Гистология: понятие о тканях, классификация тканей.

Ткани - это совокупность клеток и неклеточных структур (неклеточных веществ), сходных по происхождению, строению и выполняемым функциям. Выделяют четыре основные группы тканей: эпителиальные, мышечные, соединительные и нервную.

… Эпителиальные ткани покрывают организм снаружи и выстилают изнутри полые органы и стенки полостей тела. Особый вид эпителиальной ткани - железистый эпителий - образует большинство желез (щитовидную, потовые, печень и др.).

… Эпителиальные ткани имеют следующие особенности: — их клетки тесно прилегают друг к другу, образуя пласт, — межклеточного вещества очень мало; — клетки обладают способностью к восстановлению (регенерации).

… Эпителиальные клетки по форме могут быть плоскими, цилиндрическими, кубическими. По количеству пластов эпителии бывают однослойные и многослойные.

… Примеры эпителиев: однослойный плоский выстилает грудную и брюшную полости тела; многослойный плоский образует наружный слой кожи (эпидермис); однослойный цилиндрический выстилает большую часть кишечного тракта; многослойный цилиндрический - полость верхних дыхательных путей); однослойный кубический образует канальцы нефронов почек. Функции эпителиальных тканей; пограничная, защитная, секреторная, всасывания.

СОЕДИНИТЕЛЬНАЯ ТКАНЬ СОБСТВЕННО СОЕДИНИТЕЛЬНАЯ СКЕЛЕТНАЯ Волокнистая Хрящевая 1. рыхлая 1. гиалиновый хрящ 2. плотная 2. эластический хрящ 3. оформленная 3. волокнистый хрящ 4. неоформленная Со специальными свойствами Костная 1. ретикулярная 1. грубоволокнистая 2. жировая 2. пластинчатая: 3. слизистая компактное вещество 4. пигментная губчатое вещество

… Соединительные ткани (ткани внутренней среды) объединяют группы тканей мезодермального происхождения, очень различных по строению и выполняемым функциям. Виды соединительной ткани: костная, хрящевая, подкожная жировая клетчатка, связки, сухожилия, кровь, лимфа и др.

… Соединительные ткани Общей характерной чертой строения этих тканей является рыхлое расположение клеток, отделенных друг от друга хорошо выраженным межклеточным веществом, которое образовано различными волокнами белковой природы (коллагеновыми, эластическими) и основным аморфным веществом.

… Кровь - разновидность соединительной ткани, у которой межклеточное вещество жидкое (плазма), благодаря чему одной из основных функций крови является транспортная (переносит газы, питательные вещества, гормоны, конечные продукты жизнедеятельности клеток и др.).

… Межклеточное вещество рыхлой волокнистой соединительной ткани, находящейся в прослойках между органами, а также соединяющей кожу с мышцами, состоит из аморфного вещества и свободно расположенных в разных направлениях эластических волокон. Благодаря такому строению межклеточного вещества кожа подвижна. Эта ткань выполняет опорную, защитную и питательную функции.

… Мышечные ткани обусловливают все виды двигательных процессов внутри организма, а также перемещение организма и его частей в пространстве.

… Это обеспечивается за счет особых свойств мышечных клеток - возбудимости и сократимости. Во всех клетках мышечных тканей содержатся тончайшие сократительные волоконца - миофибриллы, образованные линейными молекулами белков - актином и миозином. При скольжении их относительно друга происходит изменение длины мышечных клеток.

… Поперечнополосатая (скелетная) мышечная ткань построена из множества многоядерных волокноподобных клеток длиной 1- 12 см. Из нее построены все скелетные мышцы, мышцы языка, стенок ротовой полости, глотки, гортани, верхней части пищевода, мимические, диафрагма. Рисунок 1. Волокна поперечнополосатой мышечной ткани: а) внешний вид волокон; б) поперечный разрез волокон

… Особенности поперечнополосатой мышечной ткани: быстрота и произвольность (т. е. зависимость сокращении от воли, желания человека), потребление большого количества энергии и кислорода, быстрая утомляемость. Рисунок 1. Волокна поперечнополосатой мышечной ткани: а) внешний вид волокон; б) поперечный разрез волокон

… Сердечная ткань состоит из поперечно исчерченных одноядерных мышечных клеток, но обладает иными свойствами. Клетки расположены не параллельным пучком, как скелетные, а ветвятся, образуя единую сеть. Благодаря множеству клеточных контактов поступающий нервный импульс передается от одной клетки к другой, обеспечивая одновременное сокращение, а затем расслабление сердечной мышцы, что позволяет ей выполнять насосную функцию.

… Клетки гладкой мышечной ткани не имеют поперечной исчерченности, они веретеновидные, одноядерные, их длина около 0, 1 мм. Этот вид ткани участвует в образовании стенок трубко-образных внутренних органов и сосудов (пищеварительного тракта, матки, мочевого пузыря, кровеносных и лимфатических сосудов).

… Особенности гладкой мышечной ткани: — непроизвольность и небольшая сила сокращений, — способность к длительному тоническому сокращению, — меньшая утомляемость, — небольшая потребность в энергии и кислороде.

… Нервная ткань, из которой построены головной и спинной мозг, нервные узлы и сплетения, периферические нервы, выполняет функции восприятия, переработки, хранения и передачи информации, поступающей как из окружающей среды, так и от органов самого организма. Деятельность нервной системы обеспечивает реакции организма на различные раздражители, регуляцию и координацию работы всех его органов.

… Нейрон — состоит из тела и отростков двух видов. Тело нейрона представлено ядром и окружающей его областью цитоплазмы. Это метаболический центр нервной клетки; при его разрушении она погибает. Тела нейронов располагаются преимущественно в головном и спинном мозге, т. е. в центральной нервной системе (ЦНС), где их скопления образуют серое вещество мозга. Скопления тел нервных клеток за пределами ЦНС формируют нервные узлы, или ганглии.

Рисунок 2. Различные формы нейронов. а - нервная клетка с одним отростком; б - нервная клетка с двумя отростками; в - нервная клетка с большим количеством отростков. 1 - тело клетки; 2, 3 - отростки. Рисунок 3. Схема строения нейрона и нервного волокна 1 - тело нейрона; 2 - дендриты; 3 - аксон; 4 - коллатерали аксона; 5 - миелиновая оболочка нервного волокна; 6 - концевые разветвления нервного волокна. Стрелками показано направление распространения нервных импульсов (по Полякову).

… Основными свойствами нервных клеток - являются возбудимость и проводимость. Возбудимость - это способность нервной ткани в ответ на раздражение приходить в состояние возбуждения.

… проводимость - способность передавать возбуждение в форме нервного импульса другой клетке (нервной, мышечной, железистой). Благодаря этим свойствам нервной ткани осуществляется восприятие, проведение и формирование ответной реакции организма на действие внешних и внутренних раздражителей.

Гистоло́гия (от греч. ίστίομ – ткань и греч. Λόγος – знание, слово, наука) – раздел биологии, изучающий строение тканей живых организмов. Обычно это делается рассечением тканей на тонкие слои и с помощью микротома. В отличие от анатомии, гистология изучает строение организма на тканевом уровне. Гистология человека – раздел медицины, изучающий строение тканей человека. Гистопатология – это раздел микроскопического изучения поражённой ткани, является важным инструментом патоморфологии (патологическая анатомия), так как точный диагноз рака и других заболеваний обычно требует гистопатологического исследования образцов. Гистология судебно-медицинская – раздел судебной медицины, изучающий особенности повреждений на тканевом уровне.

Гистология зародилась задолго до изобретения микроскопа. Первые описания тканей встречаются в работах Аристотеля, Галена, Авиценны, Везалия. В 1665 году Р. Гук ввёл понятие клетки и наблюдал в микроскоп клеточное строение некоторых тканей. Гистологические исследования проводили М. Мальпиги, А. Левенгук, Я. Сваммердам, Н. Грю и др. Новый этап развития науки связан с именами К. Вольфа и К. Бэра – основоположников эмбриологии.

В XIX веке гистология была полноправной академической дисциплиной. В середине XIX века А. Кёлликер, Лейдинг и др. создали основы современного учения о тканях. Р. Вирхов положил начало развитию клеточной и тканевой патологии. Открытия в цитологии и создание клеточной теории стимулировали развитие гистологии. Большое влияние на развитие науки оказали труды И. И. Мечникова и Л. Пастера, сформулировавших основные представления об иммунной системе.

Нобелевскую премию 1906 года в физиологии или медицине присудили двум гистологам, Камилло Гольджи и Сантьяго Рамон-и-Кахалю. Они имели взаимно-противоположные воззрения на нервную структуру головного мозга в различных рассмотрениях одинаковых снимков.

В XX веке продолжалось совершенствование методологии, что привело к формированию гистологии в её нынешнем виде. Современная гистология тесно связана с цитологией, эмбриологией, медициной и другими науками. Гистология разрабатывает такие вопросы, как закономерности развития и дифференцировки клеток и тканей, адаптации на клеточном и тканевом уровнях, проблемы регенерации тканей и органов и др. Достижения патологической гистологии широко используются в медицине, позволяя понять механизм развития болезней и предложить способы их лечения.

Методы исследования в гистологии включают приготовление гистологических препаратов с последующим их изучением с помощью светового или электронного микроскопа. Гистологические препараты представляют собой мазки, отпечатки органов, тонкие срезы кусочков органов, возможно, окрашенные специальным красителем, помещенные на предметное стекло микроскопа, заключенные в консервирующую среду и покрытые покровным стеклом.

Гистология ткани

Ткань – это филогенетически сложившаяся система клеток и неклеточных структур, имеющих общность строения, нередко происхождения и специализированная на выполнении конкретных определённых функций. Ткань закладывается в эмбриогенезе из зародышевых листков. Из эктодермы образуется эпителий кожи (эпидермис), эпителий переднего и заднего отдела пищеварительного канала (в том числе эпителий дыхательных путей), эпителий влагалища и мочевыводящих путей, паренхима больших слюнных желез, наружный эпителий роговицы и нервная ткань.

Из мезодермы образуется мезенхима и её производные. Это все разновидности соединительной ткани, в том числе кровь, лимфа, гладкая мышечная ткань, а также скелетная и сердечная мышечная ткань, нефрогенная ткань и мезотелий (серозные оболочки). Из энтодермы – эпителий среднего отдела пищеварительного канала и паренхима пищеварительных желез (печени и поджелудочной железы). Ткани содержат клетки и межклеточное вещество. В начале образуются стволовые клетки – это малодифференцированные клетки, способные делиться (пролиферация), они постепенно дифференцируются, т.е. приобретают черты зрелых клеток, утрачивают способность к делению и становятся дифференцированными и специализированными, т.е. способными выполнять конкретные функции.

Направленность развития (дифференцировки клеток) обусловлена генетически – детерминация. Обеспечивает эту направленность микроокружение, функцию которого выполняет строма органов. Совокупность клеток, которые образуются из одного вида стволовых клеток – дифферон. Ткани образуют органы. В органах выделяют строму, образованную соединительными тканями, и паренхиму. Все ткани регенерируют. Различают физиологическую регенерацию, постоянно протекающую в обычных условиях, и репаративную регенерацию, которая возникает в ответ на раздражение клеток ткани. Механизмы регенерации одинаковые, только репаративная регенерация идёт в несколько раз быстрее. Регенерация лежит в основе выздоровления.

Механизмы регенерации:

Путём деления клеток. Он особенно развит в наиболее ранних тканях: эпителиальной и соединительной, они содержат много стволовых клеток, пролиферация которых обеспечивает регенерацию.

Внутриклеточная регенерация – она присуща всем клеткам, но является ведущим механизмом регенерации у высокоспециализированных клеток. В основе этого механизма лежит усиление внутриклеточных обменных процессов, которые приводят к восстановлению структуры клетки, а при дальнейшем усилении отдельных процессов

происходит гипертрофия и гиперплазия внутриклеточных органелл. которая приводит к компенсаторной гипертрофии клеток, способных выполнять большую функцию.

Происхождение тканей

Развитие зародыша из оплодотворенного яйца происходит у высших животных в результате многократных клеточных делений (дробления); образующиеся при этом клетки постепенно распределяются по своим местам в разных частях будущего зародыша. Первоначально эмбриональные клетки похожи друг на друга, но по мере нарастания их количества они начинают изменяться, приобретая характерные особенности и способность к выполнению тех или иных специфических функций. Этот процесс, называемый дифференцировкой, в конечном итоге приводит к формированию различных тканей. Все ткани любого животного происходят из трех исходных зародышевых листков: 1) наружного слоя, или эктодермы; 2) самого внутреннего слоя, или энтодермы; и 3) среднего слоя, или мезодермы. Так, например, мышцы и кровь – это производные мезодермы, выстилка кишечного тракта развивается из энтодермы, а эктодерма образует покровные ткани и нервную систему.

Ткани развивались в эволюции. Выделяют 4 группы тканей. В основу классификации заложены два принципа: гистогенетические, в основу которых заложено происхождение и морфофункциональная. Согласно этой классификации структура определяется функцией ткани. Первыми возникли эпителиальные или покровные ткани, важнейшие функции – защитная и трофическая. Они отличаются высоким содержанием стволовых клеток и регенерируют за счёт пролиферации и дифференцировки.

Затем появились соединительные ткани или опорно-трофические, ткани внутренней среды. Ведущие функции: трофическая, опорная, защитная и гомеостатическая – поддержание постоянства внутренней среды. Они характеризуются высоким содержанием стволовых клеток и регенерируют за счёт пролиферации и дифференцировки. В этой ткани выделяют самостоятельную подгруппу – кровь и лимфу -жидкие ткани.

Следующие – мышечные (сократительные) ткани. Основное свойство – сократительное - определяет двигательную активность органов и организма. Выделяют гладкую мышечную ткань -умеренная способность к регенерации путём пролиферации и дифференцировки стволовых клеток, и исчерченные (поперечно-полосатые) мышечные ткани. К ним относят сердечную ткань- внутриклеточная регенерация, и скелетную ткань- регенерирует за счёт пролиферации и дифференцировки стволовых клеток. Основным механизмом восстановления является внутриклеточная регенерация.

Затем возникла нервная ткань. Содержит глиальные клетки, они способны пролиферировать. но сами нервные клетки (нейроны) – высоко дифференцированные клетки. Они реагируют на раздражители, образуют нервный импульс и передают этот импульс по отросткам. Нервные клетки обладают внутриклеточной регенерацией. По мере дифференцировки ткани происходит смена ведущего способа регенерации – от клеточного до внутриклеточного.

Основные типы тканей

Гистологи обычно различают у человека и высших животных четыре основных ткани: эпителиальную, мышечную, соединительную (включая кровь) и нервную. В одних тканях клетки имеют примерно одинаковую форму и размеры и так плотно прилегают одна к другой, что между ними не остается или почти на остается межклеточного пространства; такие ткани покрывают наружную поверхность тела и выстилают его внутренние полости. В других тканях (костной, хрящевой) клетки расположены не так плотно и окружены межклеточным веществом (матриксом), которое они продуцируют. От клеток нервной ткани (нейронов), образующих головной и спинной мозг, отходят длинные отростки, заканчивающиеся очень далеко от тела клетки, например в местах контакта с мышечными клетками. Таким образом, каждую ткань можно отличить от других по характеру расположения клеток. Некоторым тканям присуще синцитиальное строение, при котором цитоплазматические отростки одной клетки переходят в аналогичные отростки соседних клеток; такое строение наблюдается в зародышевой мезенхиме, рыхлой соединительной ткани, ретикулярной ткани, а также может возникнуть при некоторых заболеваниях.

Многие органы состоят из тканей нескольких типов, которые можно распознать по характерному микроскопическому строению. Ниже дается описание основных типов тканей, встречающихся у всех позвоночных животных. У беспозвоночных, за исключением губок и кишечнополостных, тоже имеются специализированные ткани, аналогичные эпителиальной, мышечной, соединительной и нервной тканям позвоночных.

Эпителиальная ткань. Эпителий может состоять из очень плоских (чешуйчатых), кубических или же цилиндрических клеток. Иногда он бывает многослойным, т.е. состоящим из нескольких слоев клеток; такой эпителий образует, например, наружный слой кожи у человека. В других частях тела, например в желудочно-кишечном тракте, эпителий однослойный, т.е. все его клетки связаны с подлежащей базальной мембраной. В некоторых случаях однослойный эпителий может казаться многослойным: если длинные оси его клеток расположены непараллельно друг другу, то создается впечатление, что клетки находятся на разных уровнях, хотя на самом деле они лежат на одной и той же базальной мембране. Такой эпителий называют многорядным. Свободный край эпителиальных клеток бывает покрыт ресничками, т.е. тонкими волосовидными выростами протоплазмы (такой ресничный эпителий выстилает, например, трахею), или же заканчивается «щеточной каемкой» (эпителий, выстилающий тонкий кишечник); эта каемка состоит из ультрамикроскопических пальцевидных выростов (т.н. микроворсинок) на поверхности клетки. Помимо защитных функций эпителий служит живой мембраной, через которую происходит всасывание клетками газов и растворенных веществ и их выделение наружу. Кроме того, эпителий образует специализированные структуры, например железы, вырабатывающие необходимые организму вещества. Иногда секреторные клетки рассеяны среди других эпителиальных клеток; примером могут служить бокаловидные клетки, вырабатывающие слизь, в поверхностном слое кожи у рыб или в выстилке кишечника у млекопитающих.

Мышечная ткань. Мышечная ткань отличается от остальных своей способностью к сокращению. Это свойство обусловлено внутренней организацией мышечных клеток, содержащих большое количество субмикроскопических сократительных структур. Существует три типа мышц: скелетные, называемые также поперечнополосатыми или произвольными; гладкие, или непроизвольные; сердечная мышца, являющаяся поперечнополосатой, но непроизвольной. Гладкая мышечная ткань состоит из веретеновидных одноядерных клеток. Поперечнополосатые мышцы образованы из многоядерных вытянутых сократительных единиц с характерной поперечной исчерченностью, т.е. чередованием светлых и темных полос, перпендикулярных длинной оси. Сердечная мышца состоит из одноядерных клеток, соединенных конец в конец, и имеет поперечную исчерченность; при этом сократительные структуры соседних клеток соединены многочисленными анастомозами, образуя непрерывную сеть.

Соединительная ткань. Существуют различные типы соединительной ткани. Самые важные опорные структуры позвоночных состоят из соединительной ткани двух типов – костной и хрящевой. Хрящевые клетки (хондроциты) выделяют вокруг себя плотное упругое основное вещество (матрикс). Костные клетки (остеокласты) окружены основным веществом, содержащим отложения солей, главным образом фосфата кальция. Консистенция каждой из этих тканей определяется обычно характером основного вещества. По мере старения организма содержание минеральных отложений в основном веществе кости возрастает, и она становится более ломкой. У маленьких детей основное вещество кости, а также хряща богато органическими веществами; благодаря этому у них обычно бывают не настоящие переломы костей, а т.н. надломы (переломы по типу «зеленой ветки»). Сухожилия состоят из волокнистой соединительной ткани; ее волокна образованы из коллагена – белка, секретируемого фиброцитами (сухожильными клетками). Жировая ткань бывает расположена в разных частях тела; это своеобразный тип соединительной ткани, состоящий из клеток, в центре которых находится большая глобула жира.

Кровь. Кровь представляет собой совершенно особый тип соединительной ткани; некоторые гистологи даже выделяют ее в самостоятельный тип. Кровь позвоночных состоит из жидкой плазмы и форменных элементов: красных кровяных клеток, или эритроцитов, содержащих гемоглобин; разнообразных белых клеток, или лейкоцитов (нейтрофилов, эозинофилов, базофилов, лимфоцитов и моноцитов), и кровяных пластинок, или тромбоцитов. У млекопитающих зрелые эритроциты, поступающие в кровяное русло, не содержат ядер; у всех других позвоночных (рыб, земноводных, пресмыкающихся и птиц) зрелые функционирующие эритроциты содержат ядро. Лейкоциты делят на две группы – зернистых (гранулоциты) и незернистых (агранулоциты) – в зависимости от наличия или отсутствия в их цитоплазме гранул; кроме того, их нетрудно дифференцировать, используя окрашивание специальной смесью красителей: гранулы эозинофилов приобретают при таком окрашивании ярко-розовый цвет, цитоплазма моноцитов и лимфоцитов – голубоватый оттенок, гранулы базофилов – пурпурный оттенок, гранулы нейтрофилов – слабый лиловый оттенок. В кровяном русле клетки окружены прозрачной жидкостью (плазмой), в которой растворены различные вещества. Кровь доставляет кислород в ткани, удаляет из них диоксид углерода и продукты метаболизма, переносит питательные вещества и продукты секреции, например гормоны, из одних частей организма в другие.

Нервная ткань. Нервная ткань состоит из высоко специализированных клеток – нейронов, сконцентрированных главным образом в сером веществе головного и спинного мозга. Длинный отросток нейрона (аксон) тянется на большие расстояния от того места, где находится тело нервной клетки, содержащее ядро. Аксоны многих нейронов образуют пучки, которые мы называем нервами. От нейронов отходят также дендриты – более короткие отростки, обычно многочисленные и ветвистые. Многие аксоны покрыты специальной миелиновой оболочкой, которая состоит из шванновских клеток, содержащих жироподобный материал. Соседние шванновские клетки разделены небольшими промежутками, называемыми перехватами Ранвье; они образуют характерные углубления на аксоне. Нервная ткань окружена опорной тканью особого типа, известной под названием нейроглии.

Реакции тканей на аномальные условия

При повреждении тканей возможна некоторая утрата типичной для них структуры в качестве реакции на возникшее нарушение.

Механическое повреждение. При механическом повреждении (разрезе или переломе) тканевая реакция направлена на то, чтобы заполнить образовавшийся разрыв и воссоединить края раны. К месту разрыва устремляются слабо дифференцированные элементы тканей, в частности фибробласты. Иногда рана бывает так велика, что хирургу приходится вносить в нее кусочки ткани, чтобы стимулировать начальные стадии процесса заживления; для этого используют обломки или даже целые куски кости, полученные при ампутации и хранящиеся в «банке костей». В тех случаях, когда кожа, окружающая большую рану (например, при ожогах), не может обеспечить заживление, прибегают к пересадкам лоскутов здоровой кожи, взятых с других частей тела. Такие трансплантаты в некоторых случаях не приживляются, поскольку пересаженной ткани не всегда удается образовать контакт с теми частями тела, на которые ее переносят, и она отмирает или отторгается реципиентом.

Давление. Омозолелости возникают при постоянном механическом повреждении кожи в результате оказываемого на нее давления. Они проявляются в виде хорошо знакомых всем мозолей и утолщений кожи на подошвах ног, ладонях рук и на других участках тела, испытывающих постоянное давление. Удаление этих утолщений путем иссечения не помогает. До тех пор, пока давление будет продолжаться, образование омозолелостей не прекратится, а срезая их мы лишь обнажаем чувствительные нижележащие слои, что может привести к образованию ранок и развитию инфекции.



Ткань - это филогенетически сложившаяся система клеток и неклеточных структур, имеющих общность строения, нередко происхождения и специализированная на выполнении конкретных определённых функций.

Ткань закладывается в эмбриогенезе из зародышевых листков.

Из эктодермы образуется эпителий кожи (эпидермис), эпителий переднего и заднего отдела пищеварительного канала (в том числе эпителий дыхательных путей), эпителий влагалища и мочевыводящих путей паренхима больших слюнных желез, наружный эпителий роговицы и нервная ткань.

Из мезодермы образуется мезенхима и её производные. Это все разновидности соединительной ткани, в том числе кровь, лимфа, гладкая мышечная ткань, а также скелетная и сердечная мышечная ткань, неврогенная ткань и мезотелий (серозные оболочки).

Из энтодермы - эпителий среднего отдела пищеварительного канала и паренхима пищеварительных желез (печени и поджелудочной железы).

Направленность развития (дифференцировки клеток) обусловлена генетически - детерминация.

Обеспечивает эту направленность микроокружение, функцию которого выполняет строма органов. Совокупность клеток, которые образуются из одного вида стволовых клеток - дифферон.

Ткани образуют органы. В органах выделяют строму образованную соединительными тканями, и паренхиму. Все ткани регенерируют.

Различают физиологическую регенерацию, постоянно протекающую в обычных условиях, и репаративную регенерацию, которая возникает в ответ на раздражение клеток ткани. Механизмы регенерации одинаковые, только репаративная регенерация идёт в несколько раз быстрее. Регенерация лежит в основе выздоровления.

Механизмы регенерации:

а) путём деления клеток. Он особенно развит в наиболее ранних тканях: эпителиальной и соединительной, они содержат много стволовых клеток, пролиферация которых обеспечивает регенерацию.

б) внутриклеточная регенерация - она присуща всем клеткам, но является ведущим механизмом регенерации у высокоспециализированных клеток. В основе этого механизма лежит усиление внутриклеточных обменных процессов, которые приводят к восстановлению структуры клетки, а при дальнейшем усилении отдельных процессов

происходит гипертрофия и гиперплазия внутриклеточных органелл, которая приводит к компенсаторной гипертрофии клеток, способных выполнять большую функцию.

Ткани развивались в эволюции. Выделяют 4 группы тканей. В основу классификации заложены два принципа: гистогенетические, в основу которых заложено происхождение (Ник. Григ. Хлопин Х И морфофункциональные Ал. Ал. Заварзин). Согласно этой классификации структура определяется функцией ткани.

Первыми возникли эпителиальные или покровные ткани, важнейшие функции - защитная и трофическая. Они отличаются высоким содержанием стволовых клеток и регенерируют за счёт пролиферации и дифференцировки.

Затем появились соединительные ткани или опорно-трофические, ткани внутренней среды. Ведущие функции: трофическая, опорная, защитная и гомеостатическая - поддержание постоянства внутренней среды. Они характеризуются высоким содержанием стволовых клеток и регенерируют за счёт пролиферации и дифференцировки. В этой ткани выделяют самостоятельную подгруппу - кровь и лимфу - жидкие ткани.

Следующие - мышечные (сократительные) ткани. Основное свойство - сократительное - определяет двигательную активность органов и организма. Выделяют гладкую мышечную ткань - умеренная способность к регенерации путём пролиферации и дифференцировки стволовых клеток, и исчерченные (поперечно-полосатые) мышечные ткани. К ним относят сердечную ткань - внутриклеточная регенерация, и скелетную ткань - регенерирует за счёт пролиферации и дифференцировки стволовых клеток. Основным механизмом восстановления является внутриклеточная регенерация. Затем возникла нервная ткань. Содержит глиальные клетки, они способны пролиферировать, но сами нервные клетки (нейроны) - высоко дифференцированные клетки. Они реагируют на раздражители, образуют нервный импульс и передают этот импульс по отросткам. Нервные клетки обладают внутриклеточной регенерацией. По мере дифференцировки ткани происходит смена ведущего способа регенерации - от клеточного до внутриклеточного.

Эпителиальные ткани

Это наиболее древние и наиболее распространённые в организме. Развиваются из всех трёх зародышевых листков. Выполняют защитную и барьерную функцию, обменную, трофическую, секреторную и выделительную.

Они подразделяются на покровные, которые выстилают тело и все полости, имеющиеся в организме, и железистые, которые вырабатывают и выделяют секрет. Все эпителиальные ткани являются пластом эпителиальных клеток. В них крайне мало межклеточного вещества. Эпителиальные клетки плотно прилегают друг к другу и прочно соединены клеточными контактами.

Для эпителиальных клеток характерна полярность - в базальной части почти всегда находятся ядро и органеллы. Здесь идёт синтез секретов, в верхушечной части накапливаются гранулы секрета и там располагаются микроворсинки и реснички. Полярность характерна для эпителиального пласта в целом. Внутри клетки содержат тонофибриллы, они выполняют функцию каркаса. Эпителиальный пласт всегда лежит на базальной мембране, которая содержит фибриллы и аморфное вещество и регулирует проницаемость. Под базальной мембраной находится рыхлая соединительная ткань, которая содержит кровеносные сосуды. Из них питательные вещества через базальную мембрану поступают в эпителий, а продукты обмена в обратном направлении. В самом эпителиальном пласте сосудов нет. Все эпителиальные ткани отличаются высокой способностью к регенерации за счёт деления и дифференцировки стволовых клеток. Регенерация усиливается при снижении концентрации в эпителиальной ткани кибионов.

Эпителий содержит большое число рецепторов. В эпителиях находятся иммунокомпетентные клетки. Это лимфоциты памяти и макрофаги, которые обеспечивают местный иммунитет. Покровный эпителий. Для него существует гистогенетическая классификация Хлопина. На первое место он поставил происхождение эпителия, поэтому его классификация имеет большое значение в онкологии в связи с метастазами опухолей. По филогенетической классификации эпителии делят на 5 типов:

1) эпидермальные эпителии эктодермального происхождения (кожные),

2) энтеродермальные эпителии кишечного типа,

3) целонефродермальные эпителии (почечного типа и целомический эпителий полостей - мезотелий),

4) ангиодермальный эпителий (эндотелий лимфатических и кровеносных сосудов и выстилка полостей сердца),

5) эпендимоглиальные эпителии (выстилка желудочков мозга и центрального канала спинного мозга).

Более распространена морфофункциональная классификация Заварзина. По ней все покровные ткани делятся на однослойные и многослойные эпителии.

Ведущей функцией однослойных эпителиев является обменная функция. Однослойные делятся на: однорядные, которые в зависимости от формы клеток подразделяются на: плоский эпителий, кубический эпителий, цилиндрический или призматический эпителий, и многорядный - эпителий, в котором все клетки лежат на базальной мембране, но имеют разную высоту, поэтому их ядра располагаются на разных уровнях, что при световой микроскопии создает впечатление многослойности (многорядности).

Выделяют многослойный эпителий, содержащий несколько слоев, этот эпителий плоский. Ведущая функция - защитная. Он подразделяется на плоский неороговевающий плоский ороговеваюший и многослойный переходный эпителий.

Однослойный плоский эпителий (эндотелий и мезотелий). Эндотелий выстилает изнутри кровеносные, лимфатические сосуды, полости сердца. Эндотелиальные клетки плоские, бедны органеллами и образуют эндотелиальный пласт. Хорошо развита обменная функция. Они создают условия для кровотока. При нарушении эпителия образуются тромбы. Эндотелий развивается из мезенхимы. Вторая разновидность - мезотелий - развивается из мезодермы. Выстилает все серозные оболочки. Состоит из плоских полигональной формы клеток, связанных между собой неровными краями. Клетки имеют одно, реже два уплощенных ядра. На апикальной поверхности имеются короткие микроворсинки. Они обладают всасывательной выделительной и разграничительной функциями. Мезотелий обеспечивает свободное скольжение внутренних органов относительно друг друга. Мезотелий выделяет на свою поверхность слизистый секрет. Мезотелий предотвращает образование соединительнотканных спаек. Достаточно хорошо регенерируют за счет митоза. Однослойный кубический эпителий развивается из энтодермы и мезодермы. На апикальной поверхности имеются микроворсинки, увеличивающие рабочую поверхность, а в базальной части цитолемма образует глубокие складки, между которыми в цитоплазме располагаются митохондрии, поэтому базальная часть клеток выглядит исчерченной. Выстилает мелкие выводные протоки поджелудочной железы, желчные протоки и почечные канальцы.

Однослойный цилиндрический эпителий встречается в органах среднего отдела пищеварительного канала, пищеварительных железах, почках, половых железах и половых путях. При этом строение и функция определяется его локализацией. Развивается из энтодермы и мезодермы. Слизистую желудка выстилает однослойный железистый эпителий. Он вырабатывает и выделяет слизистый секрет, который распространяется по поверхности эпителия и защищает слизистую оболочку от повреждения. Цитолемма базальной части также имеет небольшие складки. Эпителий обладает высокой регенерацией, которая зависит от среды, с которой контактирует эпителий (в желудке 1,5 суток, в кишечнике 2-2,5 суток), у детей регенерация идет быстрее.

Почечные канальцы и слизистая оболочка кишечника выстлана каёмчатым „эпителием. В каёмчатом эпителии кишечника преобладают каёмчатые клетки - энтероциты. На их верхушке располагаются многочисленные микроворсинки. В этой зоне происходит пристеночное пищеварение и интенсивное всасывание продуктов питания. Слизистые бокаловидные клетки вырабатывают на поверхность эпителия слизь, а между клетками располагаются мелкие эндокринные клетки. Они выделяют гормоны, которые обеспечивают местную регуляцию.

Однослойный многорядный реснитчатый эпителий. Он выстилает воздухоносные пути и имеет эктрдермальное происхождение. В нём клетки разной высоты, и ядра располагаются на разных уровнях. Клетки располагаются пластом. Под базальной мембраной лежит рыхлая соединительная ткань с кровеносными сосудами, а в эпителиальном пласте преобладают высокодифференцированные реснитчатые клетки. У них узкое основание, широкая верхушка. На верхушке располагаются мерцательные реснички. Они полностью погружены в слизь. Между реснитчатыми клетками находятся бокаловидные - это одноклеточные слизистые железы. Они вырабатывают слизистый секрет на поверхность эпителия. Имеются эндокринные клетки. Между ними располагаются короткие и длинные вставочные клетки это стволовые клетки, малодифференцированные, за счёт них идёт пролиферация клеток. Мерцательные реснички совершают колебательные движения и перемещают слизистую плёнку по воздухоносным путям к внешней среде.

Многослойный плоский неороговевающий эпителий. Он развивается из эктодермы, выстилает роговицу, передний отдел пищеварительного канала и участок анального отдела пищеварительного канала, влагалище. Клетки располагаются в несколько слоев. На базальной мембране лежит слой базальных или цилиндрических клеток. Часть из них - стволовые клетки. Они пролиферируют, отделяются от базальной мембраны, превращаются в клетки полигональной формы с выростами, шипами и совокупность этих клеток формирует слой шиповатых клеток, располагающихся в несколько этажей. Они постепенно уплощаются и образуют поверхностный слой плоских, которые с поверхности отторгаются во внешнюю среду.

Многослойный плоский ороговеваюший эпителий - эпидермис, он выстилает кожные покровы. В толстой коже (ладонные поверхности), которая постоянно испытывает нагрузку, эпидермис содержит 5 слоев:

Базальный слой - содержит стволовые клетки, дифференцированные цилиндрические и пигментные клетки (пигментоциты)

Шиповатый слой - клетки полигональной формы, в них содержатся тонофибриллы.

Зернистый слой - клетки приобретают ромбовидную форму, тонофибриллы распадаются и внутри этих клеток в виде зёрен образуются белок кератогиалин, с этого начинается процесс ороговения

Блестящий слой - узкий слой, в нём клетки становятся плоскими, они постепенно утрачивают внутриклеточную структуру, и кератогиалин превращается в элеидин.

Роговой слой - содержит роговые чешуйки, которые полностью утратили строение клеток, содержат белок кератин. При механической нагрузке и при ухудшении кровоснабжения процесс ороговения усиливается.

В тонкой коже, которая не испытывает нагрузки, отсутствует зернистый и блестящий слой.

Многослойный кубический и цилиндрический эпителий встречаются крайне редко - в области конъюнктивы глаза и области стыка прямой кишки между однослойным и многослойным эпителиями. Переходный эпителий (уроэпитлий) выстилает мочевыводящие пути и аллантоис. Содержит базальный слой клеток, часть клеток постепенно отделяется от базальной мембраны и образует промежуточный слой грушевидных клеток. На поверхности располагается слой покровных клеток - крупные клетки, иногда двухрядные, покрыты слизью. Толщина этого эпителия меняется в зависимости от степени растяжения стенки мочевыводящих органов. Эпителий способен выделять секрет, защищающий его клетки от действия мочи.

Железистый эпителий - разновидность эпителиальной ткани, которая состоит из эпителиальных железистых клеток, которые в процессе эволюции приобрели ведущее свойство вырабатывать и выделять секреты. Такие клетки называются секреторными (железистыми) - гландулоцитами. Они имеют точно такую же общую характеристику как покровный эпителий.

Секреторный цикл железистых клеток содержит несколько фаз.

1 - поступление в клетку исходных веществ из кровеносных капилляров.

2 - синтез и накопление секрета.

3 - выделение секрета.

Механизм выделения секрета определяется его плотностью, вязкостью. По характеру вырабатываемого секрета железистые клетки подразделяются на белковые, слизистые и сальные.

Очень жидкие секреты, как правило, белковые (напр.: слюнной секрет) выделяется по мерокриновому типу, клетка не разрушается.

Более вязкий секрет (напр., потовый секрет, молочный секрет) выделяется по апокриновому типу. При этом от верхушки отделяется часть клетки в виде капель, которые содержат секрет. Верхушка клетки разрушается.

Очень вязкий секрет (сальный секрет) выделяется при полном разрушении клетки - голокриновый тип секреции.

4- восстановление (регенерация) клетки, который идёт за счёт внутриклеточной регенерации для клеток, функционирующих по мерокриновому и апокриновому типам; при голокриновом типе секреции за счёт пролиферации стволовых клеток. Процесс регенерации идёт интенсивно.

Железистый эпителий входит в состав желез, образует железы, а железы - это органы. Они также возникают в процессе эволюции (филогенеза). В эмбриогенезе часть эпителиального пласта погружается в подлежащую соединительную ткань и превращается в железистый эпителий, который участвует в формировании желез.

Если связь с покровным эпителием утрачивается, то такие железы становятся эндокринными и свой секрет - гормон - они диффузно выделяют в кровь. Если связь желез сохраняется с покровным эпителием с помощью выводного протока, то такие железы называются экзокринными.

В экзокринных железах выделяют секреторный отдел, в которых вырабатывается секрет, и выводной проток. Через него секрет выводится (попадает) на поверхность покровного эпителия или в полость органов.

Основная масса желез - многоклеточные и лишь одна железа одноклеточная - бокаловидная слизистая клетка. Эта клетка располагается эндоэпителиально, а все другие железы - экзоэпителиальные и располагаются либо в стенке органов, либо образуют крупные самостоятельные органы. По строению железы подразделяются на простые и имеют один выводной проток и сложные (у них несколько выводных протоков, они ветвятся).

Различают неразветвлённые железы, когда в один выводной проток открывается один секреторный отдел, и разветвлённые, когда в один выводной проток открывается несколько выводных протоков.

По форме секреторного отдела различают альвеолярные железы, трубчатые железы и альвеолярно-трубчатые. По характеру вырабатываемого и выделяемого секрета железы делятся на белковые, слизистые, белково-слизистые и сальные железы.

Железы эктодермального происхождения являются многослойными и в секреторных отделах, и в мелких выводных протоках. Они содержат миоэпителиальные клетки, у которых маленькое тело и тонкие длинные отростки, которыми они охватывают снаружи секреторные клетки и эпителии выводных протоков. Сокращаясь, они способствуют выведению по протокам.

Железы энтодермального происхождения однослойные.

Все железы помимо железистого эпителия содержат соединительную ткань и большое количество кровеносных капилляров.

Железы характеризуются высокой способностью к регенерации. Все крупные железы являются сложными и разветвлёнными.

Опорно-трофические ткани

Они содержат клетки, межклеточное вещество в них хорошо выражено и занимает большой объём. В нём выделяют основное вещество и волокнистые структуры. Соединительные ткани выполняют опорную, формообразующую стромальную функции, также трофическую функцию. За счёт этого поддерживается гомеостаз - постоянство внутренней среды: выполняют как специфическую, так и неспецифическую защитные функции, пластическую функцию. Она отличается высокой способностью к регенерации.

Все разновидности соединительной ткани отличаются количеством и разнообразием клеточного состава, объёмом межклеточного вещества, количеством и степенью упорядоченности расположения волокон в межклеточном веществе.

В группе опорно-трофических тканей особое место занимают жидкие ткани - кровь и лимфа, все остальные объединены под названием соединительных тканей.

Все соединительные ткани подразделяются на:

Собственно соединительные ткани (волокнистые). Здесь выделяют рыхлую неоформленную соединительную ткань, плотные ткани, которые делят на плотную неоформленную соединительную ткань и плотную оформленную соединительную ткань.

Соединительные ткани со специальными свойствами. Сюда входит ретикулярная ткань, жировая, слизистая и пигментная ткани.

Скелетные соединительные ткани. К ним относятся хрящевые и костные ткани.

Рыхлая неоформленная соединительная ткань

Входит в состав кожи, сопровождает все кровеносные сосуды, лимфатические сосуды, нервы и входит в состав внутренних органов.

Она отличается чрезвычайным разнообразием клеточного состава, большим объёмом межклеточного вещества. Основное вещество полужидкое, студенистое, слабо минерализованное и в нём без какого-либо порядка находятся волокнистые структуры. Рыхлая соединительная ткань образует строму большинства органов и сопровождает кровеносные и лимфатические сосуды.

Основные функции: трофическая, защитная и она отличается наибольшей способностью к регенерации.

Среди клеток преобладают фибробласты. Это крупные отросчатые клетки, в них крупное овальное ядро, широкая цитоплазма, в которой в большом количестве находятся канальцы гранулярной эндоплазматической сети. Ведущей является белоксинтезирующая функция. Они вырабатывают межклеточное вещество (гликопротеины, протеогликаны, коллагеновые и эластиновые волокна). Часть из них является стволовыми, они способны быстро пролиферировать и дифференцироваться. За счёт фибробластов идёт быстрая регенерация рыхлой соединительной ткани. Функция фибробластов регулируется гормонами надпочечников [минералокортикоиды клубочковой зоны коры надпочечников усиливают коллагенообразование, а глюкокортикоиды пучковой зоны - ослабляют]. Фибробласты со временем превращаются в фиброциты - это мелкие клетки веретеновидной формы с мелким плотным ядром. Они утрачивают способность к пролиферации и белоксинтезирующую функцию. Макрофаги по размерам меньше фибробластов, у них базофильное округлое или овальное ядро, чёткие гранулы, цитоплазма образует выросты, в момент фагоцитоза хорошо развит лизосомальный аппарат. Они фагоцитируют (захватывают) чужеродные клетки, микроорганизмы, антигенные структуры, переваривают их внутри, т.е. участвуют в неспецифической защите. Они переводят корпускулярную форму антитела в молекулярную форму, и передаёт информацию об антигене другим иммунокомпетентным клеткам лимфоцитам. Они участвуют в специфической иммунной защите. Мечниковым обосновано учение о макрофагической системе. Моноциты из крови выходят в ткани и органы и там превращаются в макрофаги. При этом в разных органах и тканях приобретает свои особенности строения и специальные названия, но функции свои сохраняют. Макрофаги способны синтезировать и секретировать в окружающую ткань пирогены, лизоцим, интерлейкин I и др.

Среди клеток рыхлой соединительной ткани выделяют плазматические клетки. Они образуются из В-лимфоцитов крови и выделяют антитела в ответ на антигенное раздражение. Мелкие, округлой или овальной формы, резко базофильное эксцентрично расположенное ядро, у них сильно развита гранулярная эндоплазматическая сеть, перед ядром более светлый участок - пластинчатый комплекс. Эти клетки вырабатывают иммуноглобулины (антитела).

Рядом с кровеносными капиллярами располагаются базофильные или тучные клетки, лаброциты. Они развиваются из базофилов крови. Это крупные клетки, цитоплазма заполнена большим числом базофильных гранул, которые содержат биологически активные вещества – гепарин, гистамин и многие другие, которые выделяются из клеток. Гистамин усиливает проницаемость стенки капилляров и межклеточного вещества, гепарин снижает свёртываемость крови и проницаемость стенки капилляров и межклеточного вещества.

Среди клеток рыхлой соединительной ткани встречаются жировые клетки (липоциты). Они располагаются одиночно или небольшими скоплениями, шаровидные, в цитоплазме содержат крупную жировую каплю, а ядро и органеллы смещены на периферию. Также содержатся пигментные клетки или пигментоциты. Это отросчатые клетки с большим количеством пигмента, развивающиеся из нервного гребешка (эктодермы).

Постепенно в рыхлую соединительную ткань из крови поступают нейтрофильные и эозинофильные лейкоциты, лимфоциты.

Адвентициальные клетки. Они идут по ходу капилляров, веретеновидной формы, это стволовые клетки. Вероятно, они способны пролиферировать и дифференцироваться в фибробласты, липоциты, а также участвуют в регенерации кровеносных капилляров.

Вокруг кровеносных капилляров расположены клетки перициты. Они лежат в складках базальной мембраны.

В межклеточном веществе по объёму преобладает основное вещество, оно студенистое, полужидкое, в нём мало минеральных веществ, очень много воды, немного органических соединений, среди которых практически отсутствуют липиды, а преобладают гликопротеины. Среди них преобладают гликозаминогликаны (а именно, гиалуроновая кислота). В них имеются тканевые каналы, по которым движется тканевая жидкость, несущая питательные вещества из крови к рабочим клеткам, а продукты обмена в обратном направлении - от рабочих клеток к кровеносным капиллярам. Чем больше гликозаминогликанов, тем хуже проницаемость соединительной ткани.

В основном веществе рыхло, беспорядочно располагаются волокна. Среди волокон выделяют коллагеновые волокна - широкие, лентовидные, извитые. Они построены из белка коллагена. Основу коллагена составляют три полипептидных цепочки из аминокислот. Аминокислоты располагаются строго последовательно и определяют прочность волокна, его поперечную исчерченность и тип коллагенового волокна. Известно 12 типов коллагена. Они нерастяжимы, но их способность растягиваться усиливается в водной среде, особенно в слабокислых и слабощелочных растворах. Коллагеновые волокна определяют прочность ткани.

Эластические волокна - тонкие разветвлённые волокна, растяжимы, эластичны, но менее прочны. Основа - белок эластин, молекулы которого в волокне располагаются хаотично.

Ретикулярные волокна. Основа - белок коллаген, снаружи покрыты углеводной плёнкой; тоньше, чем коллагеновые и разветвлённые, создаётся трёхмерная сеть. Входит в состав многих органов, но особенно много в органах кроветворения (в селезенке, лимфоузлах). Волокна коллагена "прячутся"1 от красителя в складках цитолеммы фибробластов, поэтому их выявляют специальными способами, например: солями серебра (отсюда другое их название - аргирофильные волокна).

Воспалительная реакция

Клетки крови и соединительной ткани участвуют в защитной реакции. Это неспецифическая реакция развивается на любом повреждении, на внедрение инородного тела, следовательно реагируют тучные клетки (тканевые базофилы). Они выделяют гистамин гепарин, которые вызывают повышение проницаемости стенки капилляров и основного вещества соединительной ткани. Расширяются капилляры, усиливается кровоток (гиперемия). Нейтрофильные лейкоциты в большом количестве из крови выходят в соединительную ткань и направляются к зоне повреждения и образуют вокруг инородного тела лейкоцитарный вал (через 5-6 часов). Это соответствует лейкоцитарной фазе воспалительной реакции. Нейтрофильные лейкоциты фагоцитируют микроорганизмы, токсические вещества и быстро погибают.

Из крови в ткань поступают моноциты, они становятся макрофагами в ткани. Образовавшиеся макрофаги мигрируют в зону вала и там фагоцитируют разрушенные, погибшие клетки, инородные частицы и погибшие Нейтрофильные лейкоциты - макрофагическая фаза.

Позднее пролиферируют фибробласты, которые выбрасывают коллагеновые волокна, заполняющие зону повреждения и выталкивающие инородное тело, или формируют вокруг него соединительнотканную капсулу, отграничивающую его от окружающей ткани. Это фибробластическая фаза.

Плотная оформленная (волокнистая) соединительная ткань.

Они отличаются меньшим количеством клеток, клеточный состав менее разнообразен. В межклеточном веществе содержатся волокна и очень мало основного вещества.

В плотной неоформленной соединительной ткани коллагеновые волокна образуют пучки и в пучке они идут параллельно, и между ними находится небольшое количество фибробластов и фиброцитов. Пучки волокон переплетаются и образуют прочную сетевидную структуру. Между пучками располагаются тонкие прослойки рыхлой соединительной ткани с гемокапиллярами (кровеносными капиллярами). Эта ткань образует сетчатый слой кожи.

В плотной оформленной соединительной ткани все волокна идут плотно и параллельно друг другу. Из этой ткани образуются фиброзные мембраны - капсулы органов, апоневрозы, твёрдая мозговая оболочка, связки и сухожилия. В сухожилиях коллагеновые волокна (пучок первого порядка) располагаются параллельно, плотно, между ними - фиброциты фибробластов нет. Несколько коллагеновых волокон образуют пучок второго порядка. Между ними лежит тонкая прослойка рыхлой соединительной ткани с кровеносными капиллярами - эндотеноний.

Пучки второго порядка объединяются в пучки третьего порядка, которые разделяются перитенонием - более широкая прослойка. Способность к регенерации очень низкая.

Соединительные ткани со специальными свойствами

Ретикулярная ткань. Состоит из отросчатых ретикулярных клеток, которые соединяются отростками, и образуют сеть. По ходу их отростков идут ретикулярные волокна. Эта ткань составляет строму кроветворных органов, является микроокружением, то есть создаёт условия для кроветворения. Очень хорошо регенерирует.

Жировая ткань - может быть белая и бурая. Белая жировая ткань характерна для взрослых, содержит скопления жировых клеток, которые образуют жировые дольки. Между ними идут прослойки рыхлой соединительной ткани с кровеносными капиллярами. Жировые клетки накапливают нейтральный жир. Объём клетки меняется. Белая жировая ткань образует подкожную жировую клетчатку, капсулу вокруг органов. Служит источником воды, энергии. Бурый жир присутствует в эмбриогенезе и у новорождённых. Он более энергоёмкий.

Пигментная ткань. Представлена скоплениями пигментных клеток в определенных участках тела (сетчатка глаза, радужна, сосок, родимые пятна).

Слизистая ткань. В норме имеется в эмбриогенезе и в пуповине, содержит студенистое полужидкое основное вещество, богатое гликозаминогликанами. и в нём располагаются в небольшом количестве мукоциты (сходны с фибробластами) и редкие тонкие коллагеновые волокна.

Хрящевые ткани. Они выполняют механическую, опорную, защитную функции. В них упругое плотное межклеточное вещество. Содержание воды до 70- 80%, минеральных веществ до 4-7%, органические вещества составляют до 10-15%, и в них преобладают белки, углеводы и крайне мало липидов. В них выделяются клетки и межклеточное вещество. Клеточный состав всех разновидностей хрящевых тканей одинаковый и включает хондробласты - малодифференцированные, уплощенные клетки с базофильной цитоплазмой, они способны пролиферировать и вырабатывать межклеточное вещество. Хондробласты дифференцируются в молодые хондроциты, приобретают овальную форму. Они сохраняют способность к пролиферации и выработке межклеточного вещества. Затем малые дифференцируются в более крупные, округлые зрелые хондроциты. Они утрачивают способность к пролиферации и выработке межклеточного вещества. Зрелые хондроциты в глубине хряща скапливаются в одной полости и называются изогенными группами клеток.

Отличаются хрящевые ткани строением межклеточного вещества и волокнистыми структурами. Различают гиалиновую, эластическую и волокнистую хрящевые ткани. Они участвуют в образовании хрящей и образуют гиалиновый, эластический и волокнистый хрящ.

Гиалиновый хрящ выстилает суставные поверхности, находится в зоне соединения рёбер с грудиной и в стенке воздухоносных путей. Снаружи покрыт надхрящницей - перихондрий, который содержит кровеносные сосуды. Её периферическая часть состоит из более плотной соединительной ткани, а внутренняя часть из рыхлой, содержит фибробласты и хондробласты. Хондробласты вырабатывают и выделяют межклеточное вещество и обусловливают аппозиционный рост хряща. В периферической части собственно хряща находятся молодые хондроциты. Они пролиферируют, вырабатывают и выделяют хондромукой (хондроитинсульфаты * протеогликаны), обеспечивая рост хряща изнутри.

В средней части хряща находятся зрелые хондроциты и изогенные группы клеток. Между клетками располагается межклеточное вещество. Оно содержит основное вещество и коллагеновые волокна. Сосуды отсутствуют, питается он диффузно из сосудов надкостницы. В молодом хряще межклеточное вещество оксифильное, постепенно становится базофильным. С возрастом, начиная с центральной части, в нём откладываются соли кальция, хрящ обызвествляется. становится хрупким, ломким.

Эластический хрящ - образует основу ушной раковины, в стенке воздухоносных путей. Он аналогичен по строению гиалиновому хрящу, но содержит не коллагеновые, а эластические волокна, и в норме он никогда не обызвествляется.

Волокнистый хрящ - он находится в зоне перехода связок, сухожилий с костной тканью, в участке, где кости покрыты гиалиновым хрящом и в зоне межпозвоночных соединений. В нем грубые пучки коллагеновых волокон идут продольно оси натяжения, являясь продолжением сухожильных нитей. Волокнистый хрящ в области прикрепления к кости больше похож на гиалиновый хрящ, а в области перехода в сухожилие - на сухожилие.

Костные ткани

Они формируют костный скелет тела человека. Для костной ткани характерна очень высокая степень минерализации (70%), в основном за счет фосфата кальция. Межклеточное вещество представлено преимущественно коллагеновыми волокнами, основного склеивающего вещества очень мало. Из органических веществ в основном преобладают коллагеновые белки.

Различают следующие виды костной ткани:

Грубоволокнистую или ретикулярно-фиброзную ткань. Эта ткань имеется в эмбриогенезе. У взрослых из нее построены швы плоских костей черепа:

Пластинчатую костную ткань.

Клеточный состав этих двух видов тканей одинаков. Есть остеобласты - клетки образующие костную ткань. Они крупные, округлой или кубической формы, с хорошо развитым белоксинтезирующим аппаратом, вырабатывающим коллагеновые волокна. Этих клеток много в растущем организме и при регенерации костей. Остеобласты превращаются в остеоциты. У них мелкое овальное тело и длинные тонкие отростки, которые располагаются в костных канальцах, анастомозируют между собой. Эти клетки не делятся, не вырабатывают межклеточное вещество.

Остеокласты - очень крупные клетки. Они происходят из моноцитов крови, являются макрофагами костной ткани, многоядерные, в них хорошо развит лизосомальный аппарат и на одной из поверхностей имеются микроворсинки. Из клетки в зону микроворсинок выделяются гидролитические ферменты, которые расщепляют белковую матрицу кости, в результате чего высвобождается и вымывается из костей кальций.

Межклеточное вещество содержит коллагеновые (оссеиновые) волокна. Эти волокна широкие, лентовидной формы и в пластинчатой костной ткани располагаются параллельно и прочно склеены между собой основным веществом. Именно эти волокна образуют костные пластинки.

В соседних костных пластинках коллагеновые волокна идут под разными углами, за счет этого достигается высокая прочность костной ткани. Между костными пластинками находятся тела остеоцитов, отростки которых пронизывают костные пластинки. В грубоволокнистой костной ткани костные волокна идут беспорядочно, переплетаются друг с другом и образуют пучки. Между волокнами залегают остеоциты.

Кости взрослого человека построены из пластинчатой костной ткани, причем она формирует компактное вещество кости, содержащее остеоны и губчатое вещество кости (в нем остеоны отсутствуют).

Эпифизы трубчатых костей построены из губчатой костной ткани, а диафизы - из компактного костного вещества.

Строение диафиза трубчатой кости

Снаружи диафиз покрыт надкостницей или периостом. Ее наружный слой построен из более плотной волокнистой соединительной ткани, а внутренний - из более рыхлой. Во внутреннем слое находятся фибробласты и остеобласты, в надкостнице располагаются кровеносные сосуды и рецепторы.

Из надкостницы прободающие коллагеновые волокна внедряются в вещество кости, поэтому надкостница очень плотно связана с веществом кости. Далее располагается собственно вещество кости, которое построено из пластинчатой костной ткани - компактное вещество, содержащее остеоны. Пластинки образуют 3 слоя. Наружный слой общих пластинок содержит крупные концентрические пластинки. Внутренний слой общих пластинок располагается ближе к костномозговому каналу. Эти пластинки более мелкие, чем наружные. Изнутри костный выстлан рыхлой соединительной тканью, которая содержит кровеносные сосуды и называется эндостом.

Между наружным и внутренним слоями располагается остеонный слой. Этот слой содержит остеоны - это структурно-функциональные единицы кости. Остеон содержит костные пластинки в виде цилиндров разного диаметра. При этом мелкие цилиндры вставлены в более крупные, располагаются они продольно оси диафиза. Внутри остеома находится канал, содержащий кровеносный сосуд. Эти сосуды соединяются.

Между остеонами находятся вставочные пластинки - остатки разрушающихся остеонов. В норме разрушение и восстановление остеонов происходит постоянно.

Между костными пластинками во всех слоях находятся остеоциты, отростки которых по костным канальцам пронизывают все вещество кости и в ней формируется сильно разветвленная сеть костных канальцев по которым мигрирует тканевая жидкость.

Кровеносные сосуды (артерии) из надкостницы по прободающим каналам попадают в остеон, затем проходят по каналам остеонов, соединяются между собой. Питательные вещества из сосудов поступают в каналы остеона и по системе канальцев быстро распространяются во все участки костной ткани.

В эпифизах и перекладинах трубчатых костей остеоны отсутствуют - губчатое костное вещество.

Гистогенез (образование) костной ткани и костей

Выделяют 2 механизма:

1. Прямой остеогенез - образование костей прямо из мезенхимы. Таким механизмом образуются плоские кости на втором месяце эмбриогенеза. Мезенхимные клетки в том месте, где будет формироваться кость, усиленно размножаются, группируются, утрачивают отростки, превращаются в остеокласты, формируются остеогенные островки. Остеобласты начинают вырабатывать и выделять межклеточное вещество, замуровывая тем самым себя. Эти замурованные клетки превращаются в остеоциты. В результате образуются костные балки. Далее происходит кальцинация. Снаружи костной балки распределяются остеобласты, а основу составляет грубо волокнистая костная ткань. Из мезенхимы в костные балки врастают кровеносные сосуды. Вместе с кровеносными сосудами врастают и остеокласты, разрушающие грубоволокнистую костную ткань, на месте которой образуется плотная пластинчатая костная ткань. В результате происходит полная замена грубоволокнистой костной ткани на пластинчатую.

2. Непрямой остеогенез - образование кости на месте гиалинового хряща. Таким образом, образуются все трубчатые кости. На месте будущей кости из гиалинового хряща формируется зачаток трубчатой кости, снаружи он покрыт надкостницей. Этот процесс протекает на втором месяце эмбриогенеза. Далее в области диафиза между надкостницей и веществом хряща образуется из грубоволокнистой костной ткани перихондральная кость или перихондральная

костная манжетка, которая полностью окружает вещество хряща в зоне диафиза и тем самым нарушает поступление питательных веществ из надхрящницы в хрящ. Это вызывает частичное разрушение гиалинового хряща в диафизе, а остатки хряща обызветствляются. Надхрящница превращается в надкостницу, и из надкостницы кровеносные сосуды пронизывают костную манжетку. При этом грубоволокнистая ткань костной манжетки разрушается и замещается

пластинчатой костной тканью. Кровеносные сосуды глубоко врастают в диафиз, вместе с ними проникают остеобласты, остекласты и мезенхимные клетки. Остеокласты постепенно разрушают обызвествленный хрящ, а остеобласты вокруг участков обызвествленного хряща образуют пластинчатую костную ткань, которая формирует эндохондральную кость.

Перихондральная и эндохондральная костные ткани разрастаются, соединяются, остеокласты начинают разрушать костную ткань в средней части диафиза, и постепенно формируется костномозговой канал (полость). Из мезенхимы

закладывается красный костный мозг.

Позднее осуществляется окостенение эпифиза, между эпифизами и диафизом сохраняется метаэпифизарный хрящ (зона роста кости). За счет этой пластинки кость растет в длину. В ней выделяют пузырчатый слой на границе с диафизом, содержащий разрушающиеся клетки. Затем идет столбчатый слой, в котором молодые хондроциты образуют ряды. Молодые хондроциты пролиферируют, образуют межклеточное вещество. Также выделяют пограничный слой, имеющий строение типичного гиалинового хряща. Эти пластинки окостеневают последними.

Костная ткань в общем, и кости в частности хорошо регенерируют за счет метаэпифизарных стволовых клеток надкостницы. В начале с помощью фибробластов надкостницы образуется рыхлая соединительная ткань. Далее активируются остеобласты, вырабатывающие грубоволокнистую костную ткань. В течение первых двух недель она заполняет зону повреждения и формирует костные мозоли.

Со 2 недели в костные мозоли внедряются кровеносные сосуды, и грубоволокнистая костная ткань замещается пластинчатой костной тканью.

На развитие, рост и регенерацию костной ткани и костей существенно влияют: физическая нагрузка, оптимальный пищевой режим (пища должна содержать достаточное количество белка, кальция, витаминов), гормоны роста, тиреоидные и половые гормоны.

Подробности

Гистология: понятие о тканях.
Общая гистология изучает

1) структуру и функцию нормальных тканей

2) развитие тканей (гистогенез) в онтогенезе и филогенезе

3) взаимодействие клеток в составе тканей

4) патологии тканей

Частная гистология изучает строение, функции и взаимодействие тканей в составе органов.

Мечников – гипотеза фагоцитоза . Два типа тканей: внутренние - соединительная ткань и кровь, и внешняя – эпителиальная.

Происхождение тканей. Заварзин.
1. Наиболее древние – ткани общего назначения: покровные, ткани внутренней среды.
2. Мышечная и нервная – более поздние, специализированные.

Ткань – филогенетически обусловленная система клеток и межклеточных структур, составляющих морфологическую основу для выполнения основных функций.

Свойства тканей : 1) пограничность – эпителий 2) внутренний обмен – кровь, соед ткань 3) движение – мышечная ткань 4) раздражимость – нервная ткань.

Принципы организации тканей : автономность снижена, клетка-ткань-орган, взаимосвязь возрастает: межклеточный матрикс, мжк организация, система обновления (гистогенез).
Внутри- и межтканевые взаимодействия обеспечивают: рецепторы, молекулы адгезии, цитокины (циркулируют в тканевой жидкости и несут сигналы), факторы роста – действуют на дифференцировку, пролиферацию и миграцию.

Молекулы адгезии : 1. Учавствуют в передаче сигнала 2. а,в-интегрины – встроены в плазмолемму 3. Кадгерины Р, Е, N, - клеточные контакты, десмосомы 4. Селектины А,Р, Е – лейкоциты крови с эндотелием. 5. Ig – подобные белки, ICAM – 1,2, NCAM – проникновение лейкоцитов под эндотелий.
Цитокины (больше 100 видов) – для общения между лейкоцитами, (интерлейкины ((ИЛ-1,18), интерфероны (ИФ-а,ф,у) – противовоспалительные, факторы некроза опухолей (ФНО-а,в), колониестимулирующие факторы: высокий пролиферативный потенциал, образование клонов: ГМ(гранулоциты, макрофаги)-КСФ, факторы роста: ФРФ, ФРК, ТФР ав – морфологические процессы.

Классификация тканей.

Метагенетическая классификация Хлопина, основоположник метода культуры тканей.
Лейдинг – морфофункциональная классификация : эпителиальная, ткани внутренней среды (соед ткань+кровь), мышечная, нервная.

Развитие: пренатальное, постнатаьное. Регенерация: физиологическая (обновление), репаративная (восстановление).
Принципы обновления клеточного состава тканей.

Гистологический ряд дифферон обновляющихся тканей. Клетки-предшественники –не делятся, дифференцированы.
Одна ушла на деление, дифференцировку, вторая сама себя поддерживает. На это способна только стволовая клетка . Она очень редко делятся (ассиметрично) – сохранение потенциала и дифференцировки. В итоге клетка входит в терминальную диф. Пока клетки пролиферируют – синтез ДНК-появление специфичных иРНК- специфические белки, диф клетки.

Свойства стволовой клетки : самоподдержание, способность к дифференцировке, высокий пролиферативный потенциал, способность репопулировать ткань in vivo.
Ниша стволовых клеток – это группа клеток и внеклеточный матрикс, которые способны неограниченно долго поддерживать самоподдерживание СК.
Классификация (тотипотентность понижается) . Тотипотентные-зигота, плюрипотентные – ЭСК, мультипотентные – мезенхимные (кроветворная, эпидермальная) СК, сателлитная – униполярные (клетки мышц), клетки опухолей.
Амплефаеры – эти клетки делятся очень активно, увеличивают популяцию.

Классификация тканей по типу обновления:
1. Высокий уровень обновления и высокий регенеративный потенциал – клетки крови, эпидермиса, эпидермис молочной железы.
2. Низкий уровень обновления, высокий регенеративный потенциал – печень, скелетные мышцы, поджелудочная железа.
3. Низкие уровни обновления и регенерации – головной мозг (нейроны), спинной мозг, сетчатка, почка, сердце.

Онтофилогенетическая классификация (Хлопин).
1. Эктодермальный тип – из экзодермы, многослойное или многорядное строение, защитная ф.
2. Этнеродермальный – из энтодермы, однослойный призматический, ф всасывания веществ (желудок, каемчатый эпителий тонкой кишки)
3. Целонефродермальный – из мезодермы, однослойный плоский, кубический или призматический. Ф барьерная или экскреторная (мочевые канальцы)
4. Эпендимоглиальный - из нервной трубки, в полостях мозга.
5. Ангиодермальный – из мезенхимы, выстилает эндотелиальную выстилку кровеносных сосудов.

Ткань - это филогенетически сложившаяся система клеток и неклеточных структур, имеющих общность строения, нередко происхождения и специализированная на выполнении конкретных определённых функций.

Ткань закладывается в эмбриогенезе из зародышевых листков.

Из эктодермы образуется эпителий кожи (эпидермис), эпителий переднего и заднего отдела пищеварительного канала (в том числе эпителий дыхательных путей), эпителий влагалища и мочевыводящих путей, паренхима больших слюнных желез, наружный эпителий роговицы и нервная ткань.

Из мезодермы образуется мезенхима и её производные. Это все разновидности соединительной ткани, в том числе кровь, лимфа, гладкая мышечная ткань, а также скелетная и сердечная мышечная ткань, нефрогенная ткань и мезотелий (серозные оболочки).

Из энтодермы - эпителий среднего отдела пищеварительного канала и паренхима пищеварительных желез (печени и поджелудочной железы).

Направленность развития (дифференцировки клеток) обусловлена генетически - детерминация.

Обеспечивает эту направленность микроокружение, функцию которого выполняет строма органов. Совокупность клеток, которые образуются из одного вида стволовых клеток - дифферон.

Ткани образуют органы. В органах выделяют строму, образованную соединительными тканями, и паренхиму. Все ткани регенерируют.

Различают физиологическую регенерацию, постоянно протекающую в обычных условиях, и репаративную регенерацию, которая возникает в ответ на раздражение клеток ткани. Механизмы регенерации одинаковые, только репаративная регенерация идёт в несколько раз быстрее. Регенерация лежит в основе выздоровления.

Механизмы регенерации:

Путём деления клеток. Он особенно развит в наиболее ранних тканях: эпителиальной и соединительной, они содержат много стволовых клеток, пролиферация которых обеспечивает регенерацию.

Внутриклеточная регенерация - она присуща всем клеткам, но является ведущим механизмом регенерации у высокоспециализированных клеток. В основе этого механизма лежит усиление внутриклеточных обменных процессов, которые приводят к восстановлению структуры клетки, а при дальнейшем усилении отдельных процессов

происходит гипертрофия и гиперплазия внутриклеточных органелл. которая приводит к компенсаторной гипертрофии клеток, способных выполнять большую функцию.

Ткани развивались в эволюции. Выделяют 4 группы тканей. В основу классификации заложены два принципа: гистогенетические, в основу которых заложено происхождение и морфофушщипнальные. Согласно этой классификации структура определяется функцией ткани.

Первыми возникли эпителиальные или покровные ткани, важнейшие функции - защитная и трофическая. Они отличаются высоким содержанием стволовых клеток и регенерируют за счёт пролиферации и дифференцировки.

Затем появились соединительные ткани или опорно-трофические, ткани внутренней среды. Ведущие функции: трофическая, опорная, защитная и гомеостатическая - поддержание постоянства внутренней среды. Они характеризуются высоким содержанием стволовых клеток и регенерируют за счёт пролиферации и дифференцировки. В этой ткани выделяют самостоятельную подгруппу - кровь и лимфу -жидкие ткани.

Следующие - мышечные (сократительные) ткани. Основное свойство - сократительное - определяет двигательную активность органов и организма. Выделяют гладкую мышечную ткань -умеренная способность к регенерации путём пролиферации и дифференцировки стволовых клеток, и исчерченные (поперечно-полосатые) мышечные ткани. К ним относят сердечную ткань- внутриклеточная регенерация, и скелетную ткань- регенерирует за счёт пролиферации и дифференцировки стволовых клеток. Основным механизмом восстановления является внутриклеточная регенерация.

Затем возникла нервная ткань. Содержит глиальные клетки, они способны пролиферировать. но сами нервные клетки (нейроны) - высоко дифференцированные клетки. Они реагируют на раздражители, образуют нервный импульс и передают этот импульс по отросткам. Нервные клетки обладают внутриклеточной регенерацией. По мере дифференцировки ткани происходит смена ведущего способа регенерации - от клеточного до внутриклеточного.