Чем отличается животная клетка от растительной кратко. Строение клетки, отличие растительной клетки от животной

Многие ключевые различия между растениями и животными берут начало в структурных различиях на клеточном уровне. У одних есть некоторые детали, которые есть у других, и наоборот. Прежде, чем мы найдем главное отличие животной клетки от растительной (таблица далее в статье), давайте выясним, что они имеют общего, а затем исследуем то, что делает их разными.

Животные и растения

Вы, сгорбившись в кресле, читаете эту статью? Старайтесь сидеть прямо, вытяните руки к небу и потянитесь. Чувствуете себя хорошо, верно? Нравится вам это или нет, но вы - животное. Ваши клетки - это мягкие сгустки цитоплазмы, но вы можете использовать ваши мышцы и кости, чтобы стоять на ногах и передвигаться. Геторотрофы, как и все животные, должны получать питание из других источников. Если вы чувствуете голод или жажду, вам нужно просто встать и дойти до холодильника.

Теперь подумайте о растениях. Представьте себе высокий дуб или крохотные травинки. Они стоят в вертикальном положении, не имея мышц или костей, но они не могут позволить себе ходить куда-то, чтобы получить еду и питье. Растения, автотрофы, создают свои собственные продукты, используя энергию Солнца. Отличие животной клетки от растительной в таблице №1 (смотри далее) очевидно, но есть также и много общего.

Общая характеристика

Растительная и животная клетки являются эукариотическими, а это уже большое сходство. Они имеют мембранно-связанное ядро, которое содержит генетический материал (ДНК). Полупроницаемая плазматическая мембрана окружает оба типа ячеек. Их цитоплазма содержит многие из тех же частей и органелл, в том числе рибосомы, комплексы Гольджи, эндоплазматический ретикулум, митохондрии и пероксисомы и другие. В то время как растительные и животные клетки являются эукариотическими и имеют много общего, они также отличаются по нескольким параметрам.

Особенности растительных клеток

Теперь давайте рассмотрим особенности Как большинство из них могут стоять вертикально? Эта способность имеется благодаря клеточной стенке, которая окружает оболочки всех растительных клеток, обеспечивает поддержку и жесткость и часто дает им прямоугольный или даже шестиугольной внешний вид при наблюдении в микроскоп. Все эти структурные единицы имеют жесткую правильную форму и содержат много хлоропластов. Стенки могут быть толщиной в несколько микрометров. Их состав варьируется в зависимости от групп растений, но они обычно состоят из волокон углеводной целлюлозы, погруженных в матрицу из белков и прочих углеводов.

Клеточные стенки помогают сохранить прочность. Давление, создаваемое поглощением воды, способствует их жесткости и дает возможность для вертикального роста. Растения не способны передвигаться с места на место, поэтому они нуждаются в том, чтобы делать свои собственные продукты питания. Органелла, называемая хлоропластом, отвечает за фотосинтез. Растительные клетки могут содержать несколько таких органелл, иногда сотни.

Хлоропласты окружены двойной мембраной и содержат стеки мембраносвязанных дисков, в которых специальными пигментами поглощается солнечный свет, и эта энергия используется для питания растения. Одной из самых известных структур является крупная центральная вакуоль. занимает большую часть объема и окружена мембраной, называемой тонопласт. В ней хранится вода, а также ионы калия и хлорида. По мере того, как клетка растет, вакуоль поглощает воду и помогает удлинить ячейки.

Отличия животной клетки от растительной (таблица №1)

Растительные и животные структурные единицы имеют некоторые отличия и сходства. Например, у первых нет клеточной стенки и хлоропластов, они круглые и неправильной формы, в то время как растительные имеют фиксированную прямоугольную форму. И те и те являются эукариотическими, поэтому они имеют ряд общих особенностей, таких как наличие мембраны и органелл (ядро, митохондрии и эндоплазматический ретикулум). Итак, рассмотрим сходства и отличия между растительной и животной клетки в таблице №1:

Животная клетка Растительная клетка
Клеточная стенка отсутствует присутствует (формируется из целлюлозы)
Форма круглая (неправильная) прямоугольная (неподвижная)
Вакуоль одна или несколько мелких (гораздо меньше, чем в растительных клетках) Одна большая центральная вакуоль занимает до 90% объема клетки
Центриоли присутствуют во всех клетках животных присутствуют в более низких растительных формах
Хлоропласты нет Растительные клетки имеют хлоропласты, потому что они создают свои собственные продукты питания
Цитоплазма есть есть
Рибосомы присутствуют присутствуют
Митохондрии имеются имеются
Пластиды отсутствуют присутствуют
Эндоплазматический ретикулум (гладкий и шершавый) есть есть
Аппарат Гольджи имеется имеется
Плазматическая мембрана присутствует присутствует
Жгутики
могут быть найдены в некоторых клетках
Лизосомы есть в цитоплазме обычно не видны
Ядра присутствуют присутствуют
Реснички присутствуют в большом количестве растительные клетки не содержат реснички

Животные против растений

Какой позволяет сделать таблица «Отличие животной клетки от растительной» вывод? Обе являются эукариотическими. Они имеют настоящие ядра, где находится ДНК и отделены от других структур ядерной мембраной. Оба типа имеют сходные процессы по воспроизводству, включая митоз и мейоз. Животные и растения нуждаются в энергии, они должны расти и поддерживать нормальную в процессе дыхания.

И там и там есть структуры, известные как органеллы, которые являются специализированными для выполнения функций, необходимых для нормального функционирования. Представленные отличия животной клетки от растительной в таблице №1 дополняются некоторыми общими чертами. Оказывается, они имеют много общего. И те и те имеют некоторые из тех же компонентов, в том числе ядра, комплекс Гольджи, эндоплазматический ретикулум, рибосомы, митохондрии и так далее.

В чем отличие растительной клетки от животной?

В таблице №1 сходства и отличия представлены достаточно кратко. Рассмотрим эти и другие моменты более подробно.

  • Размер. Животные клетки обычно имеют меньшие размеры, чем клетки растений. Первые составляют от 10 до 30 микрометров в длину, в то время как растительные клетки имеют диапазон длины от 10 до 100 микрометров.
  • Форма. Животные клетки бывают различных размеров и, как правило, имеют круглую или неправильную форму. Растительные больше похожи по размеру и, как правило, имеют прямоугольную или кубическую форму.
  • Хранение энергии. Животные клетки запасают энергию в виде сложных углеводов (гликогена). Растительные запасают энергию в виде крахмала.
  • Дифференцировка. В клетках животных только стволовые клетки способны переходить в другие Большинство видов растительной клетки не способно к дифференциации.
  • Рост. Животные клетки увеличиваются в размерах за счет числа клеток. Растительные же поглощают больше воды в центральной вакуоли.
  • Центриоли. Клетки животных содержат цилиндрические структуры, которые организуют сборку микротрубочек во время деления клетки. Растительные, как правило, не содержат центриолей.
  • Реснички. Они встречаются в клетках животных, но не являются обычным явлением в растительных клетках.
  • Лизосомы. Эти органеллы содержат ферменты, которые переваривают макромолекулы. Клетки растений редко содержат функцию выполняет вакуоль.
  • Пластиды. Животные клетки не имеют пластид. Клетки растений содержат пластиды, такие как хлоропласты, которые необходимы для фотосинтеза.
  • Вакуоль. Животные клетки могут иметь много мелких вакуолей. Растительные клетки имеют большую центральную вакуоль, которая может занимать до 90% объема клетки.

Структурно растительные и животные клетки очень похожи, они содержат мембраносвязанные органеллы, такие как ядро, митохондрии, эндоплазматический ретикулум, аппарат Гольджи, лизосомы и пероксисомы. Оба также содержат аналогичные мембраны, цитозоль и цитоскелетные элементы. Функции этих органелл также очень похожи. Однако то небольшое отличие растительной клетки от животной (таблица №1), которое существуют между ними, является весьма существенным и отражает разницу в функциях каждой клетки.

Итак, мы провели сравнение растительной и животной клеток, выяснив, в чем их сходство и отличия. Общими являются план строения, химические процессы и состав, деление и генетический код.

В то же время эти мельчайшие единицы принципиально отличаются способом питания.


Строение клетки

Формы клеток очень разнообразны. У одноклеточных каждая клетка - отдельный организм. Ее форма и особенности строения связаны с условиями среды, в которых обитает данное одноклеточное, с его образом жизни.

Различия в строении клеток

Тело каждого многоклеточного животного и растения слагается из клеток, различных по внешнему виду, что связано с их функциями. Так, у животных сразу можно отличить нервную клетку от мышечной или эпителиальной клетки (эпителий - покровная ткань). У растений неодинаковы многие клетки листа, стебля и т. д.

Столь же изменчивы и размеры клеток. Самые мелкие из них (некоторые бактерии) не превышают 0,5 мкм Величина клеток многоклеточных организмов колеблется от нескольких микрометров (диаметр лейкоцитов человека 3-4 мкм, диаметр эритроцитов - 8 мкм) до огромных размеров (отростки одной нервной клетки человека имеют длину более 1 м). У большинства клеток растений и животных величина их диаметра колеблется от 10 до 100 мкм.

Несмотря на разнообразие строения форм и размеров, все живые клетки любого организма сходны по многим признакам внутреннего строения. Клетка - сложная целостная физиологическая система, в которой осуществляются все основные процессы жизнедеятельности: обмен веществ и энергии, раздражимость, рост и самовоспроизведение.

Основные компоненты в строении клетки

Основные общие компоненты клетки - наружная мембрана, цитоплазма и ядро. Клетка может жить и нормально функционировать лишь при наличии всех этих компонентов, которые тесно взаимодействуют друг с другом и с окружающей средой.

Строение наружной мембраны. Она представляет собой тонкую (около 7,5 нм толщиной) трехслойную оболочку клетки, видимую лишь в электронном микроскопе. Два крайних слоя мембраны состоят из белков, а средний образован жироподобными веществами. В мембране есть очень мелкие поры, благодаря чему она легко пропускает одни вещества и задерживает другие. Мембрана принимает участие в фагоцитозе (захватывание клеткой твердых частиц) и в пиноцитозе (захватывание клеткой капелек жидкости с растворенными в ней веществами). Таким образом мембрана сохраняет целостность клетки и регулирует поступление веществ из окружающей среды в клетку и из клетки в окружающую ее среду.

На своей внутренней поверхности мембрана образует впячивания и разветвления, глубоко проникающие внутрь клетки. Через них наружная мембрана связана с оболочкой ядра, С другой стороны, мембраны соседних клеток, образуя взаимно прилегающие впячивания и складки, очень тесно и надежно соединяют клетки в многоклеточные ткани.

Цитоплазма представляет собой сложную коллоидную систему. Ее строение: прозрачный полужидкий раствор и структурные образования. Общими для всех клеток структурными образованиями цитоплазмы являются: митохондрии, эндоплазматическая сеть, комплекс Гольджи и рибосомы. Все они вместе с ядром представляют собой центры тех или иных биохимических процессов, в совокупности составляющих обмен веществ и энергии в клетке. Эти процессы чрезвычайно разнообразны и протекают одновременно в микроскопически малом объеме клетки. С этим связана общая особенность внутреннего строения всех структурных элементов клетки: несмотря на малые размеры, они имеют большую поверхность, на которой располагаются биологические катализаторы (ферменты) и осуществляются различные биохимические реакции.

Митохондрии - энергетические центры клетки. Это очень мелкие, но хорошо видимые в световом микроскопе тельца (длина 0,2-7,0 мкм). Они находятся в цитоплазме и значительно варьируют по форме и числу в разных клетках. Жидкое содержимое митохондрий заключено в две трехслойные оболочки, каждая из которых имеет такое же строение, как и наружная мембрана клетки. Внутренняя оболочка митохондрии образует многочисленные впячивания и неполные перегородки внутри тела митохондрии. Эти впячивания называются кристами. Благодаря им при малом объеме достигается резкое увеличение поверхностей, на которых осуществляются биохимические реакции и среди них прежде всего реакции накопления и освобождения энергии при помощи ферментативного превращения аденозиндифосфорной кислоты в аденозинтрифосфорную кислоту и наоборот.

Эндоплазматическая сеть представляет собой многократно разветвленные впячивания наружной мембраны клетки. Мембраны эндоплазматической сети обычно расположены попарно, а между ними образуются канальцы, которые могут расширяться в более значительные полости, заполненные продуктами биосинтеза. Вокруг ядра мембраны, слагающие эндоплазматическую сеть, непосредственно переходят в наружную мембрану ядра. Таким образом, эндоплазматическая сеть связывает воедино все части клетки. В световом микроскопе, при осмотре строения клетки, эндоплазматическая сеть не видна.

В строении клетки различают шероховатую и гладкую эндоплазматическую сеть. Шероховатая эндоплазматическая сеть густо окружена рибосомами, где происходит синтез белков. Гладкая эндоплазматическая сеть лишена рибосом и в ней осуществляются синтез жиров и углеводов. По канальцам эндоплазматической сети осуществляется внутриклеточный обмен веществами, синтезируемыми в различных частях клетки, а также обмен между клетками. Вместе с тем эндоплазматическая сеть как более плотное структурное образование выполняет функцию остова клетки, придавая ее форме определенную устойчивость.

Рибосомы находятся как в цитоплазме клетки, так и в ее ядре. Это мельчайшие зернышки диаметром около 15-20 им, что делает их невидимыми в световом микроскопе. В цитоплазме основная масса рибосом сосредоточена на поверхности канальцев шероховатой эндоплазматической сети. Функция рибосом заключается в самом ответственном для жизнедеятельности клетки и организма в целом процессе - в синтезе белков.

Комплекс Гольджи сначала был найден только в животных клетках. Однако в последнее время и в растительных клетках обнаружены аналогичные структуры. Строение структуры комплекса Гольджи близка к структурным образованиям эндоплазматической сети: это различной формы канальцы, полости и пузырьки, образованные трехслойными мембранами. Помимо того, в комплекс Гольджи входят довольно крупные вакуоли. В них накапливаются некоторые продукты синтеза, в первую очередь ферменты и гормоны. В определенные периоды жизнедеятельности клетки эти зарезервированные вещества могут быть выведены из данной клетки через эндоплазматическую сеть и вовлечены в обменные процессы организма в целом.

Клеточный центр - образование, до сих пор описанное только в клетках животных и низших растений. Он состоит из двух центриолей, строение каждой из которых представляет собой цилиндрик размером до 1 мкм. Центриоли играют важную роль в митотическом делении клеток. Кроме описанных постоянных структурных образований, в цитоплазме различных клеток периодически появляются те или иные включения. Это капельки жира, крахмальные зерна, кристаллики белков особой формы (алейроновые зерна) и др. В большом количестве такие включения встречаются в клетках запасающих тканей. Однако и в клетках других тканей такие включения могут существовать как временный резерв питательных веществ.

Ядро, как и цитоплазма с наружной мембраной, - обязательный компонент подавляющего большинства клеток. Лишь у некоторых бактерий, при рассмотрении строения их клеток, не удалось выявить структурно оформленного ядра, но в их клетках обнаружены все химические вещества, присущие ядрам других организмов. Нет ядер в некоторых специализированных клетках, потерявших способность делиться (эритроциты млекопитающих, ситовидные трубки флоэмы растения). С другой стороны, существуют многоядерные клетки. Ядро играет очень важную роль в синтезе белков-ферментов, в передаче наследственной информации из поколения в поколение, в процессах индивидуального развития организма.

Ядро неделящейся клетки имеет ядерную оболочку. Она состоит из двух трехслойных мембран. Наружная мембрана связана через эндоплазматическуго сеть с клеточной мембраной. Через всю эту систему осуществляется постоянный обмен веществами между цитоплазмой, ядром и средой, окружающей клетку. Кроме того, в оболочке ядра есть поры, через которые также осуществляется связь ядра с цитоплазмой. Внутри ядро заполнено ядерным соком, в котором находятся глыбки хроматина, ядрышко и рибосомы. Хроматин образован белком и ДНК. Это тот материальный субстрат, который перед делением клетки оформляется в хромосомы, видимые в световом микроскопе.

Хромосомы - постоянные по числу и форме образования, одинаковые для всех организмов данного вида. Перечисленные выше функции ядра в первую очередь связаны с хромосомами, а точнее - с ДНК, входящей в их состав.

Ядрышко в количестве одного или нескольких присутствует в ядре неделящейся клетки и хорошо видно в световом микросколе. В момент деления клетки оно исчезает. В самое последнее время выяснена огромная роль ядрышка: в нем формируются рибосомы, которые затем из ядра поступают в цитоплазму и там осуществляют синтез белков.

Все сказанное в равной мере относится и к клеткам животных, и к клеткам растений. В связи со спецификой обмена веществ, роста и развития растении и животных в строении клеток тех и других имеются дополнительные структурные особенности, отличающие растительные клетки от клеток животных.

Клеткам животных, кроме перечисленных составных частей, в строении клетки, присущи особые образования - лизосомы. Это ультрамикроскопические пузырьки в цитоплазме, наполненные жидкими пищеварительными ферментами. Лизосомы осуществляют функцию расщепления веществ пищи на более простые химические вещества. Есть отдельные указания, что лизосомы встречаются и в растительных клетках.

Самые характерные структурные элементы растительных клеток (кроме тех общих, которые присущи всем клеткам) - пластиды. Они существуют в трех формах: зеленые хлоропласты, красно-оранжево-желтые хромопласты и бесцветные лейкопласты. Лейкопласты при определенных условиях могут превращаться в хлоропласты (позеленение клубня картофеля), а хлоропласты в свою очередь могут становиться хромопластами (осеннее пожелтение листьев).

Хлоропласты представляют собой «фабрику» первичного синтеза органических веществ из неорганических за счет солнечной энергии. Это небольшие тельца довольно разнообразной формы, всегда зеленого цвета благодаря присутствию хлорофилла. Строение хлоропластов в клетке: имеют внутреннюю структуру, которая обеспечивает максимальное развитие свободных поверхностей. Эти поверхности создаются многочисленными тонкими пластинками, скопления которых находятся внутри хлоропласта.

С поверхности хлоропласт, как и другие структурные элементы цитоплазмы, покрыт двойной мембраной. Каждая из них в свою очередь трехслойна, как и наружная мембрана клетки.

Хромопласты по своей природе близки к хлоропластам, но содержат желтые, оранжевые и другие близкие к хлорофиллу пигменты, которые обусловливают окраску плодов и цветков у растений.

В отличие от животных растения растут в течение всей жизни. Это происходит как за счет увеличения числа клеток путем деления, так и за счет увеличения размеров самих клеток. При этом большая часть строения тела клетки оказывается занятой вакуолями. Вакуоли представляют собой расширившиеся просветы канальцев в эндоплазматической сети, наполненные клеточным соком.

Строение оболочки растительных клеток, кроме наружной мембраны, состоят дополнительно из клетчатки (целлюлозы), которая образует толстую целлюлозную стенку на периферии наружной мембраны. У специализированных клеток эти стенки часто приобретают специфические структурные усложнения.

По своему строению клетки всех живых организмов можно разделить на два больших отдела: безъядерные и ядерные организмы.

Для того чтобы сравнить строение растительной и животной клетки, следует сказать, что обе эти структуры принадлежат к надцарству эукариот, а значит, содержат мембранную оболочку, морфологически оформленное ядро и органеллы разного назначения.

Растительная Животная
Способ питания Автотрофный Гетеротрофный
Клеточная стенка Находится снаружи и представлена целлюлозной оболочкой. Не меняет своей формы Называется гликокаликсом – тонкий слой клеток белковой и углеводной природы. Структура может менять свою форму.
Клеточный центр Нет. Может быть только у низших растений Есть
Деление Образуется перегородка между дочерними структурами Образуется перетяжка между дочерними структурами
Запасной углевод Крахмал Гликоген
Пластиды Хлоропласты, хромопласты, лейкопласты; отличаются друг от друга в зависимости от окраски Нет
Вакуоли Крупные полости, которые заполнены клеточным соком. Содержат большое количество питательных веществ. Обеспечивают тургорное давление. В клетке их относительно немного. Многочисленные мелкие пищеварительные, у некоторых – сократительные. Строение различно с вакуолями растений.

Особенность строения растительной клетки:

Особенность строения животной клетки:

Краткое сравнение растительной и животной клетки

Что из этого следует

  1. Принципиальное сходство в особенностях строения и молекулярного состава клеток растений и животных указывает на родство и единство их происхождения, вероятнее всего, от одноклеточных водных организмов.
  2. В составе обоих видов содержится множество элементов Периодической таблицы, которые в основном существуют в виде комплексных соединений неорганической и органической природы.
  3. Однако различным является то, что в процессе эволюции эти два типа клеток далеко отошли друг от друга, т.к. от различных неблагоприятных воздействий внешней среды они имеют абсолютно разные способы защиты и также имеют различные друг от друга способы питания.
  4. Растительная клетка главным образом отличается от животной крепкой оболочкой, состоящей из целлюлозы; специальными органоидами – хлоропластами с молекулами хлорофилла в своем составе, с помощью которых осуществим фотосинтез; и хорошо развитыми вакуолями с запасом питательных веществ.

Животная и растительная клетки. Сравнение.

Перед тем как начать сравнение надо еще раз упомянуть (хотя об этом уже не раз говорилось), что и растительные и животные клетки объединяются (вместе с грибами) в надцарство эукариот, а для клеток данного надцарства типично наличие мембранной оболочки, морфологически обособленного ядра и цитоплазмы (матрикс) содержащей различные органоиды и включения.

Итак, сравнение животной и растительной клеток: Общие признаки: 1. Единство структурных систем - цитоплазмы и ядра. 2. Сходство процессов обмена веществ и энергии. 3. Единство принципа наследственного кода. 4. Универсальное мембранное строение. 5. Единство химического состава. 6. Сходство процесса деления клеток.

Растительная клетка

Животная клетка

Размер (ширина)

10 – 100 мкм

10 – 30 мкм

Однообразная – кубическая или плазматическая.

Форма разнообразная

Клеточная стенка

Характерно наличие толстой целлюлозной клеточной стенки, углеводный компонент клеточной оболочки сильно выражен и представлен целлюлозной клеточной оболочной.

Имеют, как правило тонкую клеточную стенку, углеводный компонент относительно тонок (толщина 10 – 20 нм), представлен олигосахаридными группами гликопротеинов и гликолипидов и называется гликокаликсом.

Клеточный центр

У низших растений.

Во всех клетках

Центриоли

Положение ядра

Ядра у высокодифференцированных растительных клеток, как правило, оттеснены клеточным соком к периферии и лежат пристеночно.

У животных клеток они чаще всего занимают центральное положение.

Пластиды

Характерны для клеток фотосинтезирующих организмов (растения фотосинтезирующие – организмы). В зависимости от окраски различают три основных типа: хлоропласты, хромопласты и лейкопласты.

Крупные полости, заполненные клеточным соком - водным раствором различных веществ, являющихся запасными или конечными продуктами. Осмотические резервуары клетки

Сократительные, пищеварительные, выделительные вакуоли. Обычно мелкие

Включения

Запасные питательные вещества в виде зерен крахмала, белка, капель масла; вакуоли с клеточным соком; кристаллы солей

Запасные питательные вещества в виде зерен и капель (белки, жиры, углевод гликоген); конечные продукты обмена, кристаллы солей; пигменты

Способ деления

Цитокинез путем образования посередине клетки фрагмопласта.

Деление путем образования перетяжки.

Главный резервный питательный углевод

Гликоген

Способ питания

Автотрофный (фототрофный, хемотрофный)

Гетеротрофный

Способность к фотосинтезу

Синтез АТФ

В хлоропластах, митохондриях

В митохондриях

Эукариотическая клетка

Рис. 1. Схема строения эукариотической клетки: 1 - ядро; 2 - ядрышко; 3 - поры ядерной оболочки; 4 - митохондрия; 5 - эндоцитозное впячивание; 6 - лизосома; 7 - агранулярный эндоплазматический ретикулум; 8 - гранулярный эндоплазматический ретикулум с полисомами; 9 - рибосомы; 10 - комплекс Гольджи; 11 - плазматическая мембрана. Стрелки указывают направление потоков при эндо- и экзоцитозе.

Схема строения плазматической мембраны:

Рис. 2. Схема строения плазматической мембраны: 1 - фосфолипиды; 2 - холестерин; 3 - интегральный белок; 4 - олигосахаридная боковая цепь.

Электронограмма клеточного центра (две центриоли в конце G1-периода клеточного цикла):

Клетки животных и растений, как многоклеточных, так и одноклеточных, в принципе сходны по своему строению. Различия в деталях строения клеток связаны с их функциональной специализацией.

Основными элементами всех клеток являются ядро и цитоплазма. Ядро имеет сложное строение, изменяющееся на разных фазах клеточного деления, или цикла. Ядро неделящейся клетки занимает приблизительно 10-20% ее общего объема. Оно состоит из кариоплазмы (нуклеоплазмы), одного или нескольких ядрышек (нуклеол) и ядерной оболочки. Кариоплазма представляет собой ядерный сок, или кариолимфу, в которой находятся нити хроматина, образующие хромосомы.

Обязательными элементами ядра являются хромосомы, имеющие специфическую химическую и морфологическую структуру. Они принимают активное участие в обмене веществ в клетке и имеют прямое отношение к наследственной передаче свойств от одного поколения к другому.

Цитоплазма клетки обнаруживает весьма сложное строение. Введение методики тонких срезов и электронной микроскопии позволило увидеть тонкую структуру основной цитоплазмы.

Установлено, что последняя состоит из параллельно расположенных сложных структур, имеющих вид пластинок и канальцев, на поверхности которых располагаются мельчайшие гранулы диаметром 100-120 Å. Эти образования названы эндоплазматическим комплексом. В состав этого комплекса включены различные дифференцированные органоиды: митохондрии, рибосомы, аппарат Гольджи, в клетках животных и низших растений - центросома, животных - лизосомы, у растений - пластиды. Кроме того, цитоплазме обнаруживается целый ряд включений, принимающих участие в обмене веществ клетки: крахмал, капельки жира, кристаллы мочевины и т. д.

Центриоли (клеточный центр) состоит из двух компонентов: триоли и центросферы - особым образом дифференцированного участка цитоплазмы. Центриоли состоят из двух мелких округлых колец. В электронном микроскопе видно, что эти тельца представляют собой систему строго ориентированных трубочек.

Митохондрии в клетках бывают разной формы: палочковидные, нулообразные и др. Полагают, что форма их может изменяться зависимости от функционального состояния клетки. Размеры митохондрии варьируют в значительных пределах: от 0,2 до 2-7 мк. клетках разных тканей они располагаются или равномерно по цитоплазме, или с большей концентрацией в определенных участках. Установлено, что митохондрии принимают участие в окислительных процессах обмена веществ клетки. Митохондрии состоят белков, липидов и нуклеиновых кислот. В них найден ряд ферментов, участвующих в аэробном окислении, а также связанных реакцией фосфорилирования. Полагают, что в митохондриях происходят все реакции цикла Кребса: большая часть освобождаются при этом энергии расходуется на работу клетки.

Строение митохондрий оказалось сложным. Поданным электрон-микроскопических исследований, они представляют собой тельца, суженные гидрофильным золем заключенные в избирательно проницаемую оболочку - мембрану, толщина которой около 80 Å. Митохондрии имеют слоистую структуру в виде системы утренних гребней-кристаллов, толщина которых 180-200 Å. Они отходят от внутренней поверхности мембран, образуя кольцобразные диафрагмы. Предполагается, что митохондрии размножаются путем деления. При делении клетки распределение их по крайним клеткам не подчиняется строгой закономерности, так как % по-видимому, могут быстро размножаться до необходимого клетки количества. По форме, величине и роли в биохимических процессах митохондрии являются характерными для каждого типа ни и вида организма.

При биохимических исследованиях цитоплазмы в ней найдены микросомы, которые представляют собой фрагменты мембран с структурой эндоплазматической сети.

В значительном количестве в цитоплазме находятся рибосомы размерам они варьируют от 150 до 350 Å и в световом микроскопе невидимы. Особенностью их является высокое содержание РНК и белков: около 50% всей клеточной РНК находится в рибосомах, что указывает на большое значение последних в деятельности клетки. Установлено, что рибосомы участвуют в синтезе клеточных белков под контролем ядра. Репродукция самих рибосом также контролируется ядром; в отсутствии ядра они теряют способность синтезировать цитоплазматические белки и исчезают.

В цитоплазме имеется также аппарат Гольджи . Он представляет систему гладких мембран и канальцев, располагающихся вокруг ядра или полярно. Предполагают, что этот аппарат обеспечивает выделительную функцию клетки. Тонкое строение его остается еще не выясненным.

Органоидами цитоплазмы являются также лизосомы - литические тела, выполняющие функцию пищеварения внутри клетки. Они открыты пока только в животных клетках. Лизосомы содержат активный сок - ряд ферментов, способных расщеплять белки, нуклеиновые кислоты и полисахариды, поступающие в клетку. В случае если мембрана лизосомы разрывается и ферменты переходят в цитоплазму, то они «переваривают» другие элементы, цитоплазмы и приводят к растворению клетки - «самопоеданию».

Для цитоплазмы растительных клеток характерно присутствие пластид, которые осуществляют фотосинтез, синтез крахмала и пигментов, а также белков, липидов и нуклеиновых кислот. По окраске и выполняемой функции пластиды могут быть разделены на три группы: лейкопласты, хлоропласты и хромопласты. Лейкопласты - бесцветные пластиды, участвующие в синтезе крахмала из сахаров. Хлоропласты представляют белковые тела более плотной консистенции, чем цитоплазма; наряду с белками они содержат много липидов. Белковое тело (строма) хлоропластов несет пигменты, в основном - хлорофилл, чем и объясняется их зеленая окраска, хлоропласты осуществляют фотосинтез. Хромопласты содержат пигменты - каротиноиды (каротин и ксантофилл).

Пластиды размножаются путем прямого деления и, по-видимому, не возникают в клетке заново. До сих пор нам не известен принцип их распределения по дочерним клеткам при делении. Возможно, что строгого механизма, обеспечивающего равное распределение, не существует, так как необходимое число их может быстро восстанавливаться. При бесполом и половом размножении растений через материнскую цитоплазму могут наследоваться признаки, определяемые свойствами пластид.

Здесь мы не будем останавливаться на особенностях изменений отдельных элементов клетки в связи с выполняемыми ими физиологическими функциями, так как это входит в область изучения цитологии, цитохимии, цитофизики и цитофизиологии. Однако следует отметить, что в последнее время исследователи приходят к очень важному выводу в отношении химической характеристики органелл цитоплазмы: ряд из них, такие как митохондрии, пластиды и даже центриоли, имеет собственную ДНК. Какова роль ДНК и каково состояние, в котором она находится, остается пока неясным.

Мы познакомились с общей структурой клетки лишь для того, чтобы в последующем оценить роль отдельных ее элементов в обеспечении материальной преемственности между поколениями, т. е. в наследственности, ибо все структурные элементы клетки принимают участие в ее сохранении. Следует, однако, иметь в виду, что, хотя наследственность и обеспечивается всей клеткой как единой системой, ядерные структуры, а именно хромосомы, занимают при этом особое место. Хромосомы, в отличие от органелл клетки, представляют собой уникальные структуры, характеризующиеся постоянством качественного и количественного состава. Они не могут взаимозаменять друг друга. Несбалансированность хромосомного набора клетки приводит в конечном счете к ее гибели.