Механизмы регуляции артериального давления. Кровяное давление

Для людей, желающих улучшить свое здоровье, побороть гипертонию, но не имеющих необходимой физической подготовки, предлагается идеальный вариант - плавание. Этот вид физнагрузок полезен, так как тонизируется не только сердечно-сосудистая система, но и укрепляется весь организм человека. Это касается опорно-двигательного и дыхательного аппарата.

Польза плаванья для артериального давления

Занятия плаванием дают возможность усовершенствовать здоровье людям любой физической формы. Напряжение на организм переносится гораздо легче, потому что сила гравитации в воде меньше, чем в воздухе. Позитивно влияют плавательные упражнения на сердечную систему: улучшается кровообращение, нормализуется сердечный ритм, опускается кровяное давление. Купание в бассейне влияет на ЦНС: человек становится более спокойным, внимательным, прекращаются проблемы со сном. Плавание является одним из лучших методов для профилактики вирусных заболеваний, поскольку нахождение в воде адаптирует человеческий организм к негативному влиянию перепадов температуры.

В воде отсутствует вертикальное напряжение на спинной хребет, с которым сталкивается человек во время хождения. Тело, находясь в воде, задействует автохтонные мышцы, которые ежедневно почти не функционируют. Это приводит к выравниванию осанки и укреплению спины, позвоночник стает более гибким, растягиваются мышцы. Когда человек плавает, его вдох становится равномерным и длинным, задействуется не только грудная клетка, но и диафрагма. Это способствует расширению тканей легких и их укреплению. Поднимается функциональная деятельность легких, кровь обогащается кислородом и наполняет им каждую клетку тела. Это предотвращает гипоксию (кислородное голодание).

Вернуться к оглавлению

Можно ли плавать при гипертонии?

Легкая физическая нагрузка при гипертонии поможет укрепить сосуды и сердце.

Гипертония характеризуется высоким артериальным давлением вследствие сужения сосудов. Это приводит к гипоксии жизненно важных органов и влияет на их функциональную деятельность. Опустить показатели давления можно только с помощью медпрепаратов. Доказано, что одной из главных причин появления гипертонии является пассивный образ жизни: человек мало двигается, абсолютно не утруждает себя лишний раз пройтись или сходить в бассейн.

Плавание, как и иные физические нагрузки, способствует выбросу основного гормона надпочечников - адреналина. Он оказывает сложное влияние на давление: расширяет артерии головного мозга, но сужает их в области скелетной мускулатуры. Однако активная деятельность мышц приводит к расширению их сосудов и способствует полноценному потоку крови в напряженную мышцу. То есть сосуды расширяются и давление опускается. Чтобы установить равновесие между этими процессами, гипертонику нужно регулярно и умеренно поддавать свой организм физическим нагрузкам.

Для достижения позитивного результата стоит придерживаться конкретных рекомендаций:

  • Давать нагрузку на организм стоит постепенно. В первую неделю посещения бассейна плавать нужно по 20 минут и при этом контролировать самочувствие, сердечный ритм, измерять артериальное давление. Особенно это касается пациентов с излишним весом и диабетиков, поскольку у них есть угроза обострения гипертонии.
  • Через 1―2 недели нужно увеличить время проведения в воде, однако не перенапрягать организм.
  • Посещать бассейн несколько раз в неделю, купаясь там не более 30 минут. При частых, но незначительных нагрузках, пациент быстрее заметит эффект.
  • Регулярно заниматься плаванием. Доказано, что в таком случае повышенное давление упорно опускается до нормальных показаний и стабилизируется.

При повышенном давлении (выше 140/90 мм рт. ст.) не стоит идти на тренировки - процедуру стоит отложить на некоторое время. Через 3 недели регулярного посещения бассейна пациент увидит первые результаты. Конечный результат заметен после полугода постоянных занятий плаванием. Систолическое давление опускается на 4―20 ед., а диастолическое ― на 3―12 ед.

Комментарий

Псевдоним

Моксарел: инструкция по применению, при каком давлении пить?

Снизить артериальное давление быстро лучше всего помогают гипотензивные медикаменты центрального действия. Неплохим представителем данной группы является Моксарел (активный компонент моксонидин).

Средство стабилизирует артериальное давление, предотвращает развитие гипертонического криза и других осложнений АГ. Кроме того, фармакологическое воздействие Моксарела вызывает понижение сосудистого системного сопротивления.

Выпускается медикамент в виде таблеток. В продаже встречаются таблетки 0,2, 0,3 и 0,4 мг. Купить гипотензивное средство можно за 300-500 рублей (в зависимости от количества активного вещества). Производитель – ЗАО Вертекс (Россия). Покупать медикамент можно только по рецепту.

Как действует медикамент?

Артериальная гипертензия может быть первичной или вторичной. Вторичная АГ является следствием патологий органов и систем, которые участвуют в регуляции артериального давления. Первичная АГ является патологией, точные причины которой остаются неизвестными до сих пор.

Но медики могут с полной уверенностью сказать, что при гипертонической болезни (первичный тип) сужаются сосуды, в результате чего повышается кровяное давление на сосудистые стенки. Об АГ речь идет в случае, если показатели АД превышают отметку в 140 на 90 мм.рт.ст. В норме показатель должен быть 120 на 80 мм.рт.ст.

Полностью вылечить недуг, к сожалению, нельзя. Но добиться стойкой компенсации возможно. В этом отлично помогают гипотензивные центрального действия, в частности Моксарел. Изначально разберемся с составом таблеток:

  • Действующее вещество – моксонидин.
  • Пленочная оболочка состоит из таких компонентов, как железа оксид (красный или желтый), макрогол 4000, тальк, титана диоксид, гипромеллоза.
  • Вспомогательные компоненты – целлюлоза микрокристаллическая, магния стеарат, повидон К30, кроскармеллоза натрия, кремния диоксид коллоидный, лактозы моногидрат.

Теперь нужно выяснить, как воздействует моксонидин на организм гипертоника. Вещество в стволовых структурах мозга стимулирует селективно имидазолинчувствительные рецепторы, которые принимают участие в рефлекторной и тонической регуляции симпатической нервной системы. За счет стимуляции, снижается периферическая симптоматическая активность и артериальное давление.

Интересно, что Моксарел, в отличие от других гипотензивных медикаментов, обладает более низким сродством к альфа-2-адренорецептором. За счет этого, при употреблении таблеток у человека менее выражен седативный эффект.

Активный компонент лекарства также приводит к снижению сосудистого системного сопротивления, улучшает индекс чувствительность к инсулину. Это особенно важно для пациентов, у которых есть инсулинорезистентность или ожирение.

Фармакокинетические особенности:

  1. Показатель связывания с белками плазмы составляет около 7,2%.
  2. Абсолютная биодоступность – 88-90%.
  3. Прием пищи не оказывает какого-либо влияния на фармакокинетику препарата.
  4. Максимальная концентрация в плазме крови наблюдается через час.
  5. Моксонидин и метаболиты выводятся через кишечник и почки. Период полувыведения составляет около 2,5-5 часов.

В результате исследований было выявлено, что у пожилых пациентов имеется изменение в фармакокинетических показателях моксонидина.

Инструкция по применению препарата

Показанием к применению таблеток является артериальная гипертензия. Причем медикамент может применяться даже при развитии резистентной формы гипертонической болезни, так как он очень эффективен.

Часто пациенты спрашивают у кардиологов, при каких давлениях принимать таблетки? Медики рекомендуют осуществлять прием в случае, если «верхний» показатель превышает 140 мм.рт.ст., а нижний 90 мм.рт.ст.

Принимают таблетки внутрь, не разжевывая. Осуществлять употребление можно вне зависимости от приемов пищи. Начальная дозировка составляет 0,2 мг. При необходимости дозировку повышают до 0,4 мг. Максимально допустимой дозировкой является 0,6 мг, но в таком случае нужно разбивать суточную дозу на 2 приема.

Длительность терапии подбирается в индивидуальном порядке лечащим доктором.

Противопоказания и побочные эффекты

В руководстве указано, что Моксарел имеет большое количество противопоказаний к применению. Среди них можно выделить следующие:

  • Повышенная чувствительность к компонентам, входящим в состав таблеток.
  • Наличие синдрома слабости синусового узла.
  • Нарушения ритма сердца.
  • AV-блокада 2 и 3 степени тяжести.
  • Брадикардия (частота сердечных сокращений менее 50 ударов в минуту).
  • Хроническая или острая сердечная недостаточность (3-4 функциональный класс по классификации NYHA).
  • Период лактации.
  • Почечная недостаточность (клиренс креатинина составляет менее 30 мл/минуту).
  • Несовершеннолетний возраст.
  • Пожилой возраст (старше 75 лет).
  • Дефицит лактазы.
  • Непереносимость лактозы.
  • Наличие синдрома глюкозно-галактозной мальабсорбции.
  • Прием трициклических антидепрессантов.
  • С осторожностью – тяжелая печеночная недостаточность, беременность, острая ишемическая болезнь сердца, нестабильная стенокардия, болезни коронарных сосудов, AV-блокада 1 степени тяжести.

Возможные побочные эффекты продемонстрированы в таблице, предоставленной ниже.

Система или орган.

Описание.

ЦНС (центральная нервная система). Головокружение, головные боли, обморок, сонливость, нервозность.
Сердечно-сосудистая система. Резкое снижение артериального давления, брадикардия, ортостатическая гипотензия.
Органы желудочно-кишечного тракта. Сухость во рту, рвота, диарея, тошнота, диспепсические явления.
Кожа и подкожные ткани. Зуд, сыпь, ангионевротический отек.
Органы слуха. Звон в ушах.
Скелетно-мышечная и соединительная ткань. Боли в шее и спине.

При передозировке развиваются астения, нарушение дыхания, гипергликемия, тахикардия, нарушение сознания. Лечение – симптоматическое, специфического антидота нет.

Отзывы и аналоги

Про российский препарат Моксарел отзываются по-разному. Большинство комментариев положительные. Довольные пациенты отмечают, что при употреблении таблеток им удалось стабилизировать артериальное давление на отметке в 120-130 на 80 мм.рт.ст.

Негативных комментариев тоже много. Гипертоники отмечают, что Моксарел помогает снизить АД, но при этом у них пересыхает слизистая оболочка рта и появляются сильные головные боли. К негативным моментам люди относят и относительно высокую цену лекарства.

Рассмотрим аналоги. В качестве альтернативы Моксарелу могут выступить:

  1. Небиволол (660-800 рублей за 60 таблеток).
  2. Корвитол (240-300 рублей за 50 таблеток).
  3. Клофелин (80-100 рублей за 50 таблеток).

Отзывы врачей

Гипертоническая болезнь – самая распространенная патология сердечно-сосудистой системы. Большинство гипертоников предпочитают использовать гипотензивные препараты центрального действия.

Раньше применялся Клофелин. Но ввиду того, что он часто вызывает побочные эффекты, пациентам начали назначать Моксарел и другие таблетки на основе моксонидина. Что я могу сказать о лекарстве?

Его использование, безусловно, оправдано при комплексном лечении артериальной гипертензии. К преимуществам лекарства я бы отнес его быстрое действие и хорошие показатели абсорбции. Из недостатков можно выделить большое количество противопоказаний и не очень хорошую переносимость.

По моему мнению, Моксарел является хорошим препаратом. Однако своим пациентам я все же рекомендую сартаны, бета-адреноблокаторы и ингибиторы АПФ. Медикаменты «мягче» воздействуют на сердечно-сосудистую систему, предотвращают осложнения АГ (инсульт, инфаркт миокарда) и положительно сказываются на работе сердечной мышцы.

Лучшее современное средство при гипертонии. 100% гарантия контроля давления и отличная профилактика!

ЗАДАТЬ ВОПРОС ДОКТОРУ

как к вам обращаться?:

Email (не публикуется)

Тема вопроса:

Последние вопросы специалистам:
  • Помогают ли капельницы при гипертонии?
  • Если принимать элеутерококк, это понижает или повышает давление?
  • Можно ли голоданием лечить гипертонию?
  • Какое давление нужно сбивать у человека?

Артериальное давление верхнее и нижнее: что значит 120 на 80 у человека

Человеческий организм – это сложный механизм, в котором каждую секунду происходят тысячи химических и биохимических процессов.

Артериальное давление – важная составляющая гомеостаза внутренней среды организма, которая обеспечивает поступление крови ко всем внутренним органам человека.

В зависимости от того, какое сопротивление крови, проходящей по сосудам, определяются показатели артериального давления.

При измерении давления, фиксируется верхнее и нижнее давление. Первая цифра – это верхнее давление, называемое систолическое или сердечное, а вторая цифра – нижнее, называемое диастолическое или сосудистое.

Стоит разобраться, что означают цифры давления, какое должно быть верхнее и нижнее давление человека, а также узнать, как осуществляется механизм их формирования.

Главным объектом человеческого организма считается сердце. Именно оно перекачивает кровь по 2-м кругам сосудов, которые различаются между собой размерами.

Малый располагается в легких, где происходит обогащение тканей кислородом и избавление от углекислого газа. А по большему кругу кровь разносится между всеми внутренними органами и системами человека.

Чтобы поддерживать такой круговорот в организме человека, необходимо артериальное давление, которое создается сокращениями миокарда. Если прослушать удары сердца, то отчетливо можно услышать два звука, которые отличаются по громкости.

Как правило, первый звук чуть громче второго. Сначала происходит сокращение желудочков, после сокращается предсердие, наступает небольшая пауза.

В фазе сокращения образуется верхнее давление (систолическое) и пульс, который выступает его производным. Нижнее давление характеризуется фазой расслабленности миокарда.

В поддержании нормального давления крови принимает участие две системы его регулирования:

  • Нервное регулирование.
  • Гуморальное регулирование.

Механизм нервной регуляции заключается в том, что внутри стенок крупных артериальных сосудов, располагаются специфические рецепторы, улавливающие колебания давления.

В ситуациях, если давление повышенное, либо пониженное, рецепторы отправляют нервные импульсы в центр полушарий мозга, откуда и приходит сигнал, который ориентирован на стабилизацию давления.

Гуморальная регуляция влияет на гемодинамику посредством синтеза особых веществ – гормонов. К примеру, в ситуациях быстрого снижения давления крови, надпочечники провоцируют выработку адреналина и других веществ, направленных на повышение АД.

Стоит отметить, что тот механизм, который поддерживает уровень нормального давления у здорового человека, при наличии патологических состояний ведет к стойкому повышению давления со всеми негативными последствиями.

Высокое АД, повышение артериального давления, зачастую связывают с расстройством функционирования почек, в медицинской практике такое явление получило название почечной гипертензии. Как правило, почечное давление особенно часто возникает у пациентов младше 30-летнего возраста.

Показатели нормы людей разных возрастных групп:

  1. 15-21 год – 100/80, допустимо отклонение 10 мм.
  2. 21-40 лет – 120/80-130/80.
  3. 40-60 лет – до 140/90.
  4. После 70 лет – 150/100.

Как правило, у людей пожилого возраста, повсеместно диагностируется гипертония. Средние показатели – 150/100, но бывает 160/90-100.

Механизм формирования верхнего давления крови осуществляется посредством сокращения желудочков.

Ведущая роль принадлежит левому желудочку, такое положение обуславливается тем, что именно левому отделу необходимо качать кровь по всей сосудистой сети тела человека. Правый желудочек же влияет только на сосудистую систему легких.

Когда измеряется АД, накачивается воздух в манжету до тех пор, пока не прекратится пульс в локтевой артерии. После, воздух медленно спускается. Пульс можно услышать через фонендоскоп, его первый удар – это волны крови вследствие мощного сокращения желудочков.

В этот момент, цифры на манометре показывают числовой показатель, который означает верхние границы артериального давления. От чего зависит систолическое значение? Как правило, оно обуславливается такими факторами:

  1. С какой силой сокращается сердечная мышца.
  2. Напряженность кровеносных сосудов, а значит, учитывается и их сопротивляемость.
  3. Сколько раз в единицу времени сократилось сердце.

Артериальное давление и пульс – это величины, которые плотно взаимосвязаны между собой. Пульс показывает частотность сердечных сокращений, этот показатель и отвечает за величину давления крови в сосудах.

На пульс, как и на давление, оказывают влияние множество факторов:

  • Эмоциональный фон.
  • Окружающая среда.
  • Курение, алкоголь, наркотики.

Если пульс и артериальное давление постоянно увеличены, при этом, на это нет обоснованных причин, вероятно, протекают патологические процессы.

Идеальное систолическое давление – 120 мм ртутного столба, нормальное колеблется от 109 до 120. В случаях, когда верхнее давление крови больше 120, но меньше 140 можно говорить о предшествующей гипотензии. Если АД больше 140 диагностируется повышенное давление.

Артериальная гипертензия диагностируется только в тех случаях, когда на протяжении длительного времени давление высокое. Единичные повышения не считаются отклонением от нормы.

Систолическое давление имеет нижнюю границу – 100 мм ртутного столба. Если оно опустится еще, ниже, исчезает пульс, человек падает в обморок. Давление 120/100 может свидетельствовать о болезни почек, поражении почечных сосудов, заболеваний эндокринного характера.

Иногда про верхнее давление говорят «сердечное», это позволительно пациентам, но это не совсем корректно с медицинской точки зрения. Ведь не только сердце, но и кровеносные сосуды оказывают влияние на параметры давления крови.

Нижнее давление означает гемодинамику в состоянии относительного покоя сердечной мышцы. Сосудистые просветы заполняются кровью, а так как жидкая ткань достаточно тяжелая, то она стремится вниз.

Это значит то, что сосудистая система даже при отдыхающем сердце, находится в напряженности, чтобы поддерживать диастолическое давление.

Нижние цифры давления крови регистрируются в тот момент, когда в фонендоскопе наступает тишина. Нормы и отклонения нижнего давления:

  1. Оптимальное значение до 80.
  2. Максимальное значение нормы – 89.
  3. Повышенное АД – 89/94.
  4. Незначительная гипертензия – 94/100.
  5. Умеренная гипертензия – 100/109.
  6. Высокое АД – более 120.

Если у гипотоников нижние цифры менее 65, то это грозит помутнением сознания и обмороком, вследствие этого, при таких показателях нужно незамедлительно звонить в скорую помощь.

Однако есть и люди, у которых никогда не было диастолического давления равного цифре 80, у них показатели могут быть меньше 80 или больше, но при этом, в связи с их индивидуальными особенностями, это естественное состояние организма.

Разность верхнего и нижнего АД

Разобравшись, что такое артериальное давление, необходимо понять, в чем суть разницы между систолическим и диастолическим давлением:

  • Исходя из того, что оптимальное давление – 120/80, можно сказать, что разница составляет 40 единиц, этот показатель называется пульсовым давлением.
  • Если происходит увеличение разницы до 65 и больше, это грозит развитием сердечно-сосудистых патологий.

Как правило, большой разрыв пульсового давления встречается у пожилых людей, именно в таком возрасте возникает изолированное систолическое АД. Чем старше человек, тем больше риски, что развивается систолическая гипертония.

На степень пульсового давления влияет расширение аорты и соседствующих артерий:

  1. Аорта характеризуется высокой растяжимостью, которая снижается с возрастом в связи с естественным износом тканей.
  2. Эластичные ткани замещаются коллагеновыми, которые являются более жесткими и практически не эластичными.
  3. Помимо этого, с возрастом образуются холестериновые бляшки, соли кальция, вследствие чего, чем их больше, тем хуже растягивается аорта. А за этим и стенки артерий, следовательно, верхнее и нижнее давления имеют большую разницу.

Высокое пульсовое давление пагубно сказывается на сердечно-сосудистой системе, и может привести к инсульту.

Если присутствуют аномальные показатели верхнего, либо нижнего давления – это является поводом посетить доктора. Попытки самостоятельно справиться с проблемой, могут привести к негативным последствиям и осложнениям. О границах АД расскажут специалисты в видео в этой статье.

на

АНАТОМИЯ И ФИЗИОЛОГИЯ КРОВЕНОСНЫХ СОСУДОВ.

ЛЕКЦИЯ №16.

1. Виды кровеносных сосудов, особенности их строения и функции.

2. Закономерности движения крови по сосудам.

3. Кровяное давление, его виды.

4. Артериальный пульс, его происхождение, места прощупывания.

5. Регуляция кровообращения.

ЦЕЛЬ: Знать виды кровеносных сосудов, особенности их строения и

функции, виды кровяного давления, нормативы пульса, артериального

давления и пределы их колебаний в норме.

Представлять закономерности движения крови по сосудам и механизмы рефлекторной регуляции кровообращения (депрессорный и прессорный рефлексы).

1. Кровь заключена в систему трубок, в которых она благодаря работе сердца как «нагнетательного насоса» находится в непрерывном движении. Циркуляция крови является непременным условием обмена веществ

Кровеносные сосуды делятся на артерии, артериолы, прекапилляры, капилляры, посткапилляры, венулы и вены. Артерии и вены относят к магистральным сосудам, остальные сосуды формируют микроциркуляторное русло.

Артерии - это кровеносные сосуды, несущие кровь от сердца, независимо от того, какая кровь (артериальная или венозная) в них находится. Представляют собой трубки, стенки которых состоят из трех оболочек: наружной соединительнотканной (адвентиции), средней гладкомышечной (медии) и внутренней эндотелиальной (интимы).Самые тонкие артериальные сосуды называются артериолами. Они переходят в прекапилляры, а последние - в капилляры.

Капилляры - это микроскопические сосуды, которые находятся в тканях и соединяют артериолы с венулами (через пре- и посткапилляры). Прекапилляры отходят от артериол, от прекапилляров начинаются истинные капилляры, которые вливаются в посткапилляры.. По мере слияния посткапилляров образуются венулы - самые мелкие венозные сосуды. Они вливаются в вены. Диаметр артериол составляет от 30 до 100 мкм, капилляров - от 5 до 30 мкм, венул - 30-50-100 мкм.

Вены - это кровеносные сосуды, несущие кровь к сердцу, независимо от того, какая кровь (артериальная или венозная) в них находится. Стенки вен гораздо тоньше и слабее артериальных, но состоят из тех же трех оболочек В отличие от артерий многие вены (нижних, верхних конечностей, туловища и шеи) имеют клапаны (полулунные складки внутренней оболочки), препятствующие обратному току крови в них. Не имеют клапанов только обе полые вены, вены головы, почечные, воротная и легочные.

Разветвления артерий и вен могут соединяться между собой соустьями (анастомозами). Сосуды, обеспечивающие окольный ток крови в обход основного пути, называются коллатеральными (окольными).


Функционально различают несколько видов кровеносных сосудов.

1) Магистральные сосуды - наиболее крупные артерии, в которых оказывается небольшое сопротивление кровотоку.

2) Резистивные сосуды (сосуды сопротивления) - мелкие артерии и артериолы, которые могут изменять кровоснабжение тканей и органов,

3) Истинные капилляры (обменные сосуды) - сосуды, стенки которых обладают высокой проницаемостью, благодаря чему происходит обмен веществами между кровью и тканями.

4) Емкостные сосуды - венозные сосуды, вмещающие 70-80% всей крови.

5) Шунтирующие сосуды - артериоло-венулярные анастомозы, обеспечивающие прямую связь между артериолами и венулами в обход капиллярного русла.

2. В соответствии с законами гидродинамики движение крови по сосудам определяется двумя силами: разностью давления в начале и конце сосуда и гидравлическим сопротивлением, которое препятствует току крови. Отношение разности давления к сопротивлению определяетобъемную скорость тока жидкости, протекающей по сосудам в единицувремени. Эта зависимость носит название основного гидродинамического закона: количество крови, протекающей в единицу времени через кровеносную систему, тем больше, чем больше разность давления в ее артериальном и венозном концах и чем меньше сопротивление току крови..

Сердце при сокращении растягивает эластические и мышечные элементы стенок магистральных сосудов, в которых накапливается запас энергии сердца, затраченной на их растяжение. Во время диастолы растянутые эластические стенки артерий спадаются и накопленная в них потенциальная энергия сердца движет кровь. Растяжение крупных артерий облегчается благодаря большому сопротивлению, которое оказывают резистивные сосуды. Наибольшее сопротивление току крови наблюдается в артериолах. Поэтому кровь, выбрасываемая сердцем во время систолы, не успевает дойти до мелких кровеносных сосудов. В результате этого создается временный избыток крови в крупных артериальных сосудах. Таким образом, сердце обеспечивает движение крови в артериях и во время систолы, и во время диастолы. Значение эластичности сосудистых стенок состоит в том, что они обеспечивают переход прерывистого, пульсирующего тока крови в постоянный. Это важное свойство сосудистой стенки обу-

словливает сглаживание резких колебаний давления, что способствует

бесперебойному снабжению органов и тканей.

Время, за которое частица крови однократно проходит большой и малый круги кровообращения, называется временем кругооборота крови. В норме у человека в покое оно составляет 20-25 с, из этого времени 1/5 (4-5 с) приходится на малый круг и 4/5 (16-20 с) - на большой. При физической работе время кругооборота у человека достигает 10-12 с. Линейная скорость кровотока - это путь, пройденный в единицу времени (в секунду) каждой частицей крови. Линейная скорость кровотока обратно пропорциональна суммарной площади поперечного сечения сосудов. В состоянии покоя линейная скорость кровотока составляет: в аорте - 0,5 м/с, в артериях - 0,25 м/с, в капиллярах - 0,5 мм/с (т.е. в 1000 раз меньше, чем в аорте), в полых венах - 0,2 м/с, в периферических венах среднего калибра - от 6 до 14 см/с.

3. Кровяное (артериальное) давление - это давление крови на стенки кровеносных (артериальных) сосудов организма. Измеряется в мм рт.ст. В различных отделах сосудистого русла кровяное давление неодинаково: в артериальной системе оно выше, в венозной - ниже. В аорте кровяное давление составляет 130-140 мм рт.ст., в легочном стволе - 20-30 мм рт.ст., в крупных артериях большого круга - 120-130 мм рт. ст., в мелких артериях и артериолах - 60-70 мм рт.ст., в артериальном и ршозном концах капилляров тела - 30 и 15 мм рт.ст., в мелких венах - 10-20 мм рт.ст., а в крупных венах может быть даже отрицательным, т.е. на 2-5мм рт.ст. ниже атмосферного. Резкое снижение кровяного давления в артериях и капиллярах объясняется большим сопротивлением; поперечное сечение всех капилляров равно 3200 см2, длина около 100000 км, сечение аорты - 8 см2 при длине в несколько сантиметров.

Величина кровяного давления зависит от трех основных факторов:

1) частоты и силы сердечных сокращений;

2) величины периферического сопротивления, т.е. тонуса стенок сосудов, главным образом, артериол и капилляров;

3) объема циркулирующей крови.

Различают систолическое, диастолическое, пульсовое и среднединамическое давление.

Систолическое (максимальное) давление - это давление, отражающее состояние миокарда левого желудочка. Оно составляет 100-130 мм рт.ст. Диастолическое (минимальное) давление - давление, характеризующее степень тонуса артериальных стенок. Равно в среднем 60-80 мм рт.ст. Пульсовое давление - это разность между величинами систолического и диастолического давления, оно необходимо для открытия полулунных клапанов аорты и легочного ствола во время систолы желудочков. Равно 35-55 мм рт.ст. Среднединамическое давление - это сумма минимального и одной трети пульсового давления, выражает энергию непрывного движения крови и представляет собой постоянную величину для данного сосуда и организма.

Величину АД можно измерить двумя методами: прямым и непрямым. При

измерении прямым, или кровавым, методом в центральный конец артерии

вставляют и фиксируют стеклянную канюлю или иглу, которую резиновой трубочкой соединяют с измерительным прибором. Этим способом регистрируют АД во время больших операций, например, на сердце, когда необходим постоянный контроль за давлением. В медицинской практике измеряют АД непрямым, или косвенным (звуковым), методом при помощи тонометра.

На величину АД оказывают влияние различные факторы: возраст, положение тела, время суток, место измерения (правая или левая рука), состояние организма, физические и эмоциональные нагрузки. Нормальными величинами АД следует считать:

максимального - в возрасте 18-90 лет в диапазоне от 90 до 150 мм рт.ст., причем до 45 лет - не более 140 мм рт.ст.;

минимального - в этом же возрасте (18-90 лет) в диапазоне от 50 до 95 мм рт.ст., причем до 50 лет - не более 90 мм рт.ст.

Верхней границей нормального АД в возрасте до 50 лет является давление 140/90 мм рт.ст., в возрасте более 50 лет -150/95 мм рт.ст.

Нижней границей нормального АД в возрасте от 25 до 50 лет является давление 90/55 мм рт.ст., до 25 лет - 90/50 мм рт.ст., свыше 55 лет - 95/60 мм рт.ст.

Для расчета идеального АД у здорового человека любого возраста может быть использована следующая формула:

Систолическое АД = 102 + 0,6 х возраст;

Диастолическое АД = 63 + 0,4 х возраст.

Повышение АД свыше нормальных величин называется гипертензией, понижение - гипотензией.

4. Артериальным пульсом называют ритмические колебания артериальной стенки, обусловленные систолическим повышением давления в ней. Пульсация артерий определяется путем легкого прижатия ее к подлежащей кости, чаще всего в области нижней трети предплечья. Пульс характеризуют следующие основные признаки:1) частота - число ударов в минуту;2) ритмичность - правильное чередование пульсовых ударов;3) наполнение - степень изменения объема артерии, устанавливаемая по силе пульсового удара;4) напряжение - характеризуется силой, которую нужно приложить, чтобы сдавить артерию до полного исчезновения пульса.

Пульсовая волна возникает в аорте в момент изгнания крови из левого желудочка, когда давление в аорте повышается и стенка ее растягивается. Волна повышенного давления и вызванные этим растяжением колебания артериальной стенки распространяются со скоростью 5-7 м/с от аорты до артериол и капилляров, превышая в 10-15 раз линейную скорость движения крови (0,25-0,.5 м/с).

Зарегистрированная на бумажной ленте или фотопленке пульсовая кривая называется сфигмограммой.

Пульс можно прощупать в тех местах, где артерия близко прилежит к кости.Такими местами являются: для лучевой артерии - нижняя треть пепередней

поверхности предплечья, плечевой - медиальная поверхность средней трети плеча, общей сонной - передняя поверхность поперечного отростка VI шейного позвонка, поверхностной височной - височная область, лицевой - угол нижней челюсти кпереди от жевательной мышцы,бедренной - паховая область, для тыльной артерии стопы - тыльная поверхность стопы

5. Регуляция кровообращения в организме человека осуществляется двояко: нервной системой и гуморально.

Нервная регуляция кровообращения осуществляется сосудодвигательным центром, симпатическими и парасимпатическими волокнами вегетативной нервной системы. Сосудодвигательный центр - это совокупность нервных образований, расположенных в спинном, продолговатом мозге, гипоталамусе и коре большого мозга. Основной сосудодвигательный центр находится в продолговатом мозге и состоит из двух отделов: прессорного и депрессорного.Раздражение первого вызывает сужение артерий и подъем АД, а раздражение второго - расширение артерий и падение АД. Тонус сосудодвигательного центра продолговатого мозга зависит от нервных импульсов, постоянно идущих к нему от рецепторов различных рефлексогенных зон. Рефлексогенными зонами называются участки сосудистой стенки, содержащие наибольшее количество рецепторов.В этих зонах содержатся следующие рецепторы:1) механорецепторы (баро-, или прессорецепторы - греч. baros - тяжесть; лат. pressus - давление), воспринимающие колебания давления крови в сосудах в пределах 1-2 мм рт.ст.;2) хеморецепторы, воспринимающие изменения химического состава крови (СО2,02, СО и др.);3) волюмрецепторы (франц. volume - объем), воспринимающие изменение объема крови;4) осморецепторы (греч. osmos - толчок, проталкивание, давление),воспринимающие изменение осмотического давления крови. К числу наиболее важных рефлексогенных зон относятся:1) аортальная зона (дуга аорты);2) синокаротидная зона (общая сонная артерия в месте ее бифуркации, т.е. разделения на наружную и внутреннююю сонные артерии);3) само сердце;4) устье полых вен;5) область сосудов малого круга кровообращения.

Гуморальные вещества, оказывающие влияние на тонус сосудов, делят на сосудосуживающие (оказывают общее воздействие) и сосудорасширяющие (местное).

К сосудосуживающим веществам относятся:

1) адреналин - гормон мозгового слоя надпочечников;

2) норадреналин - медиатор симпатических нервов и гормон надпочечников;

3) вазопрессин - гормон задней доли гипофиза;

4) ангиотензин II (гипертензин) образуется из а2-глобулина под влиянием ренина - протеолитического фермента почек;

5) серотонин - биологически активное вещество, образуемое в слизистой оболочке кишечника, мозге, тромбоцитах, соединительной ткани.

К сосудорасширяющим веществам относятся:

1) гистамин - биологически активное вещество, образующееся в стенке желудочно-кишечного тракта и других органах;

2) ацетилхолин - медиатор парасимпатических и других нервов; 3) тканевые гормоны: кинины, простагландины и др.;

4) молочная кислота, углекислый газ, ионы калия, магния и т.д.

5) натрийуретический гормон (атриопептид, аурикулин), вырабатываемый кардиомиоцитами предсердий. Обладает широким спектром физиологической активности. Он подавляет секрецию ренина, ингибирует эффект ангиотензина II, альдостерона, расслабляет гладкие мышечные клетки сосудов, способствуя тем самым снижению АД.

Факторы, влияющие на АД: 1) работа сердца, 2) просвет сосудов, 3) объем циркулирующей крови (ОЦК) и 4) вязкость крови (при неизменной длине сосудов). Скорость изменения этих факторов различна. Работа сердца и просвет сосудов с помощью " вегетативной нервной системы изменяются очень быстро - через несколько секунд. Гормональные влияния осуществляются медлен­нее. Исключение составляют адреналин и норадреналин, выраба­тываемые мозговым слоем надпочечников. Количество крови в орга­низме и ее вязкость изменяются еще медленнее. Естественно, чем больше ОЦК, тем больше АД (ОЦК определят величину среднего давления наполнения - давления в различных отделах сосудисто­го русла, которое устанавливается, когда сердце не работает).

Центр кровообращения

Центр кровообращения - это совокупность нейронов, располо­женных в различных отделах ЦНС и обеспечивающих приспособи­тельные реакции сердечно-сосудистой системы в различных усло­виях жизнедеятельности организма.

Локализация центра кровообращения была установлена с помощью метода перерезок и раздражения. Главная часть центра кровообращения, как и центра дыхания, находится в продолгова­том мозге. Нейроны, регулирующие деятельность сердца и просвет сосудов, расположены также в среднем и спинном мозге, гипотала­мусе, в коре большого мозга.

В спинном мозге совокупность симпатических нейронов, рас­положенных сегментарно в боковых рогах, представляет собой ко­нечное звено ЦНС, обеспечивающее передачу сигналов к эффекто­рам. Нейроны, регулирующие деятельность сердца, находятся в верхних грудных сегментах (ТЬ 1 -ТЬ 5), регулирующие тонус сосу­дов - в торако-люмба^льных сегментах (С 8 -Ь 3). Эти нейроны сохра­няют самостоятельную активность и после перерезки спинного мозга в области нижних шейных или верхних грудных сегментов. Причем их импульсная активность приурочена к ритму сердца и колебаниям АД.

В продолговатом мозге находятся центры блуждающих нервов, иннервирующих сердце, и симпатическая часть цент­ра кровообращения (сердечно-сосудистого центра), представляю­щая собой скопление нейронов ретикулярной формации. Взаимо­отношения нейронов симпатического центра значительно сложнее, чем парасимпатического.

Во-первых, имеются прессорная и депрессорная его части, причем нейроны депрессорного отдела оказывают тормозное влия­ние на нейроны прессорной части центра кровообращения (рис. 8.15), а их зоны расположения перекрывают друг друга.

Во-вторых, механизмы активации нейронов депрессорного и прессорного отделов различны: депрессорные нейроны активи­руются афферентными импульсами от сосудистых барорецепторов (рецепторов растяжения, рис. 8.15 - 1), а прессорные нейроны ак­тивируются афферентной импульсацией от сосудистых хеморецеп-торов и от экстерорецепторов (рис. 8.15 - 2). Аксоны прессорных нейронов продолговатого мозга посылают импульсы к симпатичес­ким нейронам спинного мозга, иннервирующим и сердце (ТЬ 1 - Тп 5), и сосуды (С 8 - Ц). Медиатором прессорных и депрессорных нейро­нов продолговатого мозга является норадреналин. Медиатором пре- ! ганглионарных симпатических нервных волокон, выходящих из спинного мозга, является ацетилхолин.

Прессорный отдел центра кровообращения находится в состо­янии тонуса - в симпатических нервах постоянно идут нервные импульсы с частотой 1- 3 в 1 с, при возбуждении - до 15 в 1 с. Именно поэтому при перерезке симпатических нервов сосуды рас­ширяются. Активность бульбарного отдела центра кровообра­щения регулируется гипоталамусом и корой большого мозга.

Гипоталамус, как и продолговатый мозг, содержит прессор­ные и депрессорные зоны, нейроны которых посылают аксоны к соответствующим центрам продолговатого мозга и регулируют их активность. На уровне гипоталамуса (промежуточный мозг) про­исходит интеграция соматических и вегетативных влияний нервной системы на организм - изменения соматической деятельности обес­печиваются соответствующими изменениями деятельности сердеч­но-сосудистой системы. Например, при физической нагрузке рабо­та сердца увеличивается, происходит перераспределение крови в организме за счет сужения одних сосудов (кожи, пищеваритель­ной системы) и расширения других (мышц, мозга, сердца), что ве­дет к увеличению кровотока в них, доставки кислорода, питатель­ных веществ и удалению продуктов обмена.

Влияние коры большого мозга на системное АД. Особенно сильное влияние на кровообращение оказывают моторная и премо-торная зоны. Кора большого мозга реализует свое влияние на сер­дечно-сосудистую систему в обеспечении приспособительных ре­акций организма с помощью вегетативной нервной системы (условных, безусловных рефлексов) и гормональных механизмов (см. раздел 10.10). Таким образом, кора большого мозга и проме­жуточный мозг оказывают модулирующее влияние на бульбарный

отдел центра кровообращения, а при физической нагрузке и эмо­циональном возбуждении влияние вышележащих отделов ЦНС сильно возрастает - наблюдается значительная стимуляция дея­тельности сердечно-сосудистой системы.

В зависимости от скорости включения и длительности дей­ствия все механизмы поддержания АД можно объединить в три группы: 1) механизмы быстрого реагирования; 2) механизмы небы­строго реагирования (средние по скорости включения и продолжи­тельности действия); 3) механизмы медленного реагирования и длительного действия.

Механизмы быстрого реагирования - это рефлекторная ре­гуляция АД с помощью изменений работы сердца и тонуса (просве 1 та) сосудов. Эти реакции срабатывают в течение нескольких секунд. Причем, в случае повышения АД работа сердца тормозится, тонус сосудов уменьшается - они расширяются. И то, и другое ведет к снижению (нормализации) АД. Если же давление снижается, то деятельность сердца увеличивается, а сосуды сужаются, что ведет к увеличению - нормализации АД. Включаются в реакцию и емко­стные сосуды. В случае повышения АД тонус емкостных сосудов уменьшается, что ведет к задержке крови в венах, уменьшению притока крови к сердцу и уменьшению выброса крови сердцем. В случае снижения АД тонус емкостных сосудов возрастает, что ведет к увеличению возврата крови к сердцу и возрастанию выбро­са сердцем крови.

Рецепторы, воспринимающие изменения кровяного давления, барорецепторы (точнее, рецепторы растяжения) рассеяны по все­му кровеносному руслу, но имеются их скопления: в дуге аорты и в области каротидного синуса (главные сосудистые рефлексогенные зоны), в сердце (предсердиях, желудочках, коронарных сосудах), легком, в стенках крупных грудных и шейных артерий. В перечис­ленных участках имеются многочисленные барорецепторы, а в дуге аорты и каротидном синусе - баро- и хеморецепторы. Хотя принцип работы рефлексогенных зон одинаков, их значение в регу­ляции АД несколько различается.

Главные сосудистые рефлексогенные зоны расположены в начале напорного сосуда (дуга аорты) и в области каротидного си­нуса (участок, через который кровь течет в мозг) - эти зоны обес­печивают слежение за системным АД и снабжением кровью мозга. Отклонение параметров кровяного давления в области этих реф­лексогенных зон означает изменение АД во всем организме, что воспринимается барорецепторами, и центр кровообращения вносит

соответствующие коррекции. Чувствительные волокна от бароре-цепторов каротидного синуса идут в составе синокаротидного не­рва (нерв Геринга - ветвь языкоглоточного нерва, IX пара череп­ных нервов). Барорецепторы дуги аорты иннервируются левым депрессорным (аортальным) нервом, открытым И. Ционом и К. Люд­вигом.

При снижении АД барорецепторы рефлексогенных зон возбуж­даются меньше. Это означает, что меньше поступает импульсов от дуги аорты и синокаротидной области в центр кровообращения. В результате нейроны блуждающего нерва меньше возбуждаются, и к сердцу по эфферентным волокнам поступает меньше импульсов, тормозящих работу сердца, поэтому частота и сила его сокращений возрастают (рис. 8.16 - А). Одновременно меньше импульсов поступает к депрессорным нейронам симпатического отдела цент­ра кровообращения в продолговатом мозге (см. рис. 8.15), вслед­ствие этого его возбуждение ослабевает, меньше угнетаются прес-сорные нейроны, а значит, они посылают больше импульсов к сердечным (Тг^-Тг^) и сосудистым (С 8 -Ь 3) симпатическим цент­рам спинного мозга. Это ведет к дополнительному усилению сер­дечной деятельности и сужению кровеносных сосудов (рис. 8.17). Суживаются при этом венулы и мелкие вены, что увеличивает возврат крови к сердцу и ведет к усилению его деятельности. В ре­зультате согласованной деятельности симпатического и парасим­патического отделов центра кровообращения АД повышается (нормализуется).


При повышении АД увеличивается импульсация от барорецеп-торов в центр кровообращения, что оказывает депрессорное дей-

ствие - снижение АД. Снижение повышенного АД до уровня нор­мы осуществляется с помощью увеличения поступления числа им­пульсов от рефлексогенных зон в центр кровообращения. Усиле­ние возбуждения нейронов блуждающего нерва (увеличение его тонуса) ведет к угнетению сердечной деятельности (см. рис. 8.16-Б), а усиление возбуждения депрессорной части симпатического центра ведет к большему угнетению прессорного отдела симпати­ческого центра и к расширению резистивных и емкостных сосудов организма. В результате угнетения работы сердца и расширения сосудов давление понижается. Оно дополнительно уменьшается еще и потому, что задержка крови в расширенных емкостных сосу­дах ведет к уменьшению поступления крови к сердцу и, естествен­но, к уменьшению систолического выброса крови.

Возбуждение хеморецепторов аортальной и синокаротидной рефлексогенных зон возникает при уменьшении напряжения 0 2 уве­личении напряжения С0 2 и концентрации водородных ионов, т.е. при гипоксии, гиперкапнии и ацидозе. Импульсы от хеморецепторов по­ступают по тем же нервам, что и от барорецепторов, в продолгова­тый мозг, но непосредственно к нейронам прессорного отдела сим­патического центра, возбуждение которого вызывает сужение сосудов, усиление и ускорение сердечных сокращений и, как след­ствие, повышение АД. В результате кровь быстрее поступает к лег-

ким, углекислый газ обменивается на кислород. Хеморецепторы име­ются и в других сосудистых областях (селезенка, почки, мозг). Из­менения деятельности сердечно-сосудистой системы способствуют устранению отклонений от нормы газового состава крови. Однако эффект невелик, так как увеличение АД осуществляется, главным образом, за счет сужения сосудов и лишь частично - в результате стимуляции деятельности сердца.

Примерно так же функционируют сердечные и легочная рефлексогенные зоны. Барорецепторы (механорецепторы) послед­ней локализуются в артериях малого круга кровообращения. По­вышение давления в сосудах легких закономерно ведет к урежению сокращений сердца, к падению АД в большом круге кровообраще­ния и увеличению кровонаполнения селезенки (рефлекс В. В. Па-рина). Попадание в сосуды легких (в патологических случаях) пу­зырьков воздуха, жировых эмболов, вызывающих раздражение механорецепторов сосудов малого круга кровообращения, вызыва­ет настолько сильное угнетение сердечной деятельности, что мо­жет привести к летальному исходу - нормальная физиологическая реакция переходит, в случае чрезмерного ее проявления, в патоло­гическую.

Механизмы небыстрого и медленного реагирования

А. Механизмы небыстрого реагирования - это средние по скорости развития реакции (минуты - десятки минут), участвующие в регуляции АД. Они включают четыре основных механизма.

    Изменение скорости транскапиллярного перехода жид­кости, что может осуществляться в течение 5-10 мин в значитель­ных количествах. Повышение АД ведет к увеличению фильтраци­онного давления в капиллярах большого круга кровообращения и, естественно, к увеличению выхода жидкости в межклеточные пространства и нормализации АД. Увеличению выхода жидкости способствует также повышение кровотока в капиллярах, которое является следствием рефлекторного расширения сосудов при рос­те АД. При снижении АД фильтрационное давление в капиллярах уменьшается, вследствие чего повышается реабсорбция жидкости из тканей в капилляры, в результате АД возрастает. Данный меха­низм регуляции АД работает постоянно, особенно сильно он про­является после кровопотери.

    С помощью увеличения или уменьшения объема депониро­ванной крови, количество которой составляет 40 -50% от общего объема крови. Функцию депо выполняет селезенка (около 0,5 л крови), сосудистые сплетения кожи (около 1 л крови), где кровь течет в 10-20 раз медленнее, печень и легкие. Причем в селезенке

кровь сгущается и содержит до 20% эритроцитов всей крови орга­низма. Кровь из депо может мобилизоваться и включаться в общий кровоток в течение нескольких минут. Это происходит при возбуж­дении симпато-адреналовой системы, например, при физическом и эмоциональном напряжении, при кровопотере.

    Посредством изменения степени выраженности миоген-ного тонуса сосудов (см. раздел 8.8).

    В результате изменения количества выработки ангио-тензина (рис. 8.18).

Б. Механизмы медленного реагирования - это регуляция системного АД с помощью изменения количества выводимой из организма воды. При увеличении количества воды, в организ­ме, несмотря на переход части ее из кровеносного русла в ткани, АД возрастает по двум причинам: 1) из-за непосредственного влия­ния количества жидкости в сосудах - чем больше крови, тем боль­ше давление в сосудах - возрастает давление наполнения; 2) при накоплении жидкости в кровеносном русле возрастает наполнение емкостных сосудов (венул и мелких вен), что ведет к увеличению венозного возврата крови к сердцу и, естественно, к увеличению выброса крови в артериальную систему - АД повышается. При уменьшении количества жидкости в организме АД уменьшает­ся. Количество выводимой из организма воды определяется фильт­рационным давлением в почечных клубочках и меняется с помо­щью гормонов.

    С увеличением фильтрационного давления в почечных клу­бочках количество первичной мочи может увеличиться. Однако регуляция выведения воды из организма за счет изменения фильт­рационного давления играет второстепенную роль, так как миоген-ный механизм регуляции почечного кровотока стабилизирует его в пределах изменения системного АД от 80 до 180 мм рт.ст. Главную роль играют гормоны.

    Гормональная регуляция.

Антидиуретический гормон (АДГ) участвует в регуляции АД посредством изменения количества выводимой из организма воды лишь в случае значительного его падения (о механизме см. в разде­ле 11.5).

Альдостерон участвует в регуляции системного АД, во-первых, за счет повышения тонуса симпатической нервной системы и повы­шения возбудимости гладких мышц сосудов к вазоконстрикторным веществам и, в частности, кангиотензину, адреналину, вызывающим сужение сосудов (по-видимому, повышается активность а-адреноре-цепторов). В свою очередь, ангиотензин оказывает сильное стиму­лирующее влияние на выработку альдостерона: так функционирует ренин-ангиотензин-альдостероновая система. Во-вторых, альдосте­рон участвует в регуляции АД за счет изменения объема диуреза (см. раздел 11.5).

Натрийуретические гормоны являются антагонистами альдо­стерона в регуляции содержания Ыа + в организме - они способствуют выведению № + . Этим гормонам, секретирующимся в миокарде, поч­ках, мозге, посвящено огромное количество работ, они представля­ют собой пептиды. Атриопептид вырабатывается кардиомиоцитами в основном в предсердиях, частично в желудочках. При увеличении растяжения предсердий продукция гормона возрастает. Это наблю­дается при увеличении объема циркулирующей жидкости в организ-

| ме и кровяного давления. Повышение выведения Ма + с мочой ведет к увеличению выведения воды, уменьшению (нормализации) АД.

; Снижению АД способствует" также сосудорасширяющее действие этих гормонов, что осуществляется с помощью ингибирования Са 2+ -каналов сосудистых миоцитов. Атриопептид увеличивает

I мочеобразование также посредством расширения сосудов почки и увеличения фильтрации в почечных клубочках. При уменьшении

[ объема жидкости в кровеносном русле и снижении АД секреция

I натрийуретических гормонов уменьшается.

Важно отметить, что все рассмотренные механизмы регуляции АД взаимодействуют между собой, дополняя друг друга в случае

I как повышения, так и понижения АД. Общая схема функциональ-

I ной системы, регулирующей АД, представлена на рис. 8.19.

Кровяное давление. Физиология.

стр. из


Кровяное давление .

Кровяное давление - давление крови на стенки кровеносных сосудов и камер сердца; важнейший энергетический параметр системы кровообращения, обеспечивающий непрерывность кровотока в кровеносных сосудах, диффузию газов и фильтрацию растворов ингредиентов плазмы крови через мембраны капилляров в ткани (обмен веществ), а также в почечных клубочках (образование мочи).

В соответствии с анатомо-физиологическим разделением сердечно-сосудистой системы различают внутрисердечное, артериальное, капиллярное и венозное К. д., измеряемое либо в миллиметрах водяного столба (в венах), либо миллиметрах ртутного столба (в других сосудах и в сердце). Рекомендуемое, согласно Международной системе единиц (СИ), выражение величин К. д. в паскалях (1 мм рт. ст . = 133,3 Па ) в медицинской практике не используется. В артериальных сосудах, где К. д., как и в сердце, значительно колеблется в зависимости от фазы сердечного цикла, различают систолическое и диастолическое (в конце диастолы) артериальное давление, а также пульсовую амплитуду колебаний (разница между величинами систолического и диастолического АД), или пульсовое АД. Среднюю от изменений за весь сердечный цикл величину К. д., определяющую среднюю скорость кровотока в сосудах, называют средним гемодинамическим давлением.

Измерение К. д. относится к наиболее широко применяемым дополнительным методам обследования больного , т.к., во-первых, обнаружение изменений К. д. имеет важное значение в диагностике многих болезней сердечно-сосудистой системы и различных патологических состояний; во-вторых, резко выраженное повышение или понижение К. д. само по себе может быть причиной тяжелых гемодинамических расстройств, угрожающих жизни больного. Наиболее распространено измерение артериального давления в большом круге кровообращения. В условиях стационара при необходимости измеряют давление в локтевой или других периферических венах; в специализированных отделениях с диагностической целью нередко измеряют К. д. в полостях сердца, аорте, в легочном стволе, иногда в сосудах портальной системы. Для оценки некоторых важных параметров системной гемодинамики в ряде случаев необходимо измерять центральное венозное давление - давление в верхней и нижней полых венах.

ФИЗИОЛОГИЯ

Кровяное давление характеризуется силой, с которой кровь воздействует на стенки сосудов перпендикулярно их поверхности. Величина К. д. в каждый данный момент отражает уровень потенциальной механической энергии в сосудистом русле, способной при перепаде давления трансформироваться в кинетическую энергию потока крови в сосудах или в работу, затрачиваемую на фильтрацию растворов через мембраны капилляров. По мере расхода энергии на обеспечение этих процессов К. д. снижается.

Одним из важнейших условий формирования К. д. в кровеносных сосудах является заполненность их кровью в объеме, соизмеримом с емкостью полости сосудов. Эластичные стенки сосудов оказывают упругое сопротивление их растяжению объемом нагнетаемой крови, которое в норме зависит от степени напряжения гладких мышц, т.е. тонуса сосудов. В изолированной сосудистой камере силы упругого напряжения ее стенок порождают в крови уравновешивающие их силы - давление. Чем выше тонус стенок камеры, тем меньше ее вместимость и тем выше К. д. при неизменном объеме содержащейся в камере крови, а при неизменном сосудистом тонусе К. д. тем выше, чем больше нагнетаемый в камеру объем крови. В реальных условиях кровообращения зависимость К. д. от объема содержащейся в сосудах крови (объема циркулирующей крови) менее четкая, чем в условиях изолированного сосуда, но она проявляется в случае патологических изменений массы циркулирующей крови, например, резким падением К. д. при массивной кровопотере или при уменьшении объема плазмы вследствие обезвоживания организма. Аналогично падает К. д. при патологическом увеличении вместимости сосудистого русла, например вследствие острой системной гипотонии вен.

Основным энергетическим источником для нагнетания крови и создания К. д. в сердечно-сосудистой системе служит работа сердца как нагнетающего насоса. Вспомогательную роль в формировании К. д. играют внешнее сдавление сосудов (преимущественно капилляров и вен) сокращающейся скелетной мускулатурой, периодические волнообразные сокращения вен, а также воздействие гравитации (вес крови), особенно сказывающееся на величине К. д. в венах.

^ Внутрисердечное давление в полостях предсердий и желудочков сердца значительно различается в фазах систолы и диастолы, а в тонкостенных предсердиях оно также существенно зависит от колебаний внутригрудного давления по фазам дыхания, принимая иногда в фазе вдоха отрицательные значения. В начале диастолы, когда миокард расслаблен, заполнение камер сердца кровью происходит при минимальном давлении в них, близком к нулю. В период систолы предсердий отмечается небольшой прирост давления в них и в желудочках сердца. Давление в правом предсердии, в норме не превышающее обычно 2-3 мм рт. ст ., принимают за так называемый флебостатический уровень, по отношению к которому оценивают величину К. д. в венах и других сосудах большого круга кровообращения.

В период систолы желудочков, когда клапаны сердца закрыты, практически вся энергия сокращения мускулатуры желудочков расходуется на объемное сжатие содержащейся в них крови, порождающее в ней реактивное напряжение в форме давления. Внутрижелудочковое давление нарастает до тех пор, пока в левом желудочке оно не превысит давления в аорте, а в правом - давления в легочном стволе, в связи с чем клапаны этих сосудов открываются и происходит изгнание крови из желудочков, по окончании которого начинается диастола, и К. д. в желудочках резко падает.

^ Артериальное давление формируется за счет энергии систолы желудочков в период изгнания из них крови, когда каждый желудочек и артерии соответствующего ему круга кровообращения становятся единой камерой, и сжатие крови стенками желудочков распространяется на кровь в артериальных стволах, а изгоняемая в артерии порция крови приобретает кинетическую энергию, равную половине произведения массы этой порции на квадрат скорости изгнания. Соответственно энергия, сообщаемая артериальной крови в период изгнания, имеет тем большие значения, чем больше ударный объем сердца и чем выше скорость изгнания, зависимая от величины и скорости нарастания внутрижелудочкового давления, т.е. от мощности сокращения желудочков. Толчкообразное, в виде удара, поступление крови из желудочков сердца вызывает локальное растяжение стенок аорты и легочного ствола и порождает ударную волну давления, распространение которой с перемещением локального растяжения стенки по длине артерии обусловливает формирование артериального пульса ; графическое отображение последнего в форме сфигмограммы или плетизмограммы соответствует и отображению динамики К. д. в сосуде по фазам сердечного цикла.

Основной причиной трансформации большей части энергии сердечного выброса в артериальное давление, а не в кинетическую энергию потока является сопротивление кровотоку в сосудах (тем большее, чем меньше их просвет, больше их длина и выше вязкость крови), формируемое в основном на периферии артериального русла, в мелких артериях и артериолах, называемых сосудами сопротивления, или резистивными сосудами. Затруднение току крови на уровне этих сосудов создает в расположенных проксимально от них артериях торможение потока и условия для сжатия крови в период изгнания ее систолического объема из желудочков. Чем выше периферическое сопротивление, тем большая часть энергии сердечного выброса трансформируется в систолический прирост АД, определяя величину пульсового давления (частично энергия трансформируется в тепло от трения крови о стенки сосудов). Роль периферического сопротивления кровотоку в формировании К. д. наглядно иллюстрируется различиями АД в большом и малом кругах кровообращения. В последнем, имеющем более короткое и широкое сосудистое русло, сопротивление кровотоку значительно меньшее, чем в большом круге кровообращения, поэтому при равных скоростях изгнания одинаковых систолических объемов крови из левого и правого желудочков давление в легочном стволе примерно в 6 раз меньше, чем в аорте.

Систолическое АД складывается из величин пульсового и диастолического давления. Истинная его величина, называемая боковым систолическим АД, может быть измерена с помощью манометрической трубки, введенной в просвет артерии перпендикулярно оси тока крови. Если внезапно прекратить кровоток в артерии путем полного пережатия ее дистальнее манометрической трубки (или расположить просвет трубки против тока крови), то систолическое АД сразу возрастает за счет кинетической энергии потока крови. Эту более высокую величину К. д. называют конечным, или максимальным, или полным, систолическим АД, т.к. она эквивалентна практически полной энергии крови в период систолы. И боковое, и максимальное систолическое К. д. в артериях конечностей человека может быть измерено бескровно с помощью артериальной тахоосциллографии по Савицкому. При измерении АД по Короткову определяют значения максимального систолического АД. Величина его в норме в покое составляет 100-140 мм рт. ст ., боковое систолическое АД обычно на 5-15 мм ниже максимального. Истинная величина пульсового АД определяется как разница между боковым систолическим и диастолическим давлением.

Диастолическое АД формируется благодаря эластичности стенок артериальных стволов и их крупных ветвей, образующих в совокупности растяжимые артериальные камеры, называемые компрессионными (аортоартериальная камера в большом круге кровообращения и легочный ствол с крупными его ветвями - в малом). В системе жестких трубок прекращение нагнетания в них крови, как это происходит в диастоле после закрытия клапанов аорты и легочного ствола, привело бы к быстрому исчезновению давления, появившегося в период систолы. В реальной сосудистой системе энергия систолического прироста АД в значительной своей части кумулируется в форме упругого напряжения растягиваемых эластических стенок артериальных камер. Чем выше периферическое сопротивление кровотоку, тем дольше эти упругие силы обеспечивают объемное сжатие крови в артериальных камерах, поддерживая К. д., величина которого по мере оттока крови в капилляры и спадения стенок аорты и легочного ствола постепенно снижается к концу диастолы (тем больше, чем длительнее диастола). В норме диастолическое К. д. в артериях большого круга кровообращения составляет 60-90 мм рт. ст . При нормальном или увеличенном сердечном выбросе (минутном объеме кровообращения) учащение сердечных сокращений (короткая диастола) или значительное повышение периферического сопротивления кровотоку обусловливает повышение диастолического АД, поскольку равенство оттока крови из артерий и поступления в них крови из сердца достигается при большем растяжении и, следовательно, большем упругом напряжении стенок артериальных камер в конце диастолы. Если эластичность артериальных стволов и крупных артерий утрачивается (например, при атеросклерозе ), то диастолическое АД снижается, т.к. часть энергии сердечного выброса, кумулируемая в норме растянутыми стенками артериальных камер, расходуется на дополнительный прирост систолического АД (с повышением пульсового) и ускорение кровотока в артериях в период изгнания.

Среднее гемодинамическое, или среднее, К. д. представляет собой среднюю величину от всех его переменных значений за сердечный цикл, определяемую как отношение площади под кривой изменений давления к длительности цикла. В артериях конечностей среднее К. д. может быть достаточно точно определено с помощью тахоосциллографии, В норме оно составляет 85-100 мм рт. ст ., приближаясь к величине диастолического АД тем больше, чем длительнее диастола. Среднее АД не имеет пульсовых колебаний и может изменяться лишь в интервале нескольких сердечных циклов, являясь поэтому наиболее стабильным показателем энергии крови, значения которого определяются практически только величинами минутною объема кровоснабжения и общего периферического сопротивления кровотоку.

В артериолах, оказывающих наибольшее сопротивление кровотоку, на его преодоление расходуется значительная часть общей энергии артериальной крови; пульсовые колебания К. д. в них сглаживаются, среднее К. д. по сравнению с внутриаортальным снижается примерно в 2 раза.

^ Капиллярное давление зависит от давления в артериолах. Стенки капилляров не обладают тонусом ; общий просвет капиллярного русла определяется числом открытых капилляров , что зависит от функции прекапиллярных сфинктеров и величины К. д. в прекапиллярах. Капилляры открываются и остаются открытыми только при положительном трансмуральном давлении - разнице между К. д. внутри капилляра и тканевым давлением, сжимающим капилляр извне. Зависимость числа открытых капилляров от К. д. в прекапиллярах обеспечивает своеобразную саморегуляцию постоянства капиллярного К. д. Чем выше К. д. в прекапиллярах, тем многочисленнее открытые капилляры, больше их просвет и вместимость, а следовательно, и в большей степени падает К. д. на артериальном отрезке капиллярного русла. Благодаря этому механизму среднее К. д. в капиллярах отличается относительной стабильностью; на артериальных отрезках капилляров большого круга кровообращения оно составляет 30-50 мм рт. ст ., а на венозных отрезках в связи с расходом энергии на преодоление сопротивления по длине капилляра и фильтрацию оно снижается до 25-15 мм рт. ст . Существенное влияние на капиллярное К. д. и его динамику на протяжении капилляра оказывает величина венозного давления.

^ Венозное давление на посткапиллярном отрезке мало отличается от К. д. в венозной части капилляров, но значительно падает на протяжении венозного русла, достигая в центральных венах величины, близкой к давлению в предсердии. В периферических венах, расположенных на уровне правого предсердия. К. д. в норме редко превышает 120 мм вод. ст ., что соизмеримо с величиной давления кровяного столба в венах нижних конечностей при вертикальном положении тела. Участие гравитационного фактора в формировании венозного давления наименьшее при горизонтальном положении тела. В этих условиях К. д. в периферических венах формируется в основном за счет энергии притока в них крови из капилляров и зависит от сопротивления оттоку крови из вен (в норме преимущественно от внутригрудного и внутрипредсердного давления) и в меньшей степени - от тонуса вен, определяющего их вместимость для крови при данном давлении и соответственно скорость венозного возврата крови к сердцу. Патологический рост венозного К. д. в большинстве случаев обусловлен нарушением оттока из них крови.

Относительно тонкая стенка и большая поверхность вен создают предпосылки для выраженного влияния на венозное К. д. изменений внешнего давления, связанных с сокращением скелетных мышц, а также атмосферного (в кожных венах), внутригрудного (особенно в центральных венах) и внутрибрюшного (в системе воротной вены) давления. Во всех венах К. д. колеблется в зависимости от фаз дыхательного цикла, понижаясь в большинстве из них на вдохе и возрастая на выдохе. У больных с бронхиальной обструкцией эти колебания обнаруживаются визуально при осмотре шейных вен, резко набухающих в фазе выдоха и полностью спадающихся на вдохе. Пульсовые колебания К. д. в большинстве отделов венозного русла выражены слабо, являясь с основном передаточными от пульсации расположенных рядом с венами артерий (на центральные и близкие к ним вены могут передаваться пульсовые колебания К. д. в правом предсердии, что находит отражение в венном пульсе ). Исключение представляет воротная вена, в которой К. д. может иметь пульсовые колебания, объясняемые возникновением в период систолы сердца так называемого гидравлического затвора для прохождения по ней крови в печень (в связи с систолическим приростом К. д. в бассейне печеночной артерии) и последующим (в период диастолы сердца) изгнанием крови из воротной вены в печень.

^ Значение кровяного давления для жизнедеятельности организма определяется особой ролью механической энергии для функций крови как универсального посредника в обмене веществ и энергии в организме, а также между организмом и средой обитания. Дискретные порции механической энергии, генерируемой сердцем только в период систолы, преобразованы в кровяном давлении в стабильный, действующий и в период диастолы сердца, источник энергетического снабжения транспортной функции крови, диффузии газов и процессов фильтрации в капиллярном русле, обеспечивающих непрерывность обмена веществ и энергии в организме и взаиморегуляцию функции различных органов и систем гуморальными факторами, переносимыми циркулирующей кровью.

Кинетическая энергия составляет лишь малую часть всей энергии, сообщенной крови работой сердца. Основным энергетическим источником движения крови является перепад давления между начальным и конечным отрезками сосудистого русла. В большом круге кровообращения такой перепад, или полный градиент, давления соответствует разнице величин среднего К. д. в аорте и в полых венах, которая в норме практически равна величине среднего АД. Средняя объемная скорость кровотока, выраженная, например, минутным объемом кровообращения, прямо пропорциональна полному градиенту давления, т.е. практически величине среднего АД, и обратно пропорциональна величине общего периферического сопротивления кровотоку. Эта зависимость лежит в основе расчета величины общего периферического сопротивления как отношения среднего АД к минутному объему кровообращения. Другими словами, чем выше среднее АД при неизменном сопротивлении, тем выше и кровоток в сосудах и тем большая масса обменивающихся в тканях веществ (массообмен) транспортируется в единицу времени кровью через капиллярное русло. Однако в физиологических условиях увеличение минутного объема кровообращения, необходимое для интенсификации тканевого дыхания и обмена веществ, например при физической нагрузке, как и его рациональное уменьшение для условий покоя, достигается в основном динамикой периферического сопротивления кровотоку, причем таким образом, чтобы величина среднего АД не подвергалась существенным колебаниям. Относительная стабилизация среднего АД в аортоартериальной камере с помощью специальных механизмов его регуляции создает возможность динамичных вариаций распределения кровотока между органами по их потребностям путем только локальных изменений сопротивления кровотоку.

Увеличение или уменьшение массообмена веществ на мембранах капилляров достигается зависимыми от К. д. изменениями объема капиллярного кровотока и площади мембран в основном за счет изменений числа открытых капилляров. При этом благодаря механизму саморегуляции капиллярного К. д. в каждом отдельном капилляре оно поддерживается на уровне, необходимом для оптимального режима массообмена по всей длине капилляра с учетом важности обеспечения строго определенной степени снижения К. д. в направлении к венозному отрезку.

В каждой части капилляра массообмен на мембране непосредственно зависит от величины К. д. именно в этой части. Для диффузии газов, например кислорода, значение К. д. определяется тем, что диффузия происходит благодаря разнице парциального давления (напряжения) данного газа по обе стороны мембраны, а оно есть часть общего давления в системе (в крови - часть К. д.), пропорциональная объемной концентрации данного газа. Фильтрация растворов различных веществ через мембрану обеспечивается фильтрационным давлением - разницей между величинами трансмурального давления в капилляре и онкотического давления плазмы крови, составляющего на артериальном отрезке капилляра около 30 мм рт. ст . Поскольку на этом отрезке трансмуральное давление выше онкотического, водные растворы веществ фильтруются через мембрану из плазмы в межклеточное пространство. В связи с фильтрацией воды концентрация белков в плазме капиллярной крови повышается, и онкотическое давление возрастает, достигая в средней части капилляра величины трансмурального давления (фильтрационное давление уменьшается до нуля). На венозном отрезке из-за падения К. д. по длине капилляра трансмуральное давление становится ниже онкотического (фильтрационное давление становится отрицательным), поэтому водные растворы фильтруются из межклеточного пространства в плазму, снижая ее онкотическое давление до исходных значений. Т.о., степень падения К. д. по длине капилляра определяет соотношение площадей фильтрации растворов через мембрану из плазмы в межклеточное пространство и обратно, влияя тем самым на баланс водного обмена между кровью и тканями. В случае патологического повышения венозного К. д. фильтрация жидкости из крови в артериальной части капилляра превышает возврат жидкости в кровь на венозном отрезке, что приводит к задержке жидкости в межклеточном пространстве, развитию отека .

Особенности структуры капилляров клубочков почек обеспечивают высокий уровень К. д. и положительное фильтрационное давление на всем протяжении капиллярных петель клубочка, что способствует большой скорости образования экстракапиллярного ультрафильтрата - первичной мочи. Выраженная зависимость мочеобразовательной функции почек от К. д. в артериолах и капиллярах клубочков объясняет особую физиологическую роль почечных факторов в регуляции величины К. д. в артериях больше о круга кровообращения.

^ Механизмы регуляции кровяного давления . Устойчивость К. д. в организме обеспечивается функциональными системами , поддерживающими оптимальный для метаболизма тканей уровень артериального давления. Основным в деятельности функциональных систем является принцип саморегуляции, благодаря которому в здоровом организме любые эпизодические колебания АД, вызванные действием физических или эмоциональных факторов, через определенное время прекращаются, и АД возвращается к исходному уровню. Механизмы саморегуляции АД в организме предполагают возможность динамичного формирования противоположных по конечному влиянию на К. д. изменений гемодинамики, называемых прессорными и депрессорными реакциями, а также наличие системы обратной связи. Прессорные реакции, приводящие к повышению АД, характеризуются увеличением минутного объема кровообращения (за счет возрастания систолического объема или учащения сердечных сокращений при неизменном систолическом объеме), повышением периферического сопротивления в результате сужения сосудов и возрастания вязкости крови, увеличением объема циркулирующей крови и др. Депрессорные реакции, направленные на снижение АД, характеризуются уменьшением минутного и систолического объемов, снижением периферического гемодинамического сопротивления за счет расширения артериол и уменьшения вязкости крови. Своеобразной формой регуляции К. д. является перераспределение регионарного кровотока, при котором повышение АД и объемной скорости крови в жизненно важных органах (сердце, головной мозг) достигается за счет кратковременного уменьшения этих показателей в других, менее значимых для существования организма органах.

Регуляция К. д. осуществляется комплексом сложно взаимодействующих нервных и гуморальных влияний на тонус сосудов и деятельность сердца. Управление прессорными и депрессорными реакциями связано с деятельностью бульбарных сосудодвигательных центров, контролируемой гипоталамическими, лимбико-ретикулярными структурами и корой большого мозга, и реализуется через изменение активности парасимпатических и симпатических нервов, регулирующих тонус сосудов, деятельность сердца, почек и эндокринных желез, гормоны которых участвуют в регуляции К. д. Среди последних наибольшее значение имеют АКТГ и вазопрессин гипофиза, адреналин и гормоны коры надпочечников, а также гормоны щитовидной и половых желез. Гуморальное звено регуляции К. д. представлено также системой ренин - ангиотензин, активность которой зависит от режима кровоснабжения и функции почек, простагландинами и рядом иных вазоактивных субстанций различного происхождения (альдостерон, кинины, вазоактивный интестинальный пептид, гистамин, серотонин и др.). Быстрая регуляция К. д., необходимая, например, при изменениях положения тела, уровня физической или эмоциональной нагрузок, осуществляется в основном динамикой активности симпатических нервов и поступления в кровь адреналина из надпочечников. Адреналин и норадреналин, выделяющийся на скончаниях симпатических нервов, возбуждают -адренорецепторы сосудов, повышая тонус артерий и вен, и -адренорецепторы сердца, увеличивая сердечный выброс, т.е. обусловливают развитие прессорной реакции.

Механизм обратной связи, определяющий изменения степени активности сосудодвигательных центров противоположно отклонениям величины К. д. в сосудах, обеспечивается функцией барорецепторов в сердечно-сосудистой системе, из которых наибольшее значение имеют барорецепторы синокаротидной зоны и артерий почек. При повышении АД возбуждаются барорецепторы рефлексогенных зон, усиливаются депрессорные влияния на сосудодвигательные центры, что приводит к снижению симпатической и повышению парасимпатической активности с одновременным уменьшением образования и выделения гипертензивных веществ. В результате снижается нагнетательная функция сердца, расширяются периферические сосуды и как следствие уменьшается АД. При снижении АД появляются противоположные влияния: повышается симпатическая активность, включаются гипофизарно-надпочечниковые механизмы, система ренин - ангиотензин.

Секреция ренина юкстагломерулярным аппаратом почек закономерно возрастает при снижении пульсового АД в почечных артериях, при ишемии почек, а также при дефиците в организме натрия. Ренин превращает один из белков крови (ангиотензиноген) в ангиотензин I, являющийся субстратом для образования в крови ангиотензина II, вызывающего при взаимодействии со специфическими рецепторами сосудов мощную прессорную реакцию. Один из продуктов преобразования ангиотензина (ангиотензин III) стимулирует секрецию альдостерона, изменяющего водно-солевой обмен, что также сказывается на величине К. д. Процесс образования ангиотензина II происходит с участием ангиотензинконвертирующих ферментов, блокада которых, как и блокада рецепторов ангиотензина II в сосудах, устраняет гипертензивные эффекты, связанные с активацией системы ренин - ангиотензин.

^ КРОВЯНОЕ ДАВЛЕНИЕ В НОРМЕ

Величина К. д. у здоровых лиц имеет существенные индивидуальные различия и подвержена заметным колебаниям под влиянием изменений положения тела, температуры окружающей среды, эмоционального и физического напряжения, а для артериального К. д. отмечена его зависимость также от пола, возраста, образа жизни, массы тела, степени физической тренированности.

Кровяное давление в малом круге кровообращения измеряют при специальных диагностических исследованиях прямым способом путем зондирования сердца и легочного ствола. В правом желудочке сердца, как у детей, так и у взрослых, величина систолического К. д. в норме варьирует от 20 до 30, а диастолического - от 1 до 3 мм рт. ст ., чаще определяясь у взрослых на уровне средних значений, составляющих соответственно 25 и 2 мм рт. ст .

В легочном стволе в условиях покоя диапазон нормальных значений систолического К. д. находится в пределах 15-25, диастолического - 5-10, среднего - 12-18 мм рт. ст .; у детей дошкольного возраста диастолическое К. д. обычно составляет 7-9, среднее - 12-13 мм рт. ст . При натуживании К. д. в легочном стволе может возрастать в несколько раз.

Кровяное давление в легочных капиллярах считается нормальным при значениях его в покое от 6 до 9 мм рт. ст . иногда оно достигает 12 мм рт. ст .; обычно его величина у детей составляет 6-7, у взрослых - 7-10 мм рт. ст .

В легочных венах среднее К. д. имеет значения в пределах 4-8 мм рт. ст ., т. е. превышает среднее К. д. в левом предсердии, составляющее 3-5 мм рт. ст . По фазам сердечного цикла давление в левом предсердии колеблется от 0 до 9 мм рт. ст .

Кровяное давление в большом круге кровообращения характеризуется наибольшим перепадом - от максимальной величины в левом желудочке и в аорте до минимальной в правом предсердии, где в покое оно в норме обычно не превышает 2-3 мм рт. ст ., часто принимая отрицательные значения в фазе вдоха. В левом желудочке сердца К. д. к концу диастолы составляет 4-5 мм рт. ст ., а в период систолы возрастает до величины, соизмеримой с величиной систолического К. д. в аорте. Пределы нормальных значений систолического К. д. в левом желудочке сердца составляют у детей 70-110, у взрослых - 100-150 мм рт. ст .

^ Артериальное давление при измерении его на верхних конечностях по Короткову у взрослых в покое считается нормальным в диапазоне от 100/60 до 150/90 мм рт. ст . Однако фактически диапазон нормальных индивидуальных значений АД более широк, и АД около 90/50 мм рт. ст . нередко определяется у совершенно здоровых лиц, особенно у занимающихся физическим трудом или спортом. С другой стороны, динамика АД у одного и того же человека в пределах величин, считающихся нормальными, может фактически отражать патологические изменения АД. Последнее необходимо иметь в виду прежде всего в случаях, когда такая динамика имеет характер исключительной на фоне относительно устойчивых у данного человека значений АД (например, снижение АД до 100/60 с обычных для данного индивидуума значений около 140/90 мм рт. ст . либо наоборот).

Отмечено, что в диапазоне нормальных величин у мужчин АД выше, чем у женщин; более высокие значения АД регистрируются у тучных субъектов, у жителей городов, лиц умственного труда, более низкие - у сельских жителей, у занимающихся постоянно физическим трудом, спортом. У одного и того же человека АД может отчетливо изменяться под влиянием эмоций, при изменении положения тела, в соответствии с суточными ритмами (у большинства здоровых людей АД повышается в послеполуденные и вечерние часы и снижается после 2 ч ночи). Все эти колебания происходят преимущественно за счет изменений систолического АД при относительно стабильном диастолическом.

Для оценки АД как нормального или патологического важно учитывать зависимость его величины от возраста, хотя эта зависимость, четко выражающаяся статистически, не всегда проявляется в индивидуальных значениях артериального давления.

У детей до 8 лет АД ниже, чем у взрослых. У новорожденных систолическое АД близко к 70 мм рт. ст ., в ближайшие недели жизни оно повышается и к концу первого года жизни ребенка достигает 80-90 при величине диастолического АД около 40 мм рт. ст . В последующие годы жизни АД постепенно повышается, а в 12-14 лет у девочек и 14-16 лет у мальчиков отмечается ускоренный прирост показателей величины АД до значений, сопоставимых с величиной АД у взрослых. У детей в возрасте 7 лет АД имеет значения в пределах 80-110/40-70, у детей 8-13 лет - 90-120/50-80 мм рт. ст ., причем у девочек 12 лет оно выше, чем у мальчиков того же возраста, а в период между 14 и 17 годами АД достигает величин 90-130/60-80 мм рт. ст ., причем у мальчиков оно в среднем становится выше, чем у девочек. Как и у взрослых, отмечены различия АД у детей, проживающих в городе и в сельской местности, а также колебания его в процессе различных нагрузок. АД заметно (до 20 мм рт. ст .) повышается при возбуждении ребенка, при сосании (у грудных детей), в условиях охлаждения тела; при перегревании, например в жаркую погоду, АД снижается. У здоровых детей по окончании действия причины повышения АД (например, акта сосания) оно быстро (в течение приблизительно 3-5 мин ) снижается до исходного уровня.

Повышение АД с возрастом у взрослых людей происходит постепенно, несколько ускоряясь в пожилом возрасте. Повышается главным образом систолическое АД вследствие снижения в пожилом возрасте эластичности аорты и крупных артерий, однако и у старых здоровых людей в покое АД не превышает 150/90 мм рт. ст . При физической работе или эмоциональном напряжении возможно повышение АД до 160/95 мм рт. ст ., причем восстановление его исходного уровня по окончании нагрузки происходит медленнее, чем у молодых лиц, что связано с возрастными изменениями аппарата регуляции АД - снижением регулирующей функции нервно-рефлекторного звена и повышением роли гуморальных факторов в регуляции АД. Для ориентировочной оценки нормы АД у взрослых в зависимости от пола и возраста предложены различные формулы, например формула вычисления нормальной величины систолического АД как суммы двух чисел, одно из которых равно возрасту обследуемого в годах, другое составляет 65 для мужчин и 55 для женщин. Однако высокая индивидуальная вариабельность нормальных величин АД делает предпочтительной ориентацию на степень возрастания АД по годам у конкретного человека и оценку закономерности приближения величины АД к верхнему пределу нормальных значений, т.е. к 150/90 мм рт. ст . при измерении в покое.

^ Капиллярное давление в большом круге кровообращения несколько различается в бассейнах разных артерий. В большинстве капилляров на их артериальных отрезках ко колеблется в пределах 30-50, на венозных - 15-25 мм рт. ст . В капиллярах брыжеечных артерий К. д., по данным некоторых исследований, может составлять 10-15, а в сети разветвлений воротной вены - 6-12 мм рт. ст . В зависимости от изменений кровотока в соответствии с потребностями органов величина К. д. в их капиллярах может изменяться.

^ Венозное давление в существенной степени зависит от места его измерения, а также от положения тела. Поэтому для сравнения показателей венозное К. д. измеряют в горизонтальном положении тела. На протяжении венозного русла К. д. снижается; в венулах оно составляет 150-250 мм вод. ст ., в центральных венах колеблется от + 4 до - 10 мм вод. ст . В локтевой вене у здоровых взрослых людей величина К. д. обычно определяется между 60 и 120 мм вод. ст .; нормальными считают значения К. д. в диапазоне 40-130 мм вод. ст ., но клиническому значение реально имеют отклонения величины К. д. за пределы 30-200 мм вод. ст .

Зависимость венозного К. д. от возраста обследуемых выявляется только статистически. У детей оно нарастает с возрастом - в среднем примерно от 40 до 100 мм вод. ст .; у пожилых людей отмечается тенденция к снижению венозного К. д., что связывают с увеличением емкости венозного русла вследствие возрастного снижения тонуса вен и скелетной мускулатуры.

^ ПАТОЛОГИЧЕСКИЕ ИЗМЕНЕНИЯ КРОВЯНОГО ДАВЛЕНИЯ

Отклонения К. д. от нормальных величин имеютважное клиническое значение как симптомы патологии системы кровообращения или систем его регуляции. Выраженные изменения К. д. сами по себе являются патогенными, обусловливая нарушения общего кровообращения и регионарного кровотока и играя ведущую роль в формировании таких грозных патологических состояний, как коллапс , шок , гипертонические кризы , отек легких .

Изменения К. д. в полостях сердца наблюдаются при поражениях миокарда, значительных отклонениях величин К. д. в центральных артериях и венах, а также при нарушениях внутрисердечной гемодинамики, в связи с чем измерение внутрисердечного К. д. производят для диагностики врожденных и приобретенных пороков сердца и крупных сосудов. Повышение К. д. в правом или левом предсердиях (при пороках сердца, сердечной недостаточности) приводит к системному повышению давления в венах большого или малого круга кровообращения.

^ Артериальная гипертензия , т.е. патологическое повышение АД в магистральных артериях большого круга кровообращения (до 160/100 мм рт. ст . и более), может быть обусловлена увеличением ударного и минутного объемов сердца, повышением кинетики сердечного сокращения, ригидностью стенок артериальной компрессионной камеры, но в большинстве случаев определяется патологическим ростом периферического сопротивления кровотоку (см. Гипертензия артериальная ). Поскольку регуляция АД осуществляется сложным комплексом нейрогуморальных влияний с участием ц.н.с., почечных, эндокринных и других гуморальных факторов, артериальная гипертензия может быть симптомом различных болезней, в т.ч. болезней почек - гломерулонефрита (см. Нефриты ), пиелонефрита , мочекаменной болезни , гормонально - активных опухолей гипофиза (см. Иценко - Кушинга болезнь ) и надпочечников (например, альдостеромы, хромаффиномы . ), тиреотоксикоза ; органических заболеваний ц.н.с.; гипертонической болезни . Повышение К. д. в малом круге кровообращения (см. Гипертензия малого круга кровообращения ) может быть симптомом патологии легких и легочных сосудов (в частности, тромбоэмболии легочных артерий ), плевры, грудной клетки, сердца. Устойчивая артериальная гипертензия приводит к гипертрофии сердца, развитию дистрофии миокарда и может быть причиной сердечной недостаточности .

Патологическое снижение АД может быть следствием поражения миокарда, в т.ч. острого (например, при инфаркте миокарда ), снижения периферического сопротивления кровотоку, кровопотери, секвестрации крови в емкостных сосудах при недостаточности венозного тонуса. Это проявляется ортостатическими расстройствами кровообращения , а при остром резко выраженном падении К. д. - картиной коллапса, шока, анурией. Устойчивая гипотензия артериальная наблюдается при заболеваниях, сопровождающихся недостаточностью гипофиза, надпочечников. При окклюзии артериальных стволов К. д. снижается только дистальнее места окклюзии. Значительное снижение К. д. в центральных артериях вследствие гиповолемии включает адаптационные механизмы так называемой централизации кровообращения - перераспределения крови преимущественно в сосуды головного мозга и сердца при резком повышении тонуса сосудов на периферии. При недостаточности этих компенсаторных механизмов возможны обморок , ишемические повреждения мозга (см. Инсульт ) и миокарда (см. Ишемическая болезнь сердца ).

Повышение венозного давления наблюдается либо при наличии артериовенозных шунтов, либо при нарушениях оттока крови из вен, например в результате их тромбоза, сдавливания либо вследствие повышения К. д. в предсердии. При циррозах печени развивается портальная гипертензия .

Изменения капиллярного давления обычно являются следствием первичных изменений К. д. в артериях или венах и сопровождаются нарушениями кровотока в капиллярах, а также процессов диффузии и фильтрации на капиллярных мембранах (см. Микроциркуляция ). Гипертензия в венозной части капилляров приводит к развитию отека, общего (при системной венозной гипертензии) или местного, например при флеботромбозе, сдавлении вен (см. Стокса воротник ). Повышение капиллярного К. д. в малом круге кровообращения в подавляющем большинстве случаев связано с нарушением оттока крови из легочных вен в левое предсердие. Это происходит при левожелудочковой сердечной недостаточности, митральном стенозе, наличии в полости левого предсердия тромба или опухоли, резко выраженной тахисистолии при мерцательной аритмии . Проявляется одышкой, кардиальной астмой, развитием отека легких.

^ МЕТОДЫ И ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ КРОВЯНОГО ДАВЛЕНИЯ

В практике клинических и физиологичских исследований сложились и широко используются методы измерения артериального, венозного и капиллярного давления в большом круге кровообращения, в центральных сосудах малого круга, в сосудах отдельных органов и частей тела. Различают прямые и непрямые методы измерения К. д. Последние основаны на измерении внешнего давления на сосуд (например, давления воздуха в манжете, наложенной на конечность), уравновешивающего К. д. внутри сосуда.

^ Прямое измерение кровяного давления (прямая манометрия) осуществляется непосредственно в сосуде или полости сердца, куда вводят заполненный изотоническим раствором катетер, передающий давление на внешний измерительный прибор или зонд с измерительным преобразователем на вводимом конце (см. Катетеризация ). В 50-60-е гг. 20 в. прямую манометрию стали объединять с ангиографией, внутриполостной фонокардиографией, электрогисографией и др. Характерной чертой современного развития прямой манометрии является компьютеризация и автоматизация обработки получаемых данных. Прямое измерение К. д. осуществляется практически в любых участках сердечно-сосудистой системы и служит базовым методом для проверки результатов непрямых измерений кровяного давления. Достоинством прямых методов является возможность одновременного отбора через катетер проб крови для биохимических анализов и введения в кровеносное русло необходимых лекарственных средств и индикаторов. Основным недостатком прямых измерений является необходимость проведения в кровяное русло элементов измерительного устройства, что требуют строгого соблюдения правил асептики, ограничивает возможность повторных измерений. Некоторые виды измерений (катетеризация полостей сердца, сосудов легких, почек, головного мозга) фактически являются хирургическими операциями и выполняются только в условиях стационара. Измерение давления в полостях сердца и центральных сосудах возможно только прямым методом. Измеряемыми величинами являются мгновенное давление в полостях, среднее давление и другие показатели, которые определяются посредством регистрирующих или показывающих манометров, в частности электроманометра. Входным звеном электроманометра является датчик. Его чувствительный элемент - мембрана непосредственно контактирует с жидкой средой, по которой передается давление. Перемещения мембраны, обычно составляющие доли микрона, воспринимаются как изменения электрического сопротивления, емкости или индуктивности, преобразуемые в электрическое напряжение, измеряемое выходным прибором. Метод является ценным источником физиологической и клинической информации, используется для диагностики, в частности пороков сердца, контроля эффективности оперативной коррекции нарушений центрального кровообращения, при длительных наблюдениях в условиях реанимации и в некоторых других случаях. Прямое измерение артериального давления у человека проводится лишь в случаях, когда необходимо постоянное и длительное наблюдение за уровнем К. д. с целью своевременного обнаружения его опасных изменений. Такие измерения применяют иногда в практике наблюдения за больными в блоках реанимации, а также во время некоторых хирургических операций. Для измерения капиллярного давления применяют электроманометры; для визуализации сосудов используют стереоскопические и телевизионные микроскопы. Микроканюлю, соединенную с манометром и источником внешнего давления и заполненную физиологическим раствором, с помощью микроманипулятора под контролем микроскопа вводят в капилляр или его боковую ветвь. Среднее давление определяют по величине создаваемого внешнего (задаваемого и регистрируемого манометром) давления, при котором кровоток в капилляре останавливается. Для изучения колебаний капиллярного давления используют непрерывную его запись после введения микроканюли в сосуд. В диагностической практике измерение капиллярного К. д. практически не используется. Измерение венозного давления также осуществляют прямым методом. Прибор для измерения венозного К. д. состоит из сообщающихся между собой системы капельного внутривенного вливания жидкости, манометрической трубки и резинового шланга с инъекционной иглой на конце. Для разовых измерений К д. систему капельного вливания не используют; ее подключают при необходимости непрерывной длительной флеботонометрии, в процессе которой из системы капельного вливания постоянно поступает жидкость в измерительную магистраль и из нее в вену. Это исключает тромбирование иглы и создает возможность многочасового измерения венозного К. д. Простейшие измерители венозного давления содержат лишь шкалу и манометрическую трубку из пластического материала, предназначенную для однократного использования. Для измерения венозного К. д. применяют также электронные манометры (с их помощью возможно также измерение К. д. в правых отделах сердца и легочном стволе). Измерение центрального венозного давления осуществляется через тонкий полиэтиленовый катетер, который проводят в центральные вены через локтевую подкожную либо через подключичную вену. При длительных измерениях катетер остается присоединенным и может использоваться для взятия проб крови, введения лекарственных препаратов.

^ Непрямое измерение кровяного давления осуществляется без нарушения целостности сосудов и тканей. Полная атравматичность и возможность неограниченных повторных измерений К. д. обусловили широкое применение этих методов в практике диагностических исследований. Методы, основанные на принципе уравновешивания давления внутри сосуда известным внешним давлением, называют компрессионными. Компрессия может создаваться жидкостью, воздухом или твердым телом. Наиболее распространен способ компрессии с помощью надувной манжеты, накладываемой на конечность или сосуд и обеспечивающей равномерное циркулярное сжатие тканей и сосудов. Впервые компрессионная манжета для измерения АД была предложена в 1896 г. Рива-Роччи (S. Riva-Rocci). Изменения внешнего по отношению к кровеносному сосуду давления в ходе измерения К. д. могут иметь характер медленного плавного повышения давления (компрессия), плавного понижения ранее созданного высокого давления (декомпрессия), а также следовать изменениям внутрисосудистого давления. Первые два режима используют для определения дискретных показателей К. д. (максимального, минимального и др.), третий - для непрерывной регистрации К. д. аналогично методу прямого измерения. В качестве критериев идентификации равновесия внешнего и внутрисосудистого давлений пользуются звуковыми, пульсовыми явлениями, изменениями кровенаполнения тканей и кровотока в них, а также другими феноменами, вызванными сжатием сосудов. Измерение артериального давления обычно производят в плечевой артерии, в которой оно близко аортальному. В ряде случаев измеряют давление в артериях бедра, голени, пальцев кистей и других областей тела. Систолическое АД может быть определено по показаниям манометра в тот момент компрессии сосуда, когда исчезает пульсация артерии в ее дистальной от манжеты части, что можно определить с помощью пальпации пульса на лучевой артерии (пальпаторный метод Рива-Роччи). Наиболее распространен в медицинской практике звуковой, или аускультативный, метод непрямого измерения АД по Короткову с помощью сфигмоманометра и фонендоскопа (сфигмоманометрия). В 1905 г. Н.С. Коротков установил, что если на артерию подать внешнее давление, превышающее диастолическое, в ней возникают звуки (тоны, шумы), которые прекращаются, как только внешнее давление превысит систолический уровень. Для измерения АД по Короткову на плечо обследуемого плотно накладывают специальную пневматическую манжету нужного типоразмера (в зависимости от возраста и телосложения обследуемого), которую через тройник соединяют с манометром и с устройством для нагнетания в манжету воздуха. Последнее обычно состоит из эластической резиновой груши, имеющей обратный клапан и вентиль для медленного выпускания воздуха из манжеты (регуляция режима декомпрессии). Конструкция манжет включает приспособления для их крепления, из которых наиболее удобными являются покрытия матерчатых концов манжеты специальными материалами, обеспечивающими слипание соединенных концов и надежное удержание манжеты на плече. С помощью груши в манжету нагнетают воздух под контролем показаний манометра до величины давления, заведомо превышающей систолическое АД, затем, стравливая давление из манжеты путем медленного выпускания из нее воздуха, т.е. в режиме декомпрессии сосуда, одновременно выслушивают с помощью фонендоскопа плечевую артерию в локтевом изгибе и определяют моменты появления и прекращения звуков, сопоставляя их с показаниями манометра. Первый из этих моментов соответствует систолическому, второй - диастолическому давлению. Выпускают несколько типов сфигмоманометров для измерения АД звуковым способом. Наиболее простыми являются ртутный и мембранный манометры, по шкалам которых АД может быть измерено в диапазоне соответственно 0-260 мм рт. ст . и 20-300 мм рт. ст . с погрешностью от ± 3 до ± 4 мм рт. ст . Менее распространены электронные измерители АД со звуковой и (или) световой сигнализацией и стрелочным либо цифровым указателем систолического и диастолического АД. Манжеты таких приборов имеют встроенные микрофоны для восприятия тонов Короткова. Предложены различные инструментальные методы непрямого измерения АД, основанные на регистрации во время компрессии артерии изменений кровенаполнения дистального участка конечности (волюмометрический метод) или характера осцилляций, связанных с пульсацией давления в манжете (артериальная осциллография). Разновидностью осцилляторного метода является артериальная тахоосциллография по Савицкому, которую проводят с помощью механокардиографа (см. Механокардиография ). По характерным изменениям тахоосциллограммы в процессе компрессии артерии определяют боковое систолическое, среднее и диастолическое АД. Для измерения среднего АД предложены и другие методы, однако они менее распространены, чем тахоосциллография. Измерение капиллярного давления неинвазивным способом впервые было осуществлено Крисом (N. Kries) в 1875 г. путем наблюдения за изменением цвета кожи под действием приложенного извне давления. Величина давления, при которой кожа начинает бледнеть, принимается за давление крови в поверхностно расположенных капиллярах.Современные непрямые методы измерения давления в капиллярах основаны также на компрессионном принципе. Компрессию осуществляют прозрачными маленькими жесткими камерами разных конструкций или прозрачными эластическими манжетами, которые накладывают на исследуемую область (кожу, ногтевое ложе и др.). Место сжатия хорошо освещают для наблюдения за сосудистой сетью и кровотоком в ней под микроскопом. Капиллярное давление измеряют в ходе компрессии или декомпрессии микрососудов. В первом случае его определяют по компрессионному давлению, при котором произойдет остановка кровотока в большинстве видимых капилляров, во втором - по уровню компрессионного давления, при котором в нескольких капиллярах возникнет кровоток. Непрямые методы измерения капиллярного давления дают значительные расхождения результатов. Измерение венозного давления также возможно непрямыми методами. Для этого предложены две группы методов: компрессионные и так называемые гидростатические. Компрессионные методы оказались недостоверными и не получили применения. Из гидростатических методов наиболее простым является метод Гертнера. Наблюдая за тыльной поверхностью руки при ее медленном поднятии, отмечают, на какой высоте спадаются вены. Расстояние от уровня предсердия до этой точки служит показателем венозного давления. Достоверность этого метода также невелика ввиду отсутствия четких критериев полного уравновешивания внешнего и внутрисосудистого давления. Тем не менее простота и доступность делают его полезным для ориентировочной оценки венозного давления во время осмотра больного в любых условиях.

Венозное давление (син. кровяное давление венозное) - давление, которое кровь, находящаяся в просвете вены, оказывает на ее стенку: величина В. д. зависит от калибра вены, тонуса ее стенок, объемной скорости кровотока и величины внутригрудного давления.

Одним из важнейших показателей, отражающих состояние сердечно-сосудистой системы, является среднее эффективное артериальное давление (АД), которое "прогоняет" кровь через системные органы. Фундаментальным уравнением сердечно-сосудистой физиологии является то, которое отражает, каким образом среднее давление соотносится с минутным объемом (МО) сердца и общим периферическим сосудистым сопротивлением.

Все изменения среднего артериального давления определяются изменениями МО или ОПСС. Нормальное СрАД в состоянии покоя для всех млекопитающих составляет приблизительно 100 мм рт. ст. Для человека эта величина определяется тем, что МО сердца в покое составляет около 5 л/мин, а ОПСС равно 20 мм рт. ст.. Понятно, что для поддержания нормальной величины СрАД при снижении ОПСС компенсаторно и пропорционально увеличивается МО и наоборот.

В клинической практике для оценки функционирования сердечно-сосудистой системы применяются другие показатели АД - САД и ДАД.

Под САД понимают тот максимальный уровень АД, который фиксируется в артериальной системе во время систолы левого желудочка. ДАД - это минимальное АД в артериях во время диастолы, которое в первом приближении определяется величиной тонуса периферических артерий.

В настоящее время выделяют кратковременные (секунды, минуты), среднесрочные (минуты, часы) и долговременные (дни, месяцы) механизмы регуляции АД. К механизмам кратковременной регуляции АД относят артериальный барорецепторный рефлекс и рефлексы хеморецепторов.

Чувствительные барорецепторы в большом количестве находятся в стенках аорты и сонных артериях, наибольшая их плотность обнаружена в области дуги аорты и бифуркации общей сонной артерии. Они представляют собой механорецепторы, реагирующие на растяжение эластических стенок артерий образованием потенциала действия, передающегося в центральной нервной системе. Имеет значение не только абсолютная величина, но и скорость изменения растяжения сосудистой стенки. Если АД остается повышенным в течение нескольких дней, то частота импульсации артериальных барорецепторов возвращается к исходному уровню, в связи с чем они не могут выполнять роль механизма долговременной регуляции АД. Артериальный барорецепторный рефлекс функционирует автоматически по механизму отрицательной обратной связи, стремясь к поддержанию величины СрАД.

Хеморецепторы, расположенные в сонных артериях и дуге аорты, а также центральные хеморецепторы, локализация которых в настоящее время еще точно не установлена, осуществляют второй механизм кратковременной регуляции АД. Снижение р02 и(или) повышение рСО2 в артериальной крови вызывает увеличение среднего артериального давления путем активации симпатического тонуса артериол мышечной ткани. Кроме того, повышение АД отмечается при мышечной ишемии, возникающей в результате длительной статической (изометрической) работы. При этом через афферентные нервные волокна скелетной мускулатуры активируются хеморецепторы.

Средне- и долгосрочные механизмы регуляции артериального давления осуществляются преимущественно через ренин-ангиотензиновую систему (РАС).

Однако на начальных этапах развития гипертонии происходит активация симпатико-адреналовой системы, что приводит к увеличению уровня катехоламинов в крови. Если у здоровых людей повышение давление сопровождается снижением активности АС, то у больных гипертонией активность САС остается повышенной. Гиперадренергия приводит к сужению сосудов почек и развитию ишемии в клетках юкстагломерулярного аппарата. Вместе с тем установлено, что увеличение уровня ренина может быть и без предшествующей ишемии клеток юкстагломерулярного аппарата за счет прямой стимуляции адренорецепторов. Синтез репина запускает каскад превращений в РАС.

Очень большую роль в поддержании АД придают влиянию ангиотензина II на надпочечники. Ангиотензин II действует как на мозговой слой (в результате чего увеличивается выделение катехоламинов), так и на корковый, что приводит к повышению продукции альдостерона. Гиперкатехолемия замыкает своеобразную "гипертоническую" цепь, обусловливая еще большую ишемию юкстагломерулярного аппарата и продукцию ренина. Альдостерон взаимодействует с РАС по отрицательной обратной связи. Образующийся ангиотензин II стимулирует синтез альдостерона плазмы крови, и, наоборот, повышенный уровень альдостерона тормозит активность РАС, что нарушается при АГ. Биологический эффект альдостерона связан с регуляцией транспорта ионов практически на уровне всех клеточных мембран, но прежде всего почек. В них он уменьшает выделение натрия, увеличивая его дистальную реабсорбцию в обмен на калий и обеспечивая задержку натрия в организме.

Вторым важных фактором долгосрочного регулирования АД является объемно-почечный механизм. АД оказывает существенное влияние на скорость мочеотделения и тем самым действует на общий объем жидкости в организме. Поскольку объем крови является одним из компонентов общего объема жидкости в организме, изменение объема крови тесно связано с изменением общего объема жидкости. Повышение артериального давления влечет за собой увеличение мочеотделения и как следствие снижение объема крови.

Напротив, снижение АД приводит к увеличению объема жидкости и АД. Из данной отрицательной обратной связи складывается объемный механизм регуляции АД. Большую роль в поддержании объема жидкости в организме отводят вазопрессину, так называемому антидиуретическому гормону, который синтезируется в задней доле гипофиза. Секреция этого гормона находится под контролем барорецепторов гипоталамуса. Повышение АД приводит к уменьшению секреции антидиуретического гормона путем воздействия на барорецепторную активность с угнетением гипоталамических рилизинг-нейронов. Секреция антидиуретического гормона увеличивается при повышении осмолярности плазмы крови (механизм краткосрочной регуляции уровня АД) и уменьшении объема циркулирующей крови и наоборот. При гипертонии данный механизм нарушается из-за задержки натрия и воды в организме, что приводит к стойкому повышению уровня АД.

В последние годы все большее значение в поддержании АД придается клеткам эндотелия, которые покрывают всю внутреннюю поверхность артериальной системы. Они реагируют на различные стимулы посредством продукции целого спектра активных веществ, осуществляющих локальную регуляцию сосудистого тонуса и плазменно-тромбоцитного гемостаза.

Сосуды находятся в постоянном активном базальном состоянии релаксации под действием непрерывно выделяемого эндотелием оксида азота (N0). Многие вазоактивные вещества через рецепторы на поверхности эндотелия увеличивают продукцию N0. Кроме того, образование NO стимулируется под влиянием гипоксии, механической деформации эндотелия и напряжения сдвига крови. Роль других вазодилатирующих гормонов изучена меньше.

Помимо расслабляющего действия на сосудистую стенку, эндотелий оказывает и сосудосуживающее влияние, которое связано с отсутствием или предотвращением действия факторов релаксации, а также за счет продукции вазоконстрикторных веществ.

У здорового человека факторы констрикции и дилатации находятся в состоянии подвижного равновесия. У больных гипертонией происходит сдвиг в сторону преобладания констрикторных факторов. Данное явление получило название дисфункции эндотелия.

Наряду с рассмотренными системами регуляции АД огромная роль в этом процессе принадлежит вегетативной нервной системе. Последняя делится на симпатическую и парасимпатическую нервную систему по анатомическим особенностям, а не по типам трансмиттеров, выделяемым из нервных окончаний и получаемым при раздражении их реакциями (возбуждение или торможение). Центры симпатической нервной системы находятся на тораколюмбальном, а парасимпатической - на крапиосакральном уровне. Передаточные вещества (нейротрансмиттерные субстанции) - адреналин, норадреналин, ацетилколин, дофамин - поступают из нервных окончаний в синаптическую щель и, связываясь со специфическими рецепторными молекулами, активируют или угнетают постсинаптическую клетку. Сигналы от них по симпатическим преганглионарным Волокнам поступают в мозговое вещество надпочечников, откуда адреналин и норадреналин выделяются в кровь. Адреналин реализует свое действие через а- и р-адренорецепторы, что сопровождается увеличением ЧСС практически без изменения уровня АД. Норадреналин служит основным трансмиттером большинства симпатических постганглионарных нервных окончаний. Его действие реализуется через а-адренорецепторы, что приводит к повышению АД без изменения ЧСС. Симпатические сосудосуживающие нервы в норме обладают постоянной, или тонической, активностью. Органный кровоток MO-ACT быть снижен или увеличен (по сравнению с нормой) в результате изменения импульсации симпатических сосудосуживающих центров. Влияние парасимпатических сосудосужи-вающих нервов, выделяющих ацетилхолин, на тонус артериол незначителен. Выделенные из надпочечников и свободно циркулирующие в крови катехоламины влияют на сердечно-сосудистую систему в условиях высокой активности симпатической нервной системы. В целом их влияние аналогично непосредственному действию активирования симпатического отдела вегетативной нервной системы. При увеличении симпатической активности, приводящему к развитию гипертензивных реакций, отмечается либо возрастание концентрации плазменного норадреналина (адреналина), либо повышение количества рецепторов, типичных для АГ.

Таким образом, поддержание АД является сложным физиологическим механизмом, в осуществлении которого участвуют многие органы и системы. Преобладание прессорных систем поддержания АД с одновременным истощением депрессорных систем приводит к развитию