратов в группе СИОЗС не является одинаковой. По мере снижения селективности СИОЗС можно расположить следующим образом: эсциталопрам, циталопрам, сертралин, флуоксетин, пароксетин.

ИОЗСН (венлафаксин, милнаципран, дулоксетин) подавляют обратный захват серотонина наряду с ингибированием реаптейка норадреналина. О значении норадреналиновых нарушений при депрессии речь пойдет в дальнейших публикациях. Блокада реаптейка серотонина – один из основных механизмов действия большинства ТЦА (кломипрамин, амитриптилин, доксепин, имипрамин, протриптилин).

К сожалению, взаимодействие данных препаратов с другими рецепторными системами (особенно с холин-ергическими и гистаминовыми), приводит к появлению большого количества побочных эффектов и отказу от использования ТЦА как антидепрессантов первой линии .

Активными в отношении 5-НТ 1А -рецепторов являются несколько препаратов. Пиндолол блокирует пресинаптические 5-НТ 1А -рецепторы и, следовательно, должен предотвращать нежелательный эффект обратной связи, выражающийся в повышении концентрации соматодендритного серотонина. Он показал возможность ускорения начала действия антидепрессантов . Буспирон, гепирон, азаперон, частичные антагонисты пресинаптических 5-НТ 1А -рецепторов и активаторы постсинаптических обладают антидепрессивным действием .

Блокирующим эффектом в отношении 5-НТ 2С -рецепторов обладают антидепрессанты различных химических групп: тетрациклические (миансерин), норадренергические и специфические серотонинергические (миртазапин), модуляторы серотонина (нефазодон, тразодон), агонист М 1 - и М 2 -рецепторов мелатонина и антагонист 5-НТ 2С -рецепторов (агомелатин). Антидепрессивная активность современных атипичных антипсихотиков также связана с блокадой 5-НТ 2С - и 5-НТ 2А -рецепторов . Кроме антидепрессивного действия, указанные антагонисты 5-НТ 2 -рецепторов синхронизируют нарушенные при депрессии биологические ритмы. В дополнение к ингибиции 5-НТ 2С -рецепторов, миртазапин, блокируя a2-рецепторы, стимулирует синтез серотонина .

Потенциально интересные возможности в терапии депрессии могут быть связаны с воздействием на 5-НТ 1В/D -, 5-НТ 6 - и 5-НТ 7 -рецепторы. Возникшие экспериментальные данные о фармакологической эффективности воздействия на эти мишени нуждаются в клинической валидизации .

Резюмируя представленные данные, мы полностью отдаем себе отчет, что была предпринята лишь попытка интегрировать современные сведения о нейробиологии серотониновой системы головного мозга и фармакотерапии депрессии, основанной на коррекции нарушений обмена серотонина. Результаты многих исследований остались за рамками настоящего обзора. Призмой, через которую проводился отбор данных для включения в работу, была возможность практического преломления полученных знаний. Ведь «нет ничего более практичного, чем хорошая теория». Выделение изолированной серотониновой дисфункции при депрессии также весьма условно. Очевидно, что деятельность данной нейромедиаторной системы необходимо рассматривать в структуре комплекса взаимосвязей расстройств норадрен-, дофамин-, ГАМК-, пептидергической и других медиаторных систем. Представленные сведения, являющиеся частью современной молекулярной гипотезы депрессии, необходимо дополнить данными о других биологических нарушениях, имеющих место при этом заболевании. Свое отражение они найдут в наших последующих публикациях. Очень надеемся, что предложенная информация о нейробиологических механизмах депрессивных расстройств будет полезной практикующим врачам.

Литература

  1. Kessler R.S. et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: results from the National Comorbidity Survey // Arch Gen Psychiatry. – 1994. – Vol. 51. – P. 8-19.
  2. Murray C.J.L., Lopez A.D. Global burden of disease: a comprehensive assessment of mortality and morbidity from diseases, injuries and risk factors in 1990 and projects to 2020, Vol. I. – Harvard: World Health Organization, 1996.
  3. Обоснованное применение антидепрессантов: технический обзор данных, подготовленный Рабочей Группой CINP / Под ред. Т. Багай, Х. Грунце, Н. Сарториус: пер. с англ. – С-Пб., 2006. – 174 с.
  4. Stein D.J. Serotonergic neurocircuitry in mood and anxiety disorders // Martin Dunitz Ltd. – 2003. – 82 p.
  5. Mineka S., Watson D., Clark L.A. Comorbidity of anxiety and unipolar mood disorders // Annu Rev Psychol. – 1998. – Vol. 49. – P. 377-412.
  6. MacLeod A.K., Byrne A. Anxiety, depression, and the anticipation of future positive and negative experience // J Abnorm Psychol. – 1993. – Vol. 102. – P. 238-247.
  7. Damasio A.R. The somatic marker hypothesis and the possible function of the prefrontal cortex // Philos Trans R Sos. – 1996. – Vol. 54S. – P. 1413-1420.
  8. MacLean P.D. Psychosomatic disease and the visceral brain: recent developments bearing on the Papez theory of emotion // Psychosom Med. – 1949. – Vol. 11. – P. 338-353.
  9. Rolls E.T. A theory of emotion, and its application to understanding the neural basis of emotions // Cognition Emotion. – 1990. – Vol. 4. – P.161-190.
  10. Videbach P. PET measurements of brain glucose metabolism and blood flow in major depression: a critical review // Acta Psychiatr Scand. – 2000. – Vol. 101. – P. 11-20.
  11. Narushima K., Kosier J.T., Robinson R.G. A reappraisal of poststroke depression, intra- and inter-hemispheric lesion location using meta-analysis // J Neuropsychiatry Clin Neurosci. – 2003. – Vol. 15. – P. 422-430.
  12. Shimoda K., Robinson R.G. The relationship between poststroke depression and lesion location in long-term follow-up // Biol Psychiatry. – 1999. – Vol. 45. – P. 187-192.
  13. Camus V., Kraehenbuhl H., Preisig M. et al. Geriatric depression and vascular diseases: what are the links? // J Affect Disord. – 2004. – Vol. 81, N 1. – P. 1-16.
  14. Firbank M.J., Lloyd A.J., Ferrier N., O"Brien J.T. A volumetric study of MRI signal hyperintensities in late-life depression // Am J Geriatr Psychiatry. – 2004. – Vol. 12, N 6. – P. 606-612.
  15. Seki T., Awata S., Koizumi Y. et al. Association between depressive symptoms and cerebrovascular lesions on MRI in community-dwelling elderly individuals // Nippon Ronen Igakkai Zasshi. – 2006. – Vol. 43, N 1. – P. 102-107.
  16. Dahlstrom A., Fuxe K. Evidence for the existence of monoamine neurons in the central nervous system // Acta Physiol Scand. – 1965. – Vol. 64. – P. 1-85.
  17. Бархатова В.П. Нейротрансмиттеры и экстрапирамидная патология. – М.: Медицина, 1988.
  18. Громова Е.А. Серотонин и его роль в организме. – М.: Медицина, 1966.
  19. Луценко Н.Г., Суворов Н.Н. Регуляция биосинтеза серотонина в центральной нервной системе // Успехи соврем. биол. – 1982. – Т. 94. – С. 243-251.
  20. Bremmer J.D., Innis R.B., Salomon R.M. et al. Positron emission tomography measurement of cerebral metabolic correlates of tryptophan depletion-induced depressive relapse // Arch Gen Psychiatry. – 1997. – Vol. 54. – P. 364-374.
  21. Конысова А.Ж. Серотониновый обмен при рассеянном склерозе и ретробульбарном неврите (клинико-биохимическое исследование): Дисс. …канд. мед. наук. М., 1995.
  22. Сергеев П.В. Рецепторы. – Волгоград, 1999.
  23. Cox C., Cohen J. 5-HT2B receptor signaling in the rat stomach fundus: dependence on calcium influx, calcium release and protein kinase C // Behav. Brain Res. – 1996. – Vol. 73. – P. 289.
  24. Fox S.H., Brotchie J.M. Anti-parkinsonian action of 5-HT2C receptor antagonism in the substantia nigra pars reticulata // Mov. Disord. - 1997. - Vol. 12, Suppl. 1. – P. 116.
  25. Hanssen E., Nilsson A., Ericsson P. Heterogeneity among astrocytes evaluated biochemical parameters // Adv. Biosci. – 1986. – Vol. 61. – P. 235-241.
  26. Holstege J.S., Knypers H.G. Brainstem projections to spinal motoneurons: an update commentary // Neuro. Sci. – 1987. – Vol. 23. – P. 809-821.
  27. Blier P., Ward N.M. Is the a role for 5HT-1A-agonists in the treatment of depression // Biol. Psychiat. – 2003. – Vol. 53. – P. 193-203.
  28. Connor J.D. et al. Use of GR 55562, a selective 5-HT1D antagonist, to investigate 5-HT1D receptor subtypes mediating cerebral vasoconstriction // Cephalgia. – 1995. – Vol. 15, Suppl. 14. – P. 99.
  29. Choi C, Maroteaux J. Immunohistochemical localization of the serotonin 5-HT2B receptor in mouse gut, cardiovascular system, and brain // FEBS Lett. – 1996. – Vol. 391. – P. 45.
  30. Martin G.R. et al. 5-HT2C receptor agonists and antagonists in animal models of anxiety // Eur. Neuropharmacol. – 1995. – Vol. 5. – P. 209.
  31. Мисюк Н.С. и соавт. Материалы к обмену серотонина при тормозных состояниях головного мозга. – Минск, 1965.
  32. Willner P. Validity, reliability and utility of chronic mild stress model of depression: a 10 years review and evaluation // Psychopharmacology. – 1997. – Vol. 134. – P. 319-329.
  33. Papp M., Cruca P., Boyer P.-A., Mocaer E. Effect of agomelatine in the chronic mild stress model of depression in the rat // Neuropsychopharmacology. – 2003. – Vol. 28. – P. 694-703.
  34. Голубев В.Л., Левин Я.И., Вейн А.М. Болезнь Паркинсона и синдром паркинсонизма. – М.: МЕДпресс, 1999.
Полный список литературы, включающий 51 пункт, находится в редакции.

Рецепторы разных типов - S 1 , S 2 , S 3 (см. Рецепторы ). Блокада серотониновых рецепторов в тканях устраняет спазмогенное действие эндогенного или экзогенного серотонина на гладкую мускулатуру сосудов, бронхов, кишечника, его влияние на агрегацию тромбоцитов, проницаемость сосудов и др. Антагонистическим действием в отношении вызванных серотонином реакций обладает также ипразохром.

По показаниям к применению выделяют А. с. преимущественно с антимигренозной активностью (метисегрид, суматриптан, лизурид, пизотифен, ципрогептадин), с антимигренозной и антигеморрагической активностью (ипразохром), с антигеморрагической активностью (кетансерин), с противорвотным действием (гранисетрон, ондансетрон, трописетрон). Спектр физиологических эффектов ряда А. с. расширен за счет присущего им влияния на другие медиаторные процессы. Так, лизурид обладает дофаминергическим действием, пизотифен - антихолинергическим и антигистаминным, кетансерин имеет свойства a -адреноблокатора, выраженное антигистаминное действие оказывает ципрогептадин (см. Блокаторы гистаминовых рецепторов ).

А. с. с антимигренозной активностью используют в основном для лечения и предупреждения приступов вазопаралитической формы мигрени. При применении большинства этих препаратов возможны побочные действия в виде диспептических расстройств, сонливости, слабости, утомляемости, головной боли, артериальной гипотензии. Препараты с противорвотной активностью (селективные антагонисты S 3 -рецепторов) применяются для профилактики и лечения тошноты и рвоты, в частности, на фоне терапии цитостатиками и лучевой терапии; при их применении возможны головная боль, повышение уровня трансаминаз в сыворотке крови, . Общими противопоказаниями для всех А. с. являются беременность и период кормления ребенка грудью.

Форма выпуска и применение основных А. с. приводятся ниже.

Гранисетрон (китрил) - таблетки по 1 мг ; 1% раствор для внутривенного введения в ампулах по 3 мл . Для профилактики рвоты взрослым внутрь назначают по 1 мг 2 раза в день (максимальная суточная доза 9 мг ); для купирования рвоты внутривенно вводят 3 мл 1% р-ра, разведенных в 20-50 мл изотонического раствора натрия хлорида.

Ипразохром (диваскан) - таблетки по 0,25 мг . Применяют для профилактики мигрени с вегетативными нарушениями, а также для лечения геморрагического диатеза в связи с воздействием васкулярных и тромбоцитарных повреждающих факторов, лечения плазматических нарушений свертывания крови гемофильного типа и фибринолитических кровотечений. Препарат применяется также для лечения ической ретинопатии.

Назначают взрослым по 1-3 таблетки 3 раза в день.

Кетансерин (суфрокзал) - таблетки по 20 и 40 мг ; 0,5% р-р в ампулах по 2 и 10 мл . оказывает блокирующее действие на S 2 и a -адренорецепторы. Препарат вызывает расширение кровеносных сосудов и оказывает антигипертензивное действие. Больным гипертонической болезнью и при спазмах периферических сосудов назначают внутрь по 20-40 мг 2 раза в день. Для купирования гипертензивных ов вводят 2-6 мл 0,5% р-ра внутривенно или внутримышечно.

Лизурид (лизенил) - таблетки 0,025 и 0,2 мг (лизенил форте). Применяют для профилактики мигрени и других вазомоторных цефалгий, начиная с 0,0125 мг в день, при хорошей переносимости дозу увеличивают до 0,025 мг 2-3 раза в день; при аргентаффиноме начинают с 0,0125 мг 2 раза в день, доводя дозу до 0,05 мг 3 раза в день; при демпинг-синдроме 0,025 мг 3 раза в день при необходимости доводят до 0,05 мг 4 раза в сутки. В связи с дофаминергическим действием и способностью подавлять секрецию гормона роста и пролактина применяется при е, акромегалии и для прекращения лактации. В последнем случае используют лизенил форте по 0,2 мг 3 раза в день, при пролактиномах - до 4 мг в день. При акромегалии начинают с дозы 0,1 мг в сутки, повышая ее ежедневно по специальной схеме с достижением через 24 дня суточной дозы 2-2,

4 мг (по 0,6 мг 4 раза в день). При паркинсонизме терапевтическая доза составляет 2,6-2,8 мг в день (в 4 приема). Для лечения депрессий применяют в суточной дозе 0,6-3 мг . Могут наблюдаться побочные эффекты в виде ортостатической гипотензии, психических расстройств. Противопоказаниями являются желудочно-кишечные кровотечения, язвенная болезнь в анамнезе, ы.

Метисегрид (дезерил) - таблетки по 2 мг . Для профилактики приступов мигрени назначают по 2 мг 2-4 раза в день. Побочные эффекты: , эйфория, воспалительный в разных органах.

Ондансетрон (зофран) - таблетки по 4 и 8 мг ; 1% и 0,5% р-ры в ампулах по 2 и 4 мл . Применяют для предупреждения рвоты при проведении эметогенной химио- и лучевой терапии. Взрослым за 2 ч аса до терапевтического сеанса вводят 8 мг препарата внутривенно, в последующем назначают внутрь в дозе 8 мг каждые 12 часов; детям однократно внутривенно вводят в дозе 5 мг/м 2 непосредственно перед проведением химиотерапии, затем назначают внутрь по 4 мг 2 раза в сутки. Курс лечения в течение 5 дней.

Пизотифен (сандомигран) - таблетки по 0,5 мг . Дополнительно обладает антигистаминными свойствами и слабым антихолинергическим действием; может стимулировать аппетит и вызывать прибавку в весе, усиливает действие транквилизаторов,

седативных средств, антидепрессантов, алкоголя. Для профилактики приступов мигрени назначают 0,5 мг 3 раза в день. Противопоказан при закрытоугольной глаукоме, затрудненном мочеиспускании, а также лицам, выполняющим работу, требующую концентрации внимания и быстрых психофизических реакций.

Суматриптан (имигран, менатриптон) - таблетки по 100 мг ; 1,2% раствор для подкожного введения в ампулах по 1 мл . Для купирования приступа мигрени и мигрени Хортона подкожно вводят 6 мг препарата (0,5 мл 1,2% р-ра) либо применяют внутрь в дозе 100 мг ; повторное применение препарата возможно не ранее, чем через 2 ч . Максимальная суточная доза парентерально 12 мг , внутрь - 300 мг . Возможны кратковременная артериальная

СУМАТРИПТАН (ИМИГРАН) - наиболее эффективное средство терапии острого приступа мигрени. Введение этого селективного агониста рецепторов серотонина 5-HT 1 в медицинскую практику позволило уточнить патогенез мигрени.

Суматриптан обладает наибольшим аффинитетом к рецепторам серотонина 5-HT lD , в 5 раз слабее связывается с рецепторами 5-НТ 1В, в 12 раз слабее - с рецепторами 5-НТ 1А, проявляет очень низкий аффинитет к рецепторам 5-НТ 1Е, не взаимодействует с другими типами рецепторов серотонина, адренорецепторами, рецепторами дофамина, холино-рецепторами, бензодиазепиновыми рецепторами.

При введении под кожу суматриптан создает максимальную концентрацию в крови через 12 мин, после приема внутрь - спустя 2 ч. Его биодоступность составляет соответственно 97 и 14 %. Низкая биодоступность при приеме внутрь обусловлена пресистемной элиминацией. Связь с белками плазмы - 14 - 21 %, период полуэлиминации - 2 ч. Суматриптан подвергается окислительному дезаминированию при участии МАО типа А. Продукты метаболизма (индолуксусная кислота и ее глюкуронид) выводятся с мочой.

Суматриптан назначают внутрь, интраназально и под кожу с помощью аутоинъектора для купирования острого приступа головной боли при мигрени средней тяжести и тяжелой мигрени. Лечебное действие наступает у 70 % больных. Значительное улучшение наблюдается при мигрени без ауры, частых (до 4 - 6 раз в месяц), тяжелых приступах с вегетативными симптомами. Суматриптан менее эффективен при склонности к повышению АД в периоде между приступами, у больных старше 50 лет, мигренозных атаках в ночное время, приеме позже 2 - 4 ч от начала приступа, мигрени с аурой.

Суматриптан оказывает зависимое от дозы преходящее побочное действие у 83 % пациентов. При его введении под кожу появляются жжение в месте инъекции, чувство тяжести в голове, ощущение жара, парестезия, сонливость. 3 - 5 % больных жалуются на дискомфорт в груди. Самые опасные побочные эффекты суматриптана - аритмия и спазм коронарных сосудов (опасность инфаркта миокарда). У 40 % больных мигренозная боль возобновляется через сутки после отмены суматриптана.

Противопоказания к назначению суматриптана - неконтролируемая артериальная гипертензия, вазоспастическая стенокардия или ишемическая болезнь сердца (стенокардия, безболевая ишемия, инфаркт миокарда в анамнезе), аллергические реакции. Недопустимо вливание суматриптана в вену. Его не принимают совместно с алкалоидами спорыньи (интервал между приемами - 24 ч) и ингибиторами МАО (интервал - 14 дней). На период лечения исключают из рациона питания продукты, богатые тирамином. Требуется осторожность при назначении суматриптана детям, людям старше 65 лет, беременным женщинам. При лечении суматриптаном прекращают грудное вскармливание.

Новые селективные агонисты 5-НТ 1В и5-HТ 1 D рецепторов серотонина отличаются от суматриптана улучшенными фармакокинетическими свойствами и меньшим числом побочных эффектов.

ЗОЛМИТРИПТАН (ЗОМИГ), хорошо проникая через гематоэнцефалический барьер, ослабляет нейрогенное воспаление, блокирует деполяризацию окончаний тройничного нерва, снижает возбудимость структур мозга, участвующих в восприятии боли. Терапевтическая эффективность золмитриптана в четыре раза больше, чем действие суматриптана.

Биодоступность золмитриптана составляет 40%. Максимальная концентрации создается в крови через 2 - 4 ч после приема внутрь. Связь с белками - 25%, период полуэлиминации - 2,5 - 3 ч. Две трети подвергается метаболизму в печени, 1/3 выводится почками в неизмененном виде. На фоне лечения ингибиторами МАО дозу золмитриптана снижают.

Золмитриптан применяют для купирования приступа мигрени любой степени тяжести, протекающей с аурой и без ауры. Он устраняет головную боль, светобоязнь, повышенную чувствительность, тошноту как в начале приступа, так и через 4 ч после его развития. Привыкание к золмитриптану отсутствует.

Побочные эффекты золмитриптана легкие или умеренные. Препарат может вызывать слабость, сухость во рту, головокружение, сонливость, парестезию, ощущение тепла. Только у 1 - 2% больных возникают неприятные ощущения в области сердца. Золмитриптан хорошо переносится пожилыми больными и людьми, страдающими артериальной гипертензией.

НАРАТРИПТАН (НАРАМИГ) и РИЗАТРИПТАН (МАКСАЛТ) в большей степени суживают сонную артерию, чем коронарные сосуды, обладают высокой биодоступностью при приеме внутрь (63 - 74 %), быстро проникают в головной мозг. Связь этих препаратов с белками - 30%, период полуэлиминации - 6 ч.

Синтез серотонина . Серотонин образуется из аминокислоты триптофана путём её последовательного 5-гидроксилирования ферментом 5-триптофангидроксилазой в результате чего получается 5-гидрокситриптофан (5-ГТ) и затем декарбоксилирования получившегося 5-гидрокситриптофана ферментом триптофандекарбоксилазой. 5-триптофангидроксилаза синтезируется только в соме серотонинергических нейронов, гидроксилирование происходит в присутствии ионов железа и кофактора птеридина.

Метаболизм и катаболизм серотонина . Под действием моноаминооксидазы (МАО) серотонин превращается в 5-гидроксииндолальдегид, который, в свою очередь, может обратимо превращаться в 5-гидрокситриптофол под действием алкогольдегидрогеназы. Необратимо 5-гидроксииндолальдегид под действием ацетальдегиддегидрогеназы превращается в 5-гидроксииндолуксусную кислоту, которая затем выводится с мочой и калом. Серотонин является предшественником мелатонина , образующегося в эпифизе. Также, превращаясь с помощью МАО в 5-гидроксииндол-3-ацетальдегид, он может под действием альдегидредуктазы превратиться в триптофол, а под действием ацетальдегидрогеназы-2 - в оксииндолуксусную кислоту (5-HIAA). Серотонин может принимать участие в формировании эндогенных опиатов , вступая в реакцию с ацетальдегидом с образованием гармалола .

В основе функционирования серотонинергической системы лежит выделение серотонина, или 5-гидрокситриптамина (5-hydroxytriptamine, 5-HT) в синаптическую щель. В последней он частично инактивируется и частично захватывается обратно пресинаптической терминалью. Именно на эти процессы влияют антидепрессанты последней генерации, которые получили название ингибиторов обратного захвата серотонина.

Рецепторы серотонина представлены как метаботропными, так и ионотропными. Всего насчитывается семь типов таких рецепторов, 5-HT 1-7, причем 5-НТ 3 ионотропные, остальные - метаботропные, семидоменные, G-белок-сцепленные :
5-HT 1 тип , насчитывающий несколько подтипов: 1А-E, которые могут быть как пре- так и постсинаптическими, подавляет аденилатциклазу;
5-НТ 4 и 7 - стимулируют аденилатциклазу;
5-HT 2 , насчитывающий несколько подтипов: 2А-C, которые могут быть только постсинаптическими, активирует инозитолтрифосфат;
5-HT 5A подтип также подавляет аденилатциклазу.

Краткая информация о серотониновых рецепторах, их распределении, внутриклеточных механизмах действия, функциях :
подтип 5-НТ1А : локализация - ядро шва; эффекторная система - ингибирование аденилатциклазы; функция – ауторецептор;
5-НТ1B : черная субстанция - ингибирование аденилатциклазы – ауторецептор;
5-НТ1D : сосуды головного мозга - ингибирование аденилатциклазы - суживание сосудов;
5-НТ1E : кора, полосатое тело - ингибирование аденилатциклазы;
5-НТ1F : головной мозг, периферия - ингибирование аденилатциклазы;
5-НТ2А : тромбоциты, гладкие мышцы, кора - активация фосфолипазы С - агрегация тромбоцитов, сокращение мышц, нейрональное возбуждение;
5-НТ2В : дно желудка - активация фосфолипазы С – сокращение;
5-НТ2С : хориоидное сплетение - активация фосфолипазы С;
5-НТ3 : периферические рецепторы - ионный механизм (образование каналов – увеличение проницаемости натрия и калия) - нейрональное возбуждение, высвобождение сротонина;
5-НТ4 : гиппокамп, желудочнокишечный тракт - активация аденилатциклазы - нейрональное возбуждение, высвобождение ацетилхолина.

Структура серотонина имеет сходство со структурой психоактивного вещества ЛСД . ЛСД действует как агонист некоторых 5-HT рецепторов и ингибирует обратный захват серотонина, увеличивая его содержание.

Нейроны, являющиеся источником путей серотонинергической системы, находятся рассеянно в коре головного мозга и в агломерированном виде в переднем (ростральном) и заднем (каудальном) ядрах шва мозгового ствола (по данным A. Dahlstrom и K. Fuxe клетки серотонинергической системы сгруппированы в стволе мозга в 9 ядрах, обозначенных авторами В1-В9 в соответствии с их расположением; большинство из них совпадают с медиально расположенным ядром шва; нервные волокна, выходящие из ядер шва, могут быть условно разделены на восходящие и нисходящие). Эти ядра относятся к филогенетически древним, вероятно очень важным для выживания структурам. Они образуют группы клеток, расположенные от передней части мезенцефалона до нижних отделов продолговатого мозга. Отростки этих клеток широко разветвлены и проецируются на большие области коры переднего мозга, его желудочковую поверхность, мозжечок, спинной мозг и образования лимбической системы. Помимо коры и ствола головного мозга нейроны серотонинергической системы концентрируется в некоторых подкорковых образованиях : хвостатое ядро, скорлупа чечевичного ядра, переднее и медиальное ядра зрительного бугра, промежуточном мозге, обонятельном мозге и ряде структур, связанных с ретикулярной активирующей системой, в коре больших полушарий, амигдале и гипоталамусе. В коре лимбической области серотонина значительно больше, чем в неокортексе.

В ядрах шва серотонинергические нейроны локализуются вместе с нейронами другой химической принадлежности (ГАМКергическими, выделяющими субстанцию P, энкефалиновыми и др.). Клеточные эффекты серотонина разнообразны, но в основном имеют ингибиторный, тормозной характер. Функция рецепторов включает как прямую регуляцию ионных каналов, так и многоступенчатую, связанную с G-белками и ферментами, их регуляцию. Фактически в мозге содержится 1%-2% всего серотонина, имеющегося в организме млекопитающих, а подавляющая его часть обнаруживается в экстраневральных структурах, что затрудняет использование показателей метаболизма серотонина для оценки состояния нервной системы. Весь метаболический оборот серотонина в нервной ткани существенно зависит от активного транспорта в мозг триптофана и связан с функциями триптофангидроксилазы, декарбоксилазы ароматических аминокислот и моноаминоксидазы (МАО), основным конечным метаболитом серотонина является 5-гидроксииндолуксусная кислота (5-ГИУК).

Участие серотонина в деятельности центральной нервной системы многообразно. Это прежде всего обусловлено тем, что оно сопровождается изменениями метаболизма в сторону снижения потребления мозгом глюкозы, поглощения кислорода, лактатов и неорганических фосфатов, а также нарушением соотношения натрия и калия. Установлено возбуждающее действие серотонина на парасимпатический отдел ствола головного мозга и лимбической зоны коры. Он активирует бульбарный отдел ретикулярной формации, но тормозит передачу импульсов через зрительный бугор, мозолистое тело и синапсы коры больших полушарий головного мозга. Кроме того, имеются свидетельства влияния серотонинергической системы мозга на возбудимость вазомоторных и терморегулирующих центров, а также рвотного центра.

Согласно современным представлениям, серотонин играет основную роль в регуляции настроения . С нарушением функции серотонинергической системы связывают развитие психических нарушений, проявляющихся депрессией и тревогой. Избыток серотонина обычно вызывает панику, недостаток вызывает депрессию. Дефицит моноаминов, к каковым относится серотонин, способен приводить к нарушению синаптической передачи в нейронах лимбической системы и формировать депрессивные состояния, протекающие в виде разнообразных клинически очерченных синдромов.

Биохимические исследования позволили понять, почему ряд пищевых продуктов может служить своеобразным лекарством от депрессии . При эмоциогенном пищевом поведении, когда пациенты едят для того, чтобы улучшить настроение, уменьшить тоску и апатию, они предпочитают легкоусвояемую углеводную пищу. Повышение поступления углеводов приводит к гипергликемии и вслед за ней к гиперинсулинемии. В состоянии гиперинсулинемии изменяется проницаемость гематоэнцефалического барьера для аминокислоты триптофана - предшественника серотонина, следовательно, увеличивается синтез последнего в центральной нервной системе. Прием пищи может являться своеобразным модулятором уровня серотонина в центральной нервной системе - повышение его синтеза, связанное с поглощением углеводной пищи, приводит одновременно к усилению чувства насыщения и к уменьшению депрессивных проявлений. Тем самым было наглядно показано: булимия и депрессия имеют общий биохимический патогенетический механизм - дефицит серотонина.

Серотонинергическая система имеет отношение к различным видам социального поведения (пищевого, полового, агрессивного) и эмоциям. Нейроэндокринные ритмы, настроение, сон, аппетит и когнитивные функции модулируются серотониновой системой среднего мозга. Серотониновая система другой части мозга – префронтальной коры – нарушается при различных видах асоциального поведения (ауто- и экстероагрессия, убийство). Считается, что истощение серотониновой системы префронтальной коры обуславливает поведенческую расторможенность. Изучение содержания серотонина в крови показало более широкие границы колебания его содержания у больных шизофренией по сравнению с другими больными и с психически здоровыми лицами.

Серотонинергическая система и суицид . Во многих исследованиях было также продемонстрировано снижение в ткани мозга самоубийц уровня 5-гидроксииндолуксусной кислоты. Это послужило основанием для гипотезы, согласно которой торможение метаболического оборота серотонина в некоторых отделах мозга, в частности, в стволовых структурах и префронтальной коре, является одним из нейробиологических механизмов формирования суицидального поведения. На сегодняшний день серотониновая система наиболее изучена с этих позиций, и все авторы сходятся в том, что дефицит серотонинергической медиации является важным механизмом суицидального поведения. У жертв суицида и у лиц с высоким риском суицида, вероятнее всего, имеет место локальное снижение серотониновой медиации, сопровождающееся повышением активности соответствующих постсинаптических рецепторов. Одним из важных подтверждений этой точки зрения является эффективность антидепрессантов - блокаторов обратного захвата серотонина при депрессиях с суицидальными попытками.

Серотонинергическая система и боль . Существенное значение придается серотонину в деятельности антиноцицептивной системы, центральной регуляции болевой чувствительности. Снижение его содержания приводит к ослаблению анальгетического эффекта, понижению болевых порогов, большей частоте развития болевых синдромов. От содержания серотонина в ЦНС зависит и степень выраженности болеутоляющего действия морфина и других наркотических анальгетиков. Полагают также, что анальгетическое действие серотонина может опосредоваться эндогенными опиатами, поскольку он способствует высвобождению бета-эндорфина из клеток передней доли гипофиза. Местное (например, внутримышечное) введение экзогенного серотонина вызывает сильную боль в месте введения. Предположительно серотонин наряду с гистамином и простагландинами, раздражая рецепторы в тканях, играет роль в возникновении болевой импульсации из места повреждения или воспаления.

Серотонинергическая система и половое поведение . Серотонинергическая система мозга участвует в регуляции сексуального поведения. Установлено, что повышение уровня серотонина в мозге сопровождается угнетением половой активности, а снижение его содержания ведет к ее повышению.

Влияние серотонина на функции некоторых эндокринных желез обусловлено, по-видимому, не только его прямым действием, но и центральными механизмами, так как в подбугорной области мозга обнаружены терминали серотонинергических нейронов, стимуляция которых сопровождается усилением выделения кортиколиберина и соматотропного гормона. Важным является и то обстоятельство, что серотонин стимулирует секрецию адреналина и норадреналина в мозговой части надпочечников. Вероятнее всего это осуществляется также через гипоталамо-гипофизарную систему.

Расстройство цикла сон - бодрствование при депрессии связано также с дисметаболизмом серотонина. Он регулирует дельта-сон, инициирует фазу быстрого сна. Нарушения сна могут быть как основной (иногда единственной) жалобой, маскирующей депрессию, так и одной из многих. Это особенно отчетливо видно на примере так называемой скрытой (ларвированной) депрессии (депрессии без депрессии), поскольку при данной форме патологии расстройства сна могут быть ведущим, а порой и единственным проявлением заболевания.

Серотонинергическая система и алкоголизм . При оценке предрасположенности к алкоголизму, особое внимание уделяется анализу генетического полиморфизма серотонинового рецептора подкласса 2А (5-НТ2А), так как серотонин участвует в регуляции потребления алкоголя. Прием алкоголя усиливает высвобождение катехоламинов и изменяет концентрацию опиоидов, приводит к временной активации системы подкрепления, что вызывает положительную эмоциональную реакцию. У человека ген 5-НТ2А находится на длинном плече 13-й хромосомы в локусе q14-q21 и характеризуется рядом полиморфизмов в кодирующей области, из которых диаллельный полиморфизм (1438 G/A) в промоторной области рассматривается в качестве генетического маркера, сцепленного с нервно-психическими заболеваниями, в том числе со злоупотреблением алкоголя.

Серотонинергическая система и мигрень . Было выявленно, что колебания уровня серотонина в плазме коррелируют с динамикой приступа мигрени и была сформулирована «серотониновая гипотеза» мигрени. В ее патогенезе и механизмах действий антимигренозных средств принимают участие лишь некоторые специфичные подтипы 5-НТ1-рецепторов, локализованных в церебральных сосудах и сенсорном ядре тройничного нерва. Показано, что нейроны серотонинергического дорсального ядра шва (одна из основных структур эндогенной антиноцицептивной системы) и норадренергического голубого пятна ствола имеют многочисленные проекции к сосудам головного мозга и спинальному ядру тройничного нepвa. Установлено, что на пресинаптических окончаниях тройничного нерва локализованы 5-НТ1D-рецепторы и рецепторы к эндотелину. Они находятся за пределами гематоэнцефалического барьера, а их активация приводит к ингибированию выделения нейропептидов кальцитонина, субстанции Р и к предупреждению развития нейрогенного воспаления. Согласно этой концепции, при мигрени (форма асептического нейрогенного воспаления) триггерный фактор предположительно нейрогенной или гормональной природы антидромно активирует периваскулярные афферентные терминали тройничного нерва. Это вызывает деполяризацию нервных окончаний и выделение из них мощных вазодилатирующих и алгогенных веществ - нейропептидов кальцитонина, субстанции Р, нейрокинина A и вазоинтестициального пептида. Данные нейропептиды вызывают расширение сосудов, увеличение проницаемости сосудистой стенки, пропотевание белков плазмы и форменных элементов крови, отек сосудистой стенки и прилегающих участков твердой мозговой оболочки, дегрануляцию тучных клеток, агрегацию тромбоцитов. Конечным результатом нейрогенного воспаления и является боль. Увеличение содержания свободного серотонина плазмы в фазу приступа мигрени связывают с распадом тромбоцитов. Очаговая неврологическая симптоматика, характерная для этого этапа мигренозного приступа, возникает вследствие сужения церебральных сосудов и снижения кровотока в отдельных участках мозга. В фазу головной боли наблюдается увеличение экскреции серотонина и его метаболитов с мочой и последующее снижение его содержания в плазме и спинномозговой жидкости. Это приводит к снижению тонуса церебральных сосудов, их избыточному растяжению, периваскулярному отеку, раздражению болевых рецепторов. Есть основание полагать, что у больных мигренью имеется генетически обусловленный дефект обмена серотонина, который может быть обусловлен многими факторами, в том числе нарушением метаболизма тромбоцитов, дефицитом фермента, разрушающего тирамин в желудочно-кишечном тракте (это подтверждается наличием заболеваний желудочно-кишечного тракта у значительного числа лиц, страдающих мигренью). В безболевом периоде мигрени выявлено повышение чувствительности серотониновых и норадреналиновых рецепторов сосудистой стенки. Внутри сосуда активируется агрегация тромбоцитов, что сопровождается выделением серотонина. Снижается содержание моноаминоксидазы, что также приводит к асептическому нейрогенному воспалению сосуда.

Серотонинергическая система и эпилепсия . Одним из нейрохимических механизмов формирования эпилептической активности является изменение обмена триптофана - «утечка» его окисления в центральной нервной системе с серотонинового на кинурениновый путь. В результате в головном мозге снижается уровень серотонина (тормозного нейромедиатора) и возрастает уровень кинуренина, который повышает возбудимость нейронов мозга. Однако, установлено, что серотонин предупреждает у мышей развитие судорог, вызываемых кислородом. Более того, будучи введенным в сонную артерию, он может прекратить развившиеся судороги. Некоторые противосудорожные препараты (фенобарбитал, дилантин и др.) повышают концентрацию серотонина в мозге. Известно и собственно противосудорожное действие серотонина. Он удлиняет положительность сна, вызванного барбитуратами. Особенно выраженное тормозящее действие серотонин оказывает на кору больших полушарий. Тормозящий эффект серотонина обусловлен его непосредственным влиянием на синапсы мозга. Важно то, что, оказывая тормозящее влияние на кору больших полушарий и вовлекающую систему зрительного бугра, серотонин не подавляет активности ретикулярной формации среднего мозга. Не менее выраженным является его свойство избирательно возбуждать подкорковые структуры, связанные с реакцией пробуждения. Серотонину присуща способность активировать холинэстеразу головного мозга, благодаря чему он является не только химическим медиатором, но и модификатором действия ацетилхолина.

Серотонинергическая система и нарушение мозгового кровообращения . Известно, что серотонинергические нейроны шва среднего мозга иннервируют церебральные сосуды и их активность влияет на интенсивность мозгового кровотока. Наиболее отчетливые сдвиги наблюдаются при церебральных инсультах. Экспериментальные данные и клинические исследования свидетельствуют о возможном участии серотонина в патогенезе острых нарушений мозгового кровообращения, в частности ишемических инсультов. В этом плане следует учитывать ангиоспастические эффекты серотонина, реализуемые опосредованно через гипоталамус и при непосредственном воздействии на морфологически измененные сосуды мозга. Этому, по-видимому, предшествует изменение содержания серотонина в веществе мозга. Установленное значительное повышение содержания серотонина в спинномозговой жидкости больных субарахноидальным кровоизлиянием, осложненным «отсроченным» вазоспазмом с развитием инфаркта мозга, cвидетельствует о несомненном участии этого биогенного амина в вазоконстрикторном эффекте в отношении церебральных сосудов.

Серотонинергическая система и иммунная система . Имеются данные об участии серотонинергической системы в регуляции иммуногенеза. Изменение уровня серотонина существенно влияет на патогенез ряда аутоиммунных заболеваний нервной системы, в частности рассеянного склероза. В последнее время сформировалось направление исследований, направленных на изучение состояния серотонинергической системы у таких больных, и показано, что она существенно изменена. Дефицит серотонина обнаружен в плазме крови больных рассеянным склерозом, у них существенно нарушено состояние тромбоцитарной серотонинергической системы, страдает активный транспорт серотонина тромбоцитами в связи со снижением скорости его обратного захвата. О нарушении серотонинергической системы при рассеянном склерозе также свидетельствуют стойко сниженное содержание лимфоцитов, несущих специфические рецепторы к серотонину, а также низкий титр противосеротониновых антител. Серотонин участвует в процессах аллергии и воспаления. Он повышает проницаемость сосудов, усиливает хемотаксис и миграцию лейкоцитов в очаг воспаления, увеличивает содержание эозинофилов в крови, усиливает дегрануляцию тучных клеток и высвобождение других медиаторов аллергии и воспаления.

Серотонин играет важную роль в процессах свёртывания крови . Тромбоциты крови содержат значительные количества серотонина и обладают способностью захватывать и накапливать серотонин из плазмы крови. Серотонин повышает функциональную активность тромбоцитов и их склонность к агрегации и образованию тромбов. Стимулируя специфические серотониновые рецепторы в печени, серотонин вызывает увеличение синтеза печенью факторов свёртывания крови. Выделение серотонина из повреждённых тканей является одним из механизмов обеспечения свёртывания крови по месту повреждения.

Также большое количество серотонина производится в кишечнике . Серотонин играет важную роль в регуляции моторики и секреции в желудочно-кишечном тракте, усиливая его перистальтику и секреторную активность. Кроме того, серотонин играет роль фактора роста для некоторых видов симбиотических микроорганизмов, усиливает бактериальный метаболизм в толстой кишке. Сами бактерии толстой кишки также вносят некоторый вклад в секрецию серотонина кишечником, поскольку многие виды симбиотических бактерий обладают способностью декарбоксилировать триптофан. При дисбактериозе и ряде других заболеваний толстой кишки продукция серотонина кишечником значительно снижается. Массивное высвобождение серотонина из погибающих клеток слизистой желудка и кишечника при воздействии цитотоксических химиопрепаратов является одной из причин возникновения тошноты и рвоты, диареи при химиотерапии злокачественных опухолей. Аналогичное состояние бывает при некоторых злокачественных опухолях, эктопически продуцирующих серотонин.

Большое содержание серотонина также отмечается в матке . Серотонин играет роль в паракринной регуляции сократимости матки и маточных труб и в координации родов. Продукция серотонина в миометрии возрастает за несколько часов или дней до родов и ещё больше увеличивается непосредственно в процессе родов. Также серотонин вовлечён в процесс овуляции - содержание серотонина (и ряда других биологически активных веществ) в фолликулярной жидкости увеличивается непосредственно перед разрывом фолликула, что, по-видимому, приводит к увеличению внутрифолликулярного давления. Серотонин оказывает значительное влияние на процессы возбуждения и торможения в системе половых органов. Например, увеличение концентрации серотонина у мужчин задерживает наступление эякуляции.

Серотониновый синдром : см. статью Серотониновый синдром в разделе «неврология и нейрохирургия» медицинского портала DoctorSPB.ru.

Серотонин (5-гидрокситриптамин, 5-НТ ) образуется из аминокислоты триптофана и является важным биологически активным веществом, выполняющим множество функций в организме. Например, серотонин является нейромедиатором в центральной нервной системе, т.е. служит веществом, с помощью которого нервные импульсы передаются между нейронами (нервными клетками). Например, антидепрессанты из класса селективных ингибиторов обратного захвата серотонина (флуоксетин, сертралин и др.) увеличивают время нахождения серотонина в синапсе (место контакта двух клеток, в котором передается нервный импульс ). Достаточно сказать, что запрещенное психоактивное вещество ЛСД (диэтиламид d-лизергиновой кислоты ) активирует те же рецепторы, что и серотонин. Считается, что недостаток воздействия серотонина приводит к депрессии , развитию тяжелых форм мигрени (поэтому серотонин иногда называют «гормоном счастья ») и к галлюцинациям (ЛСД).

Серотонин выполняет и другие функции в организме:

  • усиливает агрегацию тромбоцитов (кровь сворачивается быстрее),
  • участвует в воспалительной реакции (повышает проницаемость сосудов, усиливает миграцию лейкоцитов в очаг воспаления, усиливает выделение других медиаторов аллергии и воспаления),
  • усиливает секрецию и перистальтику в желудочно-кишечном тракте,
  • является стимулятором роста для некоторых бактерий кишечной флоры (при дисбактериозе образуется меньше серотонина),
  • является причиной тошноты, рвоты и диареи при (из-за массивного выхода серотонина из гибнущих клеток слизистой желудка и кишечника),
  • участвует в регуляции сократимости матки и маточных труб и в координации родов.

Существуют несколько типов и подтипов серотониновых рецепторов , которые обозначаются как 5-HT 1 -, 5-HT 2 -рецепторы и т.д. (от химического названия серотонина - 5-гидрокситриптамин, 5-НТ ).

Помимо упомянутых антидепрессантов, в медицине используются :

  1. селективные стимуляторы серотониновых 5-HT 1 -рецепторов в кровеносных сосудах головного мозга, что приводит к их сокращению и уменьшению головной боли . Препараты: суматриптан, ризатриптан, элетриптан, золмитриптан .
  2. селективные блокаторы серотониновых 5-HT 3 -рецепторов в головном мозге, которые применяются для подавления тошноты и рвоты при лечении злокачественных опухолей и после хирургических операций. Препараты: гранисетрон, ондансетрон, трописетрон .

В кардиологии в качестве гипотензивных (антигипертензивных) применяются 2 препарата, относящихся к блокаторам серотониновых рецепторов: кетансерин (сульфрексал) и урапидил (эбрантил) . Кетансерин отсутствует в поиске по аптекам Москвы и Беларуси, а вот урапидил (эбрантил) можно приобрести, хотя цена «кусается».

Урапидил (эбрантил)

Действие урапидила включает центральный и периферический компонент. Периферическое действие обусловлено блокированием альфа1-адренорецепторов кровеносных сосудов с их расширением и снижением АД (артериального давления), а центральное действие - стимуляцией серотониновых 5-НТ 1А -рецепторов сосудодвигательного центра (в продолговатом мозге). Блокирование серотониновых рецепторов снижает симпатическую иннервацию и увеличивает парасимпатический тонус.

Урапидил расширяет мелкие кровеносные сосуды (артериолы) и снижает АД , не приводя к рефлекторному увеличению ЧСС (смотрите также тему про ). Антигипертензивный эффект наступает постепенно, максимальное снижение диастолического (нижнего ) АД наступает через 3-5 часов после приема урапидила. При длительном приеме не влияет на уровень сахара и липидов крови.

Среди побочных эффектов чаще бывают:

  • головокружение (4-5%),
  • тошнота (2-3%),
  • головная боль (2.5%),
  • усталость (1%),
  • нарушения сна,
  • депрессия,
  • сухость во рту.

Принимается 2 раза в сутки .

Кетансерин (сульфрексал)

На данный момент в аптеках отсутствует. Блокирует серотониновые 5-НТ 2 -рецепторы и в меньшей степени α 1 -адренорецепторы. Умеренно снижает АД и ЧСС. Принимается 1-2 раза в сутки . Не влияет на уровень липидов к крови, но при клинических исследованиях достоверно повышал уровень сахара крови через 2 часа после сахарной нагрузки (глюкозотолерантный тест ) и массу тела после 1 месяца лечения.

Применение кетансерина вместе с мочегонными, вызывающими потерю калия с мочой, чревато удлинением интервала Q-T на ЭКГ и повышенным риском внезапной смерти .

Другие побочные эффекты нерезко выражены , отмена препарата потребовалась лишь у 4% (по данным многоцентрового исследования КИППАГ-4). Чаще беспокоили сонливость, вялость, сухость во рту, головокружение, удлинение интервала Q-T (в случае применения с мочегонными, вызывающими потерю калия с мочой, повышалась частота желудочковых аритмий и внезапной смерти). С калийсберегающими диуретиками кетансерин назначать можно.