Как зависит скорость испарения жидкости от температуры. От чего зависит скорость испарения жидкости? Факторы, влияющие на данный процесс

Переход из жидкого состояния в газообразное возможен двумя различными процессами: испарением и кипением .

Испарение - это парообразование, происходящее только со свободной поверхности жидкости, граничащей с газообразной средой или с вакуумом .

Испарением называют фазовый процесс перехода вещества из жидкого состояния в газообразное или парообразное, происходящий на поверхности жидкости.

Испарение

ЖИДКОСТЬ ПАР

Экспериментально установлено что при испарении температура тела понижается.

При испарении веществом поглощается теплота. Она затрачивается на преодоление сил сцепления частиц (молекул или атомов) жидкости. Кинетическая энергия молекул, обладающих самой высокой скоростью, превышает их потенциальную энергию взаимодействия с другими молекулами жидкости. Благодаря этому они преодолевают притяжение соседних частиц и вылетают с поверхности жидкости. Средняя энергия оставшихся частиц становится меньше, и жидкость постепенно остывает, если её не подогревать извне.

Если смазать спиртом часть руки, то она будет охлаждаться, потому что, испаряясь, жидкость отнимает часть внутренней энергии руки, вследствие чего ее температура понижается.

А теперь выясним, от каких факторов зависит скорость испарения

Скорость испарения зависит от следующих факторов

:

Температура

Площадь поверхности

Род вещества

Наличие ветра

От влажности воздуха

Важнейший фактор, влияющий на скорость испарения – это температура. Наблюдения за лужами после дождя летом и осенью доказывают, что испарение происходит при любой температуре, так как частицы находятся в движении при любой температуре.

Смочим два одинаковых полотенца водой. Одно полотенце мы развешаем на солнце, а другое разместим в тени. На солнце полотенце высохнет быстрее, так как его нагрели солнечные лучи и испарение произошло быстрее.

Чем выше температура окружающей среды, тем больше скорость движения частиц и их энергия, и тем большее их количество покидает жидкость в единицу времени.

Следующий фактор, влияющий на скорость испарения – это площадь поверхности.

При одинаковом объёме жидкость, находящаяся в широкой тарелке, испарится гораздо быстрее жидкости, налитой в стакан. Это означает, что скорость испарения зависит от площади поверхности испарения. Чем больше эта площадь, тем большее количество молекул вылетает из жидкости в единицу времени.

Интенсивность испарения зависит от рода жидкости: чем меньше притяжение между молекулами жидкости, тем интенсивнее испарениеЕсли налить в одно блюдце растительное масло, а в другое – воду. То вода испарится намного быстрее. Смочив ватку спиртом, мы наблюдаем испарение за несколько минут.

Спирт испаряется с большей скоростью. Так происходит, потому что молекулы спирта слабее взаимодействуют друг с другом, чем молекулы воды.

Влияет на скорость испарения и наличие ветра. Мы знаем, что струя горячего воздуха в фене способна быстро высушить наши волосы. А листья деревьев после дождя высыхают быстрее в ветряную погоду.

Ветер уносит молекулы, вылетевшие из жидкости, и обратно они уже не возвращаются. Их место занимают новые молекулы, покидающие жидкость. Поэтому в самой жидкости их становится меньше. Следовательно, она испаряется быстрее.

Кафедра ЭТТ. Дисциплина «Основы технологии электронной компонентной базы»

Лабораторная работа № 1. Особенности нанесения пленок

При термовакуумном испарении

Цель работы : ознакомление с особенностями генерации и распространения потока молекул в вакууме и c распределением толщины пленки по поверхности подложки большой площади при термовакуумном испарении.

Основные понятия и соотношения

При термовакуумном испарении поток атомов или молекул вещества генерируется при нагревании материала в вакууме до температуры, близкой или превышающей его температуру плавления.

Испарениес поверхности жидкой фазы наиболее часто используется в технике. Для объяснения механизма процесса было предложено несколько моделей. В простейшей из них жидкая фаза (расплавленный материал) рассматривается как система осцилляторов, поверхностные молекулы которой связаны с определенной энергией испарения. Предполагается, что переход в газообразную фазу происходит тогда, когда энергия колебаний молекул на поверхности равна или превосходит энергию испарения. Предполагается также, что все молекулы поверхности имеют одну и ту же энергию связи и равную вероятность испарения. Вследствие интерференции колебаний осцилляторов становится возможным испарение отдельных молекул.

В усовершенствованной статистической модели состояние молекул на поверхности описывается максвелловским распределением по энергии и пространственным распределением, связывающим смещение молекул от равновесного положения с их потенциальной энергией. Испарение молекулы происходит тогда, когда она смещается на такое расстояние, что ее потенциальная энергия становится равной энергии испарения.

Экспериментальные исследования показали, что статистическая модель достаточно хорошо применима к жидкостям, испарение которых происходит за счет обмена одиночных атомов с одноатомным паром (ртуть, калий, бериллий и ряд других металлов). Аналогично ведут себя и некоторые органические жидкости, молекулы которых имеют сферическую симметрию и малые энтропии испарения (например, четыреххлористый углерод – CCl 4).

В веществах, молекулы которых имеют различные степени свободы в конденсированном и газообразном состояниях, при испарении должно происходить изменение не только поступательного движения, но и внутренней энергии молекул. В тоже время статистически маловероятно, что молекула на поверхности получает в один и тот же момент как кинетическую, так и потенциальную энергии, необходимые для испарения при термодинамическом равновесии. Более вероятно, что молекула получает вначале необходимую кинетическую энергию, а затем должна до момента испарения получить квант внутренней энергии.

Полагают, что среди различных видов внутренней энергии молекул, наибольшее влияние на вероятность испарения оказывает энергия вращения. Это подтверждается тем, что время релаксации, необходимое для получения вращательной степени свободы молекулой с добавленной кинетической энергией, больше, чем для других процессов. Таким образом, ограничение испарения происходит вследствие потери одной степени свободы, которая уменьшает число возможных состояний для молекул в жидкой фазе. Такая форма ограничения фазового перехода называется ограничением по энтропии.

Испарение с ограничением по энтропии подтверждается для жидкостей с малыми полярными молекулами, которые испаряются с невозмущенных поверхностей (бензин, хлороформ, этанол, метанол и др.). Некоторые органические жидкости имеют вращательную степень свободы и в активированном состоянии.

При испарении металлов основным видом частиц в газовой фазе являются одиночные атомы металла и лишь небольшую часть (меньше 0,1%) составляют двухатомные молекулы. Для некоторых элементов (C, S, Se, Te , P, As, Sb) пары состоят из многоатомных молекул.

Испарение с поверхности твердой фазы , называемое сублимацией, объясняется наличием на поверхности материала моноатомных ступенек и состояний с различным числом атомов в первом и последующем слое. Так как силы связи, действующие на данный атом со стороны соседних атомов, являются аддитивными (складываются), то значения энергии испарения для атомов в различных состояниях будут различными. В первую очередь испаряются атомы с наименьшим числом связей (соседей), что создает благоприятные условия для испарения других атомов.

При испарении материалов сложного состава необходимо учитывать фракционирование вещества и возможность диссоциации. Весьма важно учитывать особенности взаимодействия испаряемого материала с материалом испарителя.

Пролет частиц вещества от испарителя до поверхности подложки сопровождается их столкновениями между собой и с молекулами остаточных газов. Для уменьшения такого взаимодействия испарение производят при давлении насыщенных паров вещества не более 10 -2 Торр, а остаточных газов – не более 10 -4 – 10 -5 Торр.

Конденсация атомов (молекул) вещества происходит после пролета материала до поверхности подложки. Она зависит от соотношения свободных энергий потока частиц и поверхности. Послойный режим роста пленок (режим Франка – Ван-дер-Мерве) реализуется, если энергия связи атомов осаждаемого вещества с подложкой больше энергии связи атомов друг с другом.

Островковый режим Фольмера-Вебера реализуется тогда, когда атомы вещества связаны друг с другом сильнее, чем с подложкой. Маленькие зародыши растут, превращаясь в большие островки конденсированной фазы. После заполнения промежутков (каналов) между островками, они сливаются и образуют сплошную пленку.

При промежуточном режиме Странского-Крастанова вначале происходит послойный рост одного-двух монослоев. Затем начинается рост островков на их поверхности. При достаточном размере островков они сливаются с образованием сплошной пленки. Одной из причин такого поведения является изменение параметра решетки при заполнении очередного монослоя.

Расчет скорости испарения

Массаиспаряемого вещества , попадающего на элементарную сферическую площадку с испарителя малой площади , определяется следующим соотношением:

, (1)

где – время испарения; – угол между нормалью к поверхности испарителя и направлением к выбранной точке подложки; – радиус сферы, на которой расположена элементарная сферическая площадка с измеряемым количеством вещества .

Скорость испарения вещества в вакууме рассчитывается по формуле:

, (2)

где – скорость испарения, г·см –2 ·с –1 ; – атомный (молекулярный) вес вещества, – давление его насыщенного пара, Торр; – температура, К.

Давление насыщенных паров вещества в объеме испарения определяется соотношением:

, (3)

в котором величины и характеризуют свойства испаряемого материала. Для всех материалов таблицы Менделеева = 8,8 (для Si–10,2); = / 4,576, К; – теплота парообразования, кал/моль. Значения , плотности и температуры плавления ряда металлов приведены в таблице 1.

Для плоской подложки, поверхность которой расположена произвольно относительно поверхности плоского испарителя конечных размеров малой площади, уравнение (1) трансформируется к виду:

, (4)

где - угол между нормалью к поверхности подложки и направлением испарения.

Таблица 1

При практическом применении метода нанесения пленок важно не количество испаренного материала, а толщина получаемых пленок и ее распределение по поверхности подложки.

Расчет толщины пленок

Указанные закономерности распределения испаренного вещества приводят к тому, что распределение толщины пленки по поверхности подложки может иметь сложный характер. Поскольку для элементарной площадки подложки количество материала (где – плотность испаряемого материала), толщина пленки для произвольно расположенной подложки определяется соотношением:

(5)

В этом соотношении положение точки подложки, в которой рассчитывается толщина пленки, определяется тремя величинами .

Для плоского поверхностного испарителя малой площади и плоской подложки, расположенной на расстоянии параллельно поверхности испарителя (рис. 1), толщина пленки определяется соотношением:

, (6)

где ; – координата вдоль поверхности подложки (расстояние от

Рисунок 1. Расположение подложки относительно испарителя

центра подложки в точке А до точки Б , в которой определяется толщина пленки); – нормированное значение координаты; – полное количество испаренного вещества.

Наибольшая толщина пленки получается в точке А подложки, а относительное изменение толщины пленки для разных точек подложки в этом случае имеет вид:

, . (7)

Точечный испаритель представляет собой сферу, размеры которой пренебрежимо малы по сравнению с расстоянием до поверхности подложки и её размерами. С такого испарителя в элементарный телесный угол испаряется количество вещества . Если нанесение плёнки производится на произвольно расположенную плоскую подложку, то, как следует из рисунка, основные соотношения для точечного испарителя принимают следующий вид:

; . (8)

В таблице 2 приведена зависимость относительной толщины от х/h для точечного и поверхностного испарителя.

Таблица – Зависимость равномерности толщины от х/h

х/h 0,25 0,5 0,75
(d/d0)п 0,83 0,64 0,41 0,25 0,04
(d/d0)т 0,88 0,71 0,51 0,35 0,09

Для стандартных размеров подложки 60х48 мм при расстоянии испаритель – подложка в 200 мм неравномерность толщины плёнки составляет около 10 %. А в современных аналого-цифровых преобразователях требования к точности резисторов (разброс по сопротивлениям) составляет не более 0,05 %. Для обеспечения нужной равномерности при нанесении плёнок на подложки как больших, так и малых размеров применяют различные способы:

Использование испарителей большой площади,

Использование кольцевых испарителей,

Применение большого числа одновременно работающих испарителей,

Перемещение подложек по сложной (планетарной) траектории,

Смещение испарителя на строго определённое расстояние относительно центра вращающейся подложки,

Применение вращающихся диафрагм специальной формы при неподвижной подложке.

При применении плоского дискового испарителя конечных размеров радиуса R соответствующие выражения для толщин принимают окончательный вид:

, . (9)

Для кольцевого испарителя радиуса R, центр которого совпадает с центром плоской подложки расположенной параллельно плоскости испарителя, выражение для толщины пленки принимает следующий вид:

. . (10)

Наиболее часто на практике находит применение вариант со смещением испарителя относительно центра вращающейся подложки. Для этого варианта с испарителем малой площади соответствующие выражения принимают вид, аналогичный формулам для кольцевого испарителя. Отличие заключается в том, что вместо радиуса тонкого кольца R в формулу входит расстояние l от испарителя до оси вращения подложки.

. . (11)

Использование вращающихся диафрагм (заслонок) специальной формы основано на дополнительном регулировании количества материала, поступающего от испарителя на тот или иной участок подложки. Очень важно, чтобы центр вращения диафрагмы совпадал с центром испарителя и подложки. Чтобы снизить нежелательное уменьшение толщины, поток испаряемого вещества в наиболее удаленных точках подложки не прекрывается. По мере приближения к геометрическому центру подложки край заслонки должен представлять собой дугу возрастающей длины, так, чтобы длительность прерывания потока на любом данном расстоянии обеспечивала уменьшение скорости осаждения в данном месте до величины скорости в наиболее удаленных точках. Контуры заслонок для однородного покрытия представляют собой спирали, точные линии которых для различных условий получают расчетом на компьютере. Применение вращающихся диафрагм позволяет получить равномерность толщины в пределах долей процента. Недостатком метода является избыточный расход материала, так как перекрывается и оседает на поверхности заслонки основная часть испаряемого материала.

Задание к работе

При домашней подготовке необходимо для заданного материала и толщины пленки испаренного материала определить температуру поверхностного испарителя малой площади, при которой наибольшая толщина пленки d 0 будет равна заданной. Для расчета используются зависимости (2), (3), (7), данные таблицы и вариантов заданий.

При работе в лаборатории необходимо в компьютерном эксперименте получить следующие зависимости:

Распределение абсолютной толщины d(x) для заданной d 0 для поверхностного малой площади, дискового, кольцевого и смещенного относительно центра вращающейся подложки испарителей. (Для трех последних типов испарителя предварительно необходимо подобрать температуру, обеспечивающую одну и ту же толщину d 0 при х=0);

Относительное отклонение толщины пленки заданного материала в зависимости от расстояния x по поверхности подложки при заданной d 0 для исследуемых испарителей;

Для заданного d 0 и размера подложки 100х150 мм 2 выбрать тип испарителя, все его характеристики (кроме F) и расстояние h, обеспечивающие равномерность толщины пленки не хуже 2 %.

Примечание : необходимые для расчета дополнительные сведения приведены в перечне «Варианты задания».

Требования к отчету

Отчет составляется индивидуально на листах формата А4. При домашней подготовке необходимо изучить содержание работы, провести расчет температуры для своего варианта задания, а основные аналитические соотношения и последовательность расчета внести в заготовленный отчет. Подготовленный для защиты отчет должен содержать:

Теоретическую часть и результаты расчета (домашнюю подготовку),

Эскизы конфигурации систем испарения,

Расчетные формулы,

Последовательность расчетов и распределение абсолютной и относительной толщины по диагоналям подложки,

Анализ результатов,

Ответы на контрольные вопросы.

6. Контрольные вопросы

Чем определяется максимально возможная толщина пленки при термовакуумном испарении?

Какие соотношения связывают толщину пленки с температурой испарителя?

Как испаряют порошкообразные материалы?

Какие типы испарителей применяют для испарения порошковых материалов?

Что такое сублимация?

Какие требования предъявляются к материалам испарителей?

При каких условиях происходит послойный рост пленки при испарении?

Как происходит испарение с поверхности твердой фазы?

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-12

Разбираясь с вопросом, от чего зависит скорость испарения жидкости, нужно рассматривать закономерности влагообмена, встречающиеся в повседневной жизни. Так, теплообмен напрямую влияет на улетучивание молекул любого раствора. Частицы легче отрываются от поверхности при достаточном запасе кинетической энергии. Последняя сообщается в процессе, когда мы пытаемся остудить чашку кофе или чая, обдувая поверхность стакана.

Физические процессы

Рассмотрим, от чего зависит скорость испарения жидкости при различных условиях. Влияние оказывают свет от солнца, ветер, состав раствора, температура. Сам физический процесс испарения можно представить как хаотичное движение невесомых шариков. Каждый из них обладает определенным запасом кинетической энергии. Получать последнюю они могут извне или от соседствующих молекул.

В результате выхода молекул из раствора получается газообразное вещество. Отсюда следует первое, от чего зависит скорость испарения жидкости — от плотности мельчайших частичек над поверхностью любого жидкого вещества. Но на весь процесс влияет и плотность самого раствора. Молекулам легче оторваться в очищенном от солей дистилляте, чем преодолевать давление тяжелых частиц.

Процесс испарения наблюдают из любого вещества: твердого, жидкого. Разрежение в воздухе облегчает выход частиц с поверхности, повышенная влажность тормозит их движение. Подогрев раствора на огне повышает обмен кинетической энергии между молекулами, помогая разрушать установившиеся связи.

От чего зависит скорость испарения жидкости? От площади поверхности, с которой будут вылетать молекулы. Так, с разлитой лужи вода исчезнет быстрее, чем из бутылки с узким горлышком. Ветер поможет высвободить наиболее кинетически заряженные частички.

Опыт № 1. Площадь

Скорость испарения жидкости зависит от площади поверхности сосуда, в котором она находится. Доказательством этому служит опыт, в котором подбирают несколько видов емкостей, различающихся по форме горлышка. Везде наливают одинаковое количество однородного раствора.

Горлышки открытые. Засекают время и по его истечении производят замер оставшегося объема жидкости в каждом сосуде. Составляется таблица, и по результатам несложно заметить, что наименьшее количество будет в самой широкой емкости. Однако учитывается еще много факторов: температура, движение и плотность воздуха в помещении.

Еще один простой опыт позволяет проверить, как зависит скорость испарения жидкости от площади. Нужно просто вылить воду из сосуда на пол и засечь время. Соответственно, можно увидеть, что разлитый объем практически моментально исчезнет, в отличие от жидкости в сосуде.

Опыт № 2. Источник движения воздуха

Скорость испарения увеличивается, если напротив поверхности установить источник движения воздуха. Помочь в этом может вентилятор или другой аналогичный прибор. Время сократится при использовании нагревательных элементов.

Фен способен испарить значительный объем за минуты, тогда как под воздействием вентилятора вода аналогичного объема будет исчезать целые сутки. Не только колебания воздуха влияют на выход молекул жидкости с поверхности, но и движение самого объема с жидкостью облегчает такой процесс.

Постоянное перемешивание жидкости в стакане помогает перераспределять энергию между частицами. Движение ускоряет процесс теплоотдачи от раствора воздушной среде, а это, соответственно, влияет на скорость испарения. Так, при помешивании горячего чая часть жидкости поднимается в виде пара.

Опыт № 3. Плотность среды

На скорость испарения влияет плотность среды — как самой жидкости, так и воздуха над ней. Проводят эксперимент: в одном сосуде будет вода с солью, во втором — отфильтрованная вода аналогичного объема. Через сутки соляной раствор изменит свой объем на незначительную часть по сравнению с количеством жидкости во втором сосуде.

В домах на морском побережье можно заметить, что постиранные вещи сохнут довольно долго. Это связано с повышенной влажностью воздуха. Соответственно, и испарение из сосуда в таком месте более длительное, чем вдалеке от моря, реки, озера.

ГОУ Гимназия № 000

«Московская городская педагогическая гимназия-лаборатория»

Реферат

Факторы, влияющие на скорость испарения воды

Жалеев Тимур

Руководитель:

Введение

Определение испарения. Цель работы. Актуальность работы Описание структуры работы.

Основная часть

Механизм испарения на молекулярном уровне. Факторы, влияющие на скорость испарения.

2.1 Влияние на скорость испарения температуры воды.

2.1.1 Неравномерность прогрева воды.

2.1.2 Конвекция. Ламинарный и турбулентный режим. Число Рэлея. Зависимость типа режима перемешивания жидкости со скоростью передачи энергии.

2.1.3 Температура воздуха и ее влияние на температуру воды. Числа Рэлея в воздухе и тип режима перемешивания воздуха.

2.2.1 Связь влажности воздуха у поверхности воды с влажностью воздуха «на бесконечности».

2.2.2 Связь влажности воздуха у поверхности воды со скоростью испарения.

2.2.3 Связь влажности воздуха у поверхности воды со скоростью оттока водяных паров от поверхности.

2.2.4 Связь влажности воздуха у поверхности с геометрией поверхности.

Заключение.

Список литературы.

Введение.

Испарение – процесс перехода вещества из жидкого состояния в газообразное, происходящий с поглощением тепла.

Цель данной работы: выявить факторы, влияющие на скорость испарения воды.

Актуальность:

1. При испарении расходуется большое количество теплоты, следовательно, этот процесс можно использовать для охлаждения.

2. Интенсивность испарения существенно влияет на влажность воздуха, которая является определяющей во многих процессах.

3. Изучение механизмов испарения позволит построить более правдоподобные модели распределения температуры и влажности, т. е. позволит более точно предсказывать различные климатические процессы. Для расчета таких моделей используются современные вычислительные системы, но для их правильной работы необходимо детальное понимание всех процессов, влияющих на формирование погоды.

В данной работе мы рассмотрим факторы, влияющие на скорость испарения воды и их взаимосвязь.

На испарение влияет много факторов, но наиболее значимые из них температура поверхности воды и влажность воздуха над поверхностью воды. На каждый из этих факторов влияет ряд других:

1. Температура воды. На нее влияет температура окружающего воздуха. Теплообмен от воздуха к воде и обратно осуществляется теплопередачей (непосредственной передачей тепла без перемешивания) и конвекцией. Конвекция в свою очередь может проходить в разных режимах: ламинарном и турбулентном. Ламинарный – это режим, при котором жидкость перемещается стационарными струями без перемешивания. Турбулентный – это режим, при котором жидкость беспорядочно перемешивается из-за большой разности температур.

2. Влажность воздуха над поверхностью воды. На нее влияет интенсивность испарения воды (чем больше пара вышло из воды, тем больше его в воздухе), площадь поверхности (чем больше площадь поверхности, тем больше пара выходит из воды), ветер или другие формы конвекции в воздухе (насколько быстро удаляются водяные пары от поверхности воды).

Основная часть.

Механизм испарения на молекулярном уровне.

Молекулы воды, которые имеют достаточную кинетическую энергию и находятся близко к поверхности, способны оторваться от остальных молекул воды, т. е. происходит испарение. Если быстрые молекулы находятся в толще воды, а не на поверхности, то, ударяясь о другие молекулы, совершают над ними работу и теряют свою энергию. Быстрые молекулы воды, которые оторвались от поверхности воды, уносят энергию с собой, поэтому внутренняя энергия воды понижается, и она охлаждается.

Некоторые молекулы водяного пара, двигаясь хаотически, возвращаются в жидкость. Этот процесс называется конденсацией. Скорость конденсации зависит от концентрации молекул водяного пара.

2. Факторы, влияющие на скорость испарения.

2.1. Влияние на скорость испарения температуры воды.

На скорость испарения влияют многие факторы, но главный из них – температура поверхности воды. Чем больше температура, тем больше средняя скорость молекул, и, следовательно, больше молекул с большими скоростями, которые способны вылететь с поверхности. Вода не имеет одинаковую температуру во всей толще, для изучения испарения важна температура именно на поверхности. В свою очередь на эту температуру влияет целый ряд факторов:

1. Температура в толще воды . Количество теплоты из толщи воды к поверхности может переноситься двумя способами: теплопередачей или конвекцией. Конвекция начинается тогда, когда жидкость имеет большую температуру на глубине, в этом случае расширяясь при большей температуре, она начинает подниматься вверх. В воде при испарении необходимое для конвекции распределение температур происходит из-за того, что на поверхности вода, испаряясь, становится холоднее.

2. Температура воздуха обычно больше, чем температура на поверхности воды, потому что на поверхности происходит испарение и вода охлаждается. Поэтому, как правило, происходит подвод тепла из воздуха к поверхности. В случае если температура воздуха меньше, то тепловой поток идет в обратную сторону, причем скорость теплоотвода зависит от конвекции воздуха над поверхностью воды.

3. Интенсивность испарения влияет на температуру воды на поверхности. Чем больше интенсивность испарения, тем больше энергии унесли молекулы, и тем меньше температура поверхности. Чем меньше температура, тем меньше энергии в воде, и тем меньше интенсивность испарения.

Мы видим, что все указанные факторы тесно взаимосвязаны между собой: если увеличивается скорость испарения, температура поверхности жидкости уменьшается, следовательно, увеличивается теплообмен между поверхностью и толщей воды, с другой стороны, увеличивается теплообмен между поверхностью воды и воздухом, а также конвекционный поток над водой.

Безусловно, полностью учесть все эти факторы может только компьютерная модель.

2.1.1 Неравномерность прогрева воды.

Рассмотрим более детально процесс передачи тепла в толще воды. Практически всегда в не идеализированных условиях температура в разных местах жидкости неодинакова: вода испаряется только сверху, следовательно, охлаждается только сверху. Нагрев воды также происходит обычно неравномерно. Например, солнечные лучи проникают в толщу воды и по-разному нагревают их в зависимости от прозрачности воды. Любой другой источник более высокой или низкой температуры также передает тепло неравномерно, например рука держащего сосуд человека.

Если температура воды сверху меньше, то начинает происходить конвекция: холодная вода тяжелее горячей, поэтому холодная вода опускается, а горячая – поднимается. Но так как жидкость не перемешивается полностью, а перемещается целыми объемами, температура распределяется неравномерно. В случае возникновения конвекции жидкость начинает двигаться целыми «кусками». Если в этом случае поместить термометр в некоторую точку жидкости, он покажет колебание температуры, которое и будет отражать это движение «кусков» горячей или холодной жидкости.

2.1.2. Конвекция. Ламинарный и турбулентный режим. Число Рэлея. Зависимость типа режима перемешивания жидкости со скоростью передачи энергии.

Как уже говорилось выше, конвекция – это явление, при котором теплообмен происходит путем перемешивания вещества. С ее помощью горячая вода перемещается из толщи к поверхности, а остывшая из-за испарения вода, в свою очередь, перемещается от поверхности ко дну.

Жидкость, при нагревании снизу или охлаждении сверху может перемешиваться в двух режимах: ламинарном и турбулентном.

Ламинарный поток - это поток, при котором жидкость перемещается стационарными струями без перемешивания и беспорядочных быстрых изменений скорости. В случае ламинарных потоков движение жидкости можно изобразить при помощи линий тока: воображаемых линий, вдоль которых перемещаются частицы воды.

Турбулентный поток – это поток, при котором из-за большой разности температур жидкость беспорядочно перемешивается. В этом случае невозможно указать определенную траекторию движения частицы.

В случае турбулентного потока происходит более равномерное перемешивание всей жидкости. Если в случае ламинарного перемешивания перемещаются целые «куски» определенной температуры, то в случае турбулентного режима жидкость имеет почти одинаковую температуру по всему объему.

Вид режима (ламинарный или турбулентный) определяется числом Релея. Число Рэлея – это безразмерная величина, оно считается по формуле

, где

g - ускорение свободного падения; измеряется в м/с2.

β - коэффициент теплового расширения жидкости; вычисляется по формуле

Где ΔV – изменение объема тела, V – начальный объем тела, ΔT – изменение температуры; измеряется в К-1.

ΔT - разность температур между поверхностью и толщей воды; измеряется в К.

L - определяющий линейный размер поверхности теплообмена; измеряется в м. Это максимальная длина на поверхности сосуда, например для круглого сосуда это диаметр, для прямоугольного – диагональ и т. д.

ν - кинематическая вязкость жидкости; численно равна ν = 0,000183/(ρ(1 + 0,0337t + 0,000221t2)), где t – температура и ρ – плотность жидкости; измеряется в 10-6 м2/с.

χ - температуропроводность жидкости; вычисляется по формуле https://pandia.ru/text/78/415/images/image006_104.gif" alt="\varkappa" width="14 height=10" height="10"> - теплопроводность, cp - удельная теплоемкость, ρ - плотность; измеряется в м2/с.

После того, как это число достигает некоторого, так называемого критического значения, в жидкости возникают конвективные потоки. Это критическое значение примерно равно. Если число Рэлея меньше 7,4 Raкрит, то никаких потоков не наблюдается. В области от 7,4 Raкрит до 9,9 Raкрит возникает один основной ламинарный поток с одной частотой колебания и много маленьких. В интервале от 9,9 Raкрит до 10,97 Raкрит возникает еще один основной ламинарный поток с другой частотой колебания, но маленькие потоки остаются. До 11,01 Raкрит появляется третий ламинарный поток с третьей частотой. После 11,01 Raкрит возникают турбулентные потоки.

Для воды и цилиндрического сосуда высотой 2,2 см и радиусом 12,5 см при комнатной температуре (200 " style="margin-left:-5.3pt;border-collapse:collapse">

ρ = 998,2 кг/м3

β = 0,00015 К-1

ν =1,004*10-6 м2/с

0,6 Вт/(м*К)

ср = 4183 Дж/(кг*К)

χ = /(cp*ρ) = 1,437e-7 м2/c

Ra = (g*β*ΔT*L3)/(ν*χ) = 3669

Разность температур 0,2° была рассчитана программой, которая создает модели испаряющейся воды.

Можно сделать вывод, что при этих условиях режим конвекции - турбулентный

2.1.3. Температура воздуха и ее влияние на температуру воды. Числа Рэлея в воздухе и тип режима перемешивания воздуха.

На температуру поверхности воды также влияет и температура окружающего воздуха.

Если температура воздуха отличается от температуры воды, происходит теплообмен между водой и воздухом за счет теплопередачи и конвекции.

Конвекция в воздухе также определяется числом Рэлея. Там оно меньше на один-два порядка, потому что вязкость и температуропроводность больше у воздуха, чем у воды.

Ниже приведены данные для расчета числа Рэлея и сами расчеты для воздуха:

ρ = 1.205 кг/м3

β = 0,00343 К-1

ν =15.11*10-6 м2/с

0.0257 Вт/(м*К)

ср = 1005 Дж/(кг*К)

χ = /(cp*ρ) = 2,122e-5 м2/c

Ra = (g*β*ΔT*L3)/(ν*χ) = 40990,072

Конвекция в воздухе

На конвекцию также влияет влавжность воздуха. Т. к. водяные пары имеют плотность меньше, чем плотность воздуха, влажный воздух легче сухого и начинает подниматься вверх. Таким образом, чем выше скорость испарения, тем выше влажность воздуха, тем интенсивнее конвекция.

2.2. Влияние влажности воздуха.

Как уже говорилось, при увеличении влажности воздуха над поверхностью воды, увеличивается конденсация т. е. уменьшается интенсивность испарения. Поэтому попытаемся разобраться, какие факторы влияют на величину влажности воздуха, для этого сначала сформулируем точное определение влажности.

Абсолютная и относительная влажность.

Абсолютная влажность воздуха – это масса водяного пара, содержащегося в кубическом метре воздуха. Из-за малой величины обычно измеряется в г/м3. Относительная влажность воздуха – это отношение текущей абсолютной влажности к максимально возможной абсолютной влажности при данной температуре. Чем выше температура, тем выше максимально возможная абсолютная влажность.

2.2.1. Связь влажности воздуха у поверхности воды с влажностью воздуха «на бесконечности».

Воздухом «на бесконечности» называется воздух, находящийся на таком удалении от поверхности жидкости, что его влажность не зависит от наличия этой поверхности. Влажность воздуха «на бесконечности» безусловно, влияет на влажность воздуха у поверхности. Пар с поверхности воды вытесняет пар, который уже был в воздухе, тем самым стремиться увеличить влажность «на бесконечности». Чем больше влажность воздуха на бесконечности, тем сложнее вытеснить поднимающемуся пару находящийся на бесконечности» пар, и тем менее интенсивно происходит испарение.

2.2.2 Связь влажности воздуха у поверхности воды со скоростью испарения.

При высокой влажности, по сути, испарение происходит с той же скоростью, но конденсация происходит быстрее, и, следовательно, можно считать, что испарение происходит медленнее. Конденсация – это обратный испарению процесс, то есть переход из газообразного состояния в жидкое.

2.2.3 Связь влажности воздуха у поверхности воды со скоростью оттока водяных паров от поверхности.

Водяные пары, если их влажность отличается от влажности на бесконечности, перемещаются от поверхности воды при помощи двух процессов: диффузии и конвекции.

Диффузия – это процесс выравнивания концентраций веществ в некотором объеме путем проникновения молекул одного вещества в другое. Она зависит от скорости движения молекул, то есть от температуры среды. Диффузия в газах проходит довольно быстро.

Конвекция – это явление передачи тепла путем перемешивания вещества. Вещество перемешивается из-за разности температур, которая может быть вызвана испарением. Конвекция, по сравнению с диффузией происходит медленно.

Можно также отметить, что ветер, уносящий пар от поверхности, влияет на скорость испарения сильнее предыдущих двух факторов.

2.2.4 Связь влажности воздуха у поверхности с геометрией поверхности.

Если площадь поверхности с которой происходит испарение маленькая – пары сразу рассеиваются в окружающем пространстве, если большая то не сразу, так как они занимают значительную область пространства. По формуле Дж. Дальтона для скорости испарения в которой указана зависимость оной от площади поверхности: Р=AS(F-f)/H где S - поверхность сосуда, F - предельная упругость при данной температуре, f - упругость пара в окружающей среде, H - давление, а A - коэффициент, зависящий от природы жидкости. Также имеет значение форма сосуда. Например, если при равной площади поверхности один сосуд будет вытянутой формы, а другой – круглый, то диффузия унесет пар быстрее от вытянутого сосуда, следовательно, испарение с него будет происходить быстрее.

Подведем итог: на скорость испарения влияют главным образом два фактора: температура поверхности воды и влажность воздуха над поверхностью, но на эти два фактора влияют множество других. На диаграмме представлена общая взаимосвязь этих факторов между собой.

Заключение.

В нашей работе мы изучили факторы, влияющие на скорость испарения воды. В результате выяснено, что на скорость испарения влияют главным образом температура на поверхности воды и влажность воздуха над сосудом, но также влияют и площадь поверхности, конвекция, диффузия, влажность «на бесконечности».

Список литературы:

1. Википедия. http://ru. wikipedia. org/wiki/ Коэффициент теплового расширения. Ссылка действительна на 02.04.2012.

2. *****. Вязкость воды. http://www. *****/article/answer/pnanetwater/vyazkost. htm Ссылка действительна на 02.04.2012.

3. Википедия. http://ru. wikipedia. org/wiki/ Температуропроводность. Ссылка действительна на 02.04.2012.

4. Википедия. http://ru. wikipedia. org/wiki/ Число Рэлея. Ссылка действительна на 02.04.2012.

5. Большая советская энциклопедия. Турбулентность. http://www. bse. *****/bse/id_81476 Ссылка действительна на 02.04.2012.

6. *****. Неустойчивости и пространственно-временные структуры. http://otherreferats. *****/physics/_0.html Ссылка действительна на 02.04.2012.

7. Википедия. http://ru. wikipedia. org/wiki/ Теплопроводность. Ссылка действительна на 02.04.2012.

8. Википедия. http://ru. wikipedia. org/wiki/ Удельная теплоёмкость. Ссылка действительна на 02.04.2012.

9. Инженерный справочник Таблицы DVPA. info. Обзор: Температура, плотность, удельная теплоемкость, объемный коэффициент теплового расширения, кинематическая вязкость, и число (критерий) Прандтля для сухого воздуха при атмосферном давлении в в диапазоне -150 /+400 oC. http://www. dpva. info/Guide/GuideMedias/GuideAir/AirMaihHeatPropAndPrandtl/ Ссылка действительна на 02.04.2012.

10. Значение слова "Испарение" в Энциклопедическом словаре Брокгауза и Ефрона. http://be. /article045569.html Ссылка действительна на 02.04.2012.

Википедия. http://ru. wikipedia. org/wiki/ Температуропроводность. Данные соответствуют 02.04.12.

Википедия. http://ru. wikipedia. org/wiki/ Число Рэлея. Данные соответствуют 02.04.12.

Большая советская энциклопедия. Турбулентность. http://www. bse. *****/bse/id_81476 Данные соответствуют 02.04.12.

*****. Неустойчивости и пространственно-временные структуры. http://otherreferats. *****/physics/_0.html Данные соответствуют 02.04.12.

Википедия. http://ru. wikipedia. org/wiki/ Коэффициент теплового расширения. Данные соответствуют 02.04.12.

*****. Вязкость воды. http://www. *****/article/answer/pnanetwater/vyazkost. htm Данные соответствуют 02.04.12.

Википедия. http://ru. wikipedia. org/wiki/ Теплопроводность. Данные соответствуют 02.04.12.

Википедия. http://ru. wikipedia. org/wiki/ Удельная теплоёмкость. Данные соответствуют 02.04.12.

Инженерный справочник Таблицы DVPA. info. Обзор: Температура, плотность, удельная теплоемкость, объемный коэффициент теплового расширения, кинематическая вязкость, и число (критерий) Прандтля для сухого воздуха при атмосферном давлении в в диапазоне -150 /+400 oC. http://www. dpva. info/Guide/GuideMedias/GuideAir/AirMaihHeatPropAndPrandtl/ Данные соответствуют 02.04.12.

Значение слова "Испарение" в Энциклопедическом словаре Брокгауза и Ефрона. http://be. /article045569.html Данные соответствуют 02.04.12.



Добавить свою цену в базу

Комментарий

Испарение жидкости происходит при любой температуре и тем быстрее, чем выше температура, больше площадь свободной поверхности испаряющейся жидкости и быстрее удаляются образовавшиеся над жидкостью пары.

При некоторой определенной температуре, зависящей от природы жидкости и давления, под которым она находится, начинается парообразование во всей массе жидкости. Этот процесс называется кипением.

Это процесс интенсивного парообразования не только со свободной поверхности, но и в объеме жидкости. В объеме образуются пузыри, заполненные насыщенным паром. Они поднимаются вверх под действием выталкивающей силы и разрываются на поверхности. Центрами их образования являются мельчайшие пузырьки посторонних газов или частиц различных примесей.

Если пузырек имеет размеры порядка нескольких миллиметров и более, то вторым слагаемым можно пренебречь и, следовательно, для больших пузырьков при неизменном внешнем давлении жидкость закипает, когда давление насыщенного пара в пузырьках становится равным внешнему давлению.

В результате хаотического движения над поверхностью жидкости молекула пара, попадая в сферу действия молекулярных сил, вновь возвращается в жидкость. Этот процесс называется конденсацией.

Испарение и кипение

Испарение и кипение – это два способа перехода жидкости в газ (пар). Сам процесс такого перехода называется парообразованием. То есть испарение и кипение – это способы парообразования. Между этими двумя способами есть существенные отличия.

Испарение происходит только с поверхности жидкости. Оно является результатом того, что молекулы любой жидкости постоянно перемещаются. Причем скорость у молекул разная. Молекулы с достаточно большой скоростью, оказавшись на поверхности, могут преодолеть силу притяжения других молекул и оказаться в воздухе. Молекулы воды, находящиеся по отдельности в воздухе, как раз и образуют пар. Увидеть глазами пар невозможно. То, что мы видим, как водяной туман, это уже результат конденсации (обратный парообразованию процесс), когда при охлаждении пар собирается в виде мельчайших капелек.

В результате испарения сама жидкость охлаждается, так как ее покидают наиболее быстрые молекулы. Как известно, температура как раз определяется скоростью движения молекул вещества, то есть их кинетической энергией.

Скорость испарения зависит от многих причин. Во-первых, она зависит от температуры жидкости. Чем температура выше, тем испарение быстрее. Это и понятно, так как молекулы двигаются быстрее, а значит, им легче вырваться с поверхности. Скорость испарения зависит от вещества. У одних веществ молекулы притягиваются сильнее, и следовательно, труднее вылетают, а у других – слабее, и следовательно, легче покидают жидкость. Испарение также зависит от площади поверхности, насыщенности воздуха паром, ветра.

Самое главное, что отличает испарение от кипения, это то, что испарение протекает при любой температуре, и оно протекает только с поверхности жидкости.

В отличие от испарения, кипение протекает только при определенной температуре. Для каждого вещества, находящегося в жидком состоянии, характерна своя температура кипения. Например, вода при нормальном атмосферном давлении кипит при 100 °C, а спирт при 78 °C. Однако с понижением атмосферного давления температура кипения всех веществ немного понижается.

При кипении из воды выделяется растворенный в ней воздух. Поскольку сосуд обычно нагревают снизу, то в нижних слоях воды температура оказывается выше, и пузыри сначала образуются именно там. В эти пузыри испаряется вода, и они насыщаются водяным паром.

Так как пузыри легче самой воды, то они поднимаются вверх. Из-за того, что верхние слои воды не прогрелись до температуры кипения, пузыри остывают и пар в них обратно конденсируется в воду, пузыри становятся тяжелее и снова опускаются.

Когда все слои жидкости прогреваются до температуры кипения, то пузыри уже не опускаются, а поднимаются на поверхность и лопаются. Пар из них оказывается в воздухе. Таким образом, при кипении процесс парообразования происходит не на поверхности жидкости, а по всей ее толще в образующихся пузырьках воздуха. В отличие от испарения, кипение возможно лишь при определенной температуре.

Следует понимать, что когда жидкость кипит, то происходит и обычное испарение с ее поверхности.

От чего зависит скорость испарения жидкости?

Мерой скорости испарения является количество вещества, улетающего в единицу времени с единицы свободной поверхности жидкости. Английский физик и химик Д. Дальтон в начале XIX в. нашел, что скорость испарения пропорциональна разности между давлением насыщенного пара при температуре испаряющейся жидкости и действительным давлением того реального пара, который над жидкостью имеется. Если жидкость и пар находятся в равновесии, то скорость испарения равна нулю. Точнее, оно происходит, но с той же скоростью происходит и обратный процесс – конденсация (переход вещества из газообразного или парообразного состояния в жидкое). Скорость испарения зависит также от того, происходит ли оно в спокойной атмосфере или движущейся; скорость его увеличивается, если образующийся пар сдувается потоком воздуха или откачивается насосом.

Если испарение происходит из жидкого раствора, то разные вещества испаряются с разной скоростью. Скорость испарения данного вещества уменьшается с увеличением давления посторонних газов, например воздуха. Поэтому испарение в пустоту происходит с наибольшей скоростью. Напротив, добавляя в сосуд посторонний, инертный газ, можно очень сильно замедлить испарение.

Иногда испарением называют также сублимацию, или возгонку, т. е. переход твердого вещества в газообразное состояние. Почти все их закономерности действительно похожи. Теплота сублимации больше теплоты испарения приблизительно на теплоту плавления.

Итак, скорость испарения зависит от:

  1. Рода жидкости. Быстрее испаряется та жидкость, молекулы которой притягиваются друг к другу с меньшей силой. Ведь в этом случае преодолеть притяжение и вылететь из жидкости может большее число молекул.
  2. Испарение происходит тем быстрее, чем выше температура жидкости. Чем выше температура жидкости, тем больше в ней число быстро движущихся молекул, способных преодолеть силы притяжения окружающих молекул и вылететь с поверхности жидкости.
  3. Скорость испарения жидкости зависит от площади её поверхности. Эта причина объясняется тем, что жидкость испаряется с поверхности, и чем больше площадь поверхности жидкости, тем большее число молекул одновременно вылетает с неё в воздух.
  4. Испарение жидкости происходит быстрее при ветре. Одновременно с переходом молекул из жидкости в пар происходит и обратный процесс. Беспорядочно двигаясь над поверхностью жидкости, часть молекул, покинувших её, снова в неё возвращается. Поэтому масса жидкости в закрытом сосуде не изменяется, хотя жидкость продолжает испаряться.

Выводы

Мы говорим, что вода испаряется. Но что это значит? Испарение – это процесс, при котором жидкость на воздухе быстро становится газом или паром. Многие жидкости испаряются очень быстро, гораздо быстрее, чем вода. Это относится к алкоголю, бензину, нашатырному спирту. Некоторые жидкости, например ртуть, испаряются очень медленно.

Из-за чего происходит испарение? Чтобы понять это, надо кое-что представлять о природе материи. Насколько мы знаем, каждое вещество состоит из молекул. Две силы оказывают воздействие на эти молекулы. Одна из них – сцепление, которое притягивает их друг к другу. Другая – это тепловое движение отдельных молекул, которое заставляет их разлетаться.

Если сила сцепления выше, вещество остается в твердом состоянии. Если же тепловое движение настолько сильно, что оно превосходит сцепление, то вещество становится или является газом. Если две силы примерло уравновешены, то тогда мы имеем жидкость.

Вода, конечно, является жидкостью. Но на поверхности жидкости есть молекулы, которые движутся настолько быстро, что преодолевают силу сцепления и улетают в пространство. Процесс вылета молекул и называется испарением.

Почему вода испаряется быстрее, когда она находится на солнце или нагревается? Чем выше температура, тем интенсивнее тепловое движение в жидкости. Это значит, что все большее количество молекул набирает достаточную скорость, чтобы улететь. Когда улетают самые быстрые молекулы, скорость оставшихся молекул в среднем замедляется. Почему остающаяся жидкость охлаждается за счет испарения.

Так что, когда вода высыхает, это означает, что она превратилась в газ или пар и стала частью воздуха.