Расчет энтальпии при постоянном давлении. Способы расчета стандартной энтальпии химической реакции

Термохимия изучает тепловые эффекты химических реакций. Во многих случаях эти реакции протекают при постоянном объеме или постоянном давлении. Из первого закона термодинамики следует, что при этих условиях теплота является функцией состояния. При постоянном объеме теплота равна изменению внутренней энергии:

а при постоянном давлении - изменению энтальпии:

Эти равенства в применении к химическим реакциям составляют суть закона Гесса :

Тепловой эффект химической реакции, протекающей при постоянном давлении или постоянном объеме, не зависит от пути реакции, а определяется только состоянием реагентов и продуктов реакции.

Другими словами, тепловой эффект химической реакции равен изменению функции состояния.
В термохимии, в отличие от других приложений термодинамики, теплота считается положительной, если она выделяется в окружающую среду, т.е. если H < 0 или U < 0. Под тепловым эффектом химической реакции понимают значение H (которое называют просто "энтальпией реакции") или U реакции.

Если реакция протекает в растворе или в твердой фазе, где изменение объема незначительно, то

H = U + (pV ) U . (3.3)

Если же в реакции участвуют идеальные газы, то при постоянной температуре

H = U + (pV ) = U + n . RT , (3.4)

где n - изменение числа молей газов в реакции.

Для того, чтобы облегчить сравнение энтальпий различных реакций, используют понятие "стандартного состояния". Стандартное состояние - это состояние чистого вещества при давлении 1 бар (= 10 5 Па) и заданной температуре . Для газов - это гипотетическое состояние при давлении 1 бар, обладающее свойствами бесконечно разреженного газа. Энтальпию реакции между веществами, находящимися в стандартных состояниях при температуре T , обозначают (r означает "reaction"). В термохимических уравнениях указывают не только формулы веществ, но и их агрегатные состояния или кристаллические модификации.

Из закона Гесса вытекают важные следствия, которые позволяют рассчитывать энтальпии химических реакций.

Следствие 1.

равна разности стандартных энтальпий образования продуктов реакции и реагентов (с учетом стехиометрических коэффициентов):

Стандартной энтальпией (теплотой) образования вещества (f означает "formation") при заданной температуре называют энтальпию реакции образования одного моля этого вещества из элементов , находящихся в наиболее устойчивом стандартном состоянии. Согласно этому определению, энтальпия образования наиболее устойчивых простых веществ в стандартном состоянии равна 0 при любой температуре. Стандартные энтальпии образования веществ при температуре 298 К приведены в справочниках.

Понятия "энтальпия образования" используют не только для обычных веществ, но и для ионов в растворе. При этом за точку отсчета принят ион H + , для которого стандартная энтальпия образования в водном растворе полагается равной нулю:

Следствие 2. Стандартная энтальпия химической реакции

равна разности энтальпий сгорания реагентов и продуктов реакции (с учетом стехиометрических коэффициентов):

(c означает "combustion"). Стандартной энтальпией (теплотой) сгорания вещества называют энтальпию реакции полного окисления одного моля вещества. Это следствие обычно используют для расчета тепловых эффектов органических реакций.

Следствие 3. Энтальпия химической реакции равна разности энергий разрываемых и образующихся химических связей.

Энергией связи A- B называют энергию, необходимую для разрыва связи и разведения образующихся частиц на бесконечное расстояние:

AB (г) A (г) + B (г) .

Энергия связи всегда положительна.

Большинство термохимических данных в справочниках приведено при температуре 298 К. Для расчета тепловых эффектов при других температурах используют уравнение Кирхгофа :

(дифференциальная форма) (3.7)

(интегральная форма) (3.8)

где C p - разность изобарных теплоемкостей продуктов реакции и исходных веществ. Если разница T 2 - T 1 невелика, то можно принять C p = const. При большой разнице температур необходимо использовать температурную зависимость C p (T ) типа:

где коэффициенты a , b , c и т.д. для отдельных веществ берут из справочника, а знак обозначает разность между продуктами и реагентами (с учетом коэффициентов).

ПРИМЕРЫ

Пример 3-1. Стандартные энтальпии образования жидкой и газообразной воды при 298 К равны -285.8 и -241.8 кДж/моль, соответственно. Рассчитайте энтальпию испарения воды при этой температуре.

Решение . Энтальпии образования соответствуют следующим реакциям:

H 2(г) + ЅO 2(г) = H 2 O (ж) , H 1 0 = -285.8;

H 2(г) + ЅO 2(г) = H 2 O (г) , H 2 0 = -241.8.

Вторую реакцию можно провести в две стадии: сначала сжечь водород с образованием жидкой воды по первой реакции, а затем испарить воду:

H 2 O (ж) = H 2 O (г) , H 0 исп = ?

Тогда, согласно закону Гесса,

H 1 0 + H 0 исп = H 2 0 ,

откуда H 0 исп = -241.8 - (-285.8) = 44.0 кДж/моль.

Ответ. 44.0 кДж/моль.

Пример 3-2. Рассчитайте энтальпию реакции

6C (г) + 6H (г) = C 6 H 6(г)

а) по энтальпиям образования; б) по энергиям связи, в предположении, что двойные связи в молекуле C 6 H 6 фиксированы.

Решение . а) Энтальпии образования (в кДж/моль) находим в справочнике (например, P.W.Atkins, Physical Chemistry, 5th edition, pp. C9-C15): f H 0 (C 6 H 6(г)) = 82.93, f H 0 (C (г)) = 716.68, f H 0 (H (г)) = 217.97. Энтальпия реакции равна:

r H 0 = 82.93 - 6 716.68 - 6 217.97 = -5525 кДж/моль.

б) В данной реакции химические связи не разрываются, а только образуются. В приближении фиксированных двойных связей молекула C 6 H 6 содержит 6 связей C- H, 3 связи C- C и 3 связи C=C. Энергии связей (в кДж/моль) (P.W.Atkins, Physical Chemistry, 5th edition, p. C7): E (C- H) = 412, E (C- C) = 348, E (C=C) = 612. Энтальпия реакции равна:

r H 0 = -(6 412 + 3 348 + 3 612) = -5352 кДж/моль.

Разница с точным результатом -5525 кДж/моль обусловлена тем, что в молекуле бензола нет одинарных связей C- C и двойных связей C=C, а есть 6 ароматических связей C C.

Ответ. а) -5525 кДж/моль; б) -5352 кДж/моль.

Пример 3-3. Пользуясь справочными данными, рассчитайте энтальпию реакции

3Cu (тв) + 8HNO 3(aq) = 3Cu(NO 3) 2(aq) + 2NO (г) + 4H 2 O (ж)

Решение . Сокращенное ионное уравнение реакции имеет вид:

3Cu (тв) + 8H + (aq) + 2NO 3 - (aq) = 3Cu 2+ (aq) + 2NO (г) + 4H 2 O (ж) .

По закону Гесса, энтальпия реакции равна:

r H 0 = 4 f H 0 (H 2 O (ж)) + 2 f H 0 (NO (г)) + 3 f H 0 (Cu 2+ (aq)) - 2 f H 0 (NO 3 - (aq))

(энтальпии образования меди и иона H + равны, по определению, 0). Подставляя значения энтальпий образования (P.W.Atkins, Physical Chemistry, 5th edition, pp. C9-C15), находим:

r H 0 = 4 (-285.8) + 2 90.25 + 3 64.77 - 2 (-205.0) = -358.4 кДж

(в расчете на три моля меди).

Ответ. -358.4 кДж.

Пример 3-4. Рассчитайте энтальпию сгорания метана при 1000 К, если даны энтальпии образования при 298 К: f H 0 (CH 4) = -17.9 ккал/моль, f H 0 (CO 2) = -94.1 ккал/моль, f H 0 (H 2 O (г)) = -57.8 ккал/моль. Теплоемкости газов (в кал/(моль. К)) в интервале от 298 до 1000 К равны:

C p (CH 4) = 3.422 + 0.0178 . T , C p (O 2) = 6.095 + 0.0033 . T ,

C p (CO 2) = 6.396 + 0.0102 . T , C p (H 2 O (г)) = 7.188 + 0.0024 . T .

Решение . Энтальпия реакции сгорания метана

CH 4(г) + 2O 2(г) = CO 2(г) + 2H 2 O (г)

при 298 К равна:

94.1 + 2 (-57.8) - (-17.9) = -191.8 ккал/моль.

Найдем разность теплоемкостей как функцию температуры:

C p = C p (CO 2) + 2C p (H 2 O (г)) - C p (CH 4) - 2C p (O 2) =
= 5.16 - 0.0094T (кал/(моль. К)).

Энтальпию реакции при 1000 К рассчитаем по уравнению Кирхгофа:

= + = -191800 + 5.16
(1000-298) - 0.0094 (1000 2 -298 2)/2 = -192500 кал/моль.

Ответ. -192.5 ккал/моль.

ЗАДАЧИ

3-1. Сколько тепла потребуется на перевод 500 г Al (т.пл. 658 о С, H 0 пл = 92.4 кал/г), взятого при комнатной температуре, в расплавленное состояние, если C p (Al тв) = 0.183 + 1.096 10 -4 T кал/(г К)?

3-2. Стандартная энтальпия реакции CaCO 3(тв) = CaO (тв) + CO 2(г) , протекающей в открытом сосуде при температуре 1000 К, равна 169 кДж/моль. Чему равна теплота этой реакции, протекающей при той же температуре, но в закрытом сосуде?

3-3. Рассчитайте стандартную внутреннюю энергию образования жидкого бензола при 298 К, если стандартная энтальпия его образования равна 49.0 кДж/моль.

3-4. Рассчитайте энтальпию образования N 2 O 5 (г) при T = 298 К на основании следующих данных:

2NO(г) + O 2 (г) = 2NO 2 (г), H 1 0 = -114.2 кДж/моль,

4NO 2 (г) + O 2 (г) = 2N 2 O 5 (г), H 2 0 = -110.2 кДж/моль,

N 2 (г) + O 2 (г) = 2NO(г), H 3 0 = 182.6 кДж/моль.

3-5. Энтальпии сгорания -глюкозы, -фруктозы и сахарозы при 25 о С равны -2802,
-2810 и -5644 кДж/моль, соответственно. Рассчитайте теплоту гидролиза сахарозы.

3-6. Определите энтальпию образования диборана B 2 H 6 (г) при T = 298 К из следующих данных:

B 2 H 6 (г) + 3O 2 (г) = B 2 O 3 (тв) + 3H 2 O(г), H 1 0 = -2035.6 кДж/моль,

2B(тв) + 3/2 O 2 (г) = B 2 O 3 (тв), H 2 0 = -1273.5 кДж/моль,

H 2 (г) + 1/2 O 2 (г) = H 2 O(г), H 3 0 = -241.8 кДж/моль.

3-7. Рассчитайте теплоту образования сульфата цинка из простых веществ при T = 298 К на основании следующих данных.

В любом веществе содержится некоторое число тепла. Это тепло называют энтальпией. Энтальпия есть величина, характеризующая энергию системы. В физике и химии она показывает теплоту реакции. Она является альтернативой внутренней энергии, и эту величину почаще каждого указывают при непрерывном давлении, когда система имеет определенный резерв энергии.

Инструкция

1. В физико-химических процессах происходит передача тепла от одного тела к иному. Это допустимо, как водится, при непрерывном давлении и температуре. В роли непрерывного давления традиционно выступает атмосферное. Энтальпия, как и внутренняя энергия, является функцией состояния.Внутренняя энергия представляет собой сумму кинетической и потенциальной энергий каждой системы. Она является основой для уравнения энтальпии. Энтальпия представляет собой сумму внутренней энергии и давления, умноженного на объем системы, и равна:H=U+pV, где p – давление в системе, V – объем системы.Вышеуказанная формула используется для расчета энтальпии в том случае, когда даны все три величины: давление, объем и внутренняя энергия. Впрочем, вдалеке не неизменно энтальпия рассчитывается таким образом. Помимо него, существует еще несколько методов вычисления энтальпии.

2. Зная свободную энергию и энтропию, дозволено вычислить энтальпию . Свободная энергия, либо энергия Гиббса, представляет собой часть энтальпии системы, затраченную на перевоплощение в работу, и равна разности энтальпии и температуры, умноженной на энтропию:?G=?H-T?S (?H, ?G, ?S – приращения величин)Энтропия в данной формуле является мерой неупорядоченности частиц системы. Она повышается при увеличении температуры T и давления. При?G<0 процесс идет самостоятельно, при?G>0 – не идет.

3. Помимо того, энтальпия также рассчитывается исходя из уравнения химической реакции. Если дано уравнение химической реакции вида A+B=C, то энтальпию дозволено определить по формуле:dH=dU+?nRT, где?n=nk-nн (nk и nн – число молей продуктов реакции и начальных веществ)При изобарном процессе энтропия равна изменению теплоты в системе: dq=dH.При непрерывном давлении энтальпия равна:H=?СpdTВ случае, если энтальпийный и энтропийный факторы уравновешивают друг друга, приращение энтальпии равно произведению температуры на приращение энтропии:?H=T?S

Дабы рассчитать количество тепла , полученного либо отданного веществом, нужно обнаружить его массу, а также метаморфоза температуры. По таблице удельных теплоемкостей обнаружить эту величину для данного материала, а после этого рассчитать число теплоты по формуле. Определить число теплоты, выделяемой при сгорании топлива, дозволено, узнав его массу и удельную теплоту сгорания. Та же обстановка с плавлением и испарением.

Вам понадобится

  • Для определения числа теплоты возьмите калориметр, термометр, весы, таблицы тепловых свойств веществ.

Инструкция

1. Расчет числа теплоты отданной либо полученной телом.Измерьте массу тела на весах в килограммах, после этого измерьте температуру и нагрейте его, максимально ограничив контакт в внешней средой, вновь измерив температуру. Для этого используйте термоизолированный сосуд (калориметр). Фактически это дозволено сделать так: возьмите всякое тело при комнатной температуре, это и будет ее исходное значение. После этого залейте в калориметр жгучую воду и погрузите туда тело. Через некоторое время (не сразу, тело должно нагреться), измерьте температуру воды, она будет равна температуре тела. В таблице удельной теплоемкости обнаружьте эту величину для материала, из которого изготовлено исследуемое тело. Тогда число теплоты, которое оно получило, будет равно произведению удельной теплоемкости на массу тела и метаморфоза его температуры (Q=c m (t2-t1)). Итог будет получен в джоулях. Температуру дозволено измерять в градусах Цельсия. Если число теплоты получилось позитивное – тело нагревается, если негативное – охлаждается.

2. Расчет числа теплоты при сгорании топлива. Измерьте массу топлива, которое сгорает. Если горючее жидкое, измерьте его объем и умножьте на плотность, взятую в особой таблице. После этого в справочной таблице обнаружьте удельную теплоту сгорания данного топлива и умножьте на его массу. Итогом будет число теплоты, выделившееся при сгорании топлива.

3. Расчет числа теплоты при плавлении и парообразовании.Измерьте массу плавящегося тела, и удельную теплоемкость плавления для данного вещества из особой таблицы. Перемножите эти значения и получите число тепла, поглощаемое телом при плавлении. Это же число теплоты выдается телом при кристаллизации.Дабы измерить число теплоты, поглощаемое при испарении жидкости, обнаружьте ее массу, а также удельную теплоту парообразования. Произведение этих величин даст число теплоты, поглощаемое данной жидкостью при испарении. При конденсации выделится верно такое же число теплоты, которое поглотилось при испарении.

Видео по теме

Тепловой эффект термодинамической системы возникает в итоге происхождения в ней химической реакции, впрочем одной из ее колляций не является. Эта величина может быть определена только при соблюдении некоторых условий.

Инструкция

1. Представление теплового эффект а узко связано с представлением энтальпии термодинамической системы. Это тепловая энергия, которая может быть преобразована в теплоту при достижении определенной температуры и давления. Эта величина характеризует состояние баланса системы.

2. Любая химическая реакция неизменно сопровождается выделением либо поглощением некоторого числа теплоты. В данном случае под реакцией подразумевается влияние реагентов на продукты системы. При этом появляется тепловой эффект , тот, что связан с изменением энтальпии системы, а ее продукты принимают температуру, уведомляемую реагентами.

3. В совершенных условиях тепловой эффект зависит только от нрава химической реакции. Это такие данные, при которых принимается, что система не делает никакой работы, помимо работы растяжения, а температуры ее продуктов и воздействующих реагентов равны.

4. Различают два типа протекания химической реакции: изохорный (при непрерывном объеме) и изобарный (при непрерывном давлении). Формула теплового эффект а выглядит дальнейшим образом:dQ = dU + PdV, где U – энергия системы, P – давление, V – объем.

5. При изохорном процессе слагаемое PdV обращается в нуль, от того что объем не меняется, значит, не происходит растяжения системы, следственно dQ = dU. При изобарном процессе давление непрерывно, а объем возрастает, что обозначает, что система делает работу растяжения. Следственно при вычислении теплового эффект а к изменению энергии самой системы прибавляется энергия, расходуемая на совершение этой работы: dQ = dU + PdV.

6. PdV – величина непрерывная, следственно ее дозволено внести под знак дифференциала, следственно dQ = d(U + PV). Сумма U + PV всецело отражает состояние термодинамической системы, а также соответствует состоянию энтальпии. Таким образом, энтальпия есть энергия, расходуемая при растяжении системы.

7. Особенно зачастую рассчитывают тепловой эффект 2-х видов реакций – образования соединений и сгорания. Теплота сгорания либо образования – табличная величина, следственно тепловой эффект реакции в всеобщем случае дозволено вычислить, просуммировав теплоты всех участвующих в ней веществ.

Видео по теме

Термодинамическими методами невозможно найти абсолютные значения энтальпий и внутренних энергией, а можно определить только их изменения. В то же время при термодинамических расчетах химически реагирующих систем удобно использовать единую систему отсчета. При этом, поскольку энтальпия и внутренняя энергия связаны между собой соотношением , то достаточно ввести систему отсчета лишь для одной энтальпии. Кроме того, для сравнения и систематизации тепловых эффектов химических реакций, которые зависят от физического состояния реагирующих веществ и от условий протекания ХР, вводится понятие стандартного состояния вещества. По рекомендации комиссии по термодинамике Международного союза теоретической и прикладной химии (ИЮПАК) в 1975 году стандартное состояние определено следующим образом:

«Стандартным состоянием для газов является состояние гипотетического идеального газа при давлении в 1 физическую атмосферу (101325 Па). Для жидкостей и твердых веществ стандартным состоянием является состояние чистой жидкости или соответственно чистого кристаллического вещества при давлении в 1физическую атмосферу. Для веществ в растворах за стандартное состояние принято гипотетическое состояние, при котором энтальпия одномолярного раствора (1 моль вещества в 1 кг растворителя) равнялась бы энтальпии раствора при бесконечном разбавлении. Свойства веществ в стандартных состояниях обозначаются надстрочным индексом 0». (Чистым веществом называется вещество, состоящее из одинаковых структурных частиц (атомов, молекул и др.)).

В этом определении говориться о гипотетических состояниях газа и растворенного вещества, поскольку в реальных условиях состояния газов в большей или меньшей степени отличаются от идеального, а состояния растворов - от идеального раствора. Поэтому при использовании термодинамических свойств веществ в стандартных состояниях для реальных условий вводятся поправки на отклонение этих свойств от реальных. Если эти отклонения невелики, то поправки можно не вводить.

В справочниках термодинамические величины обычно приводятся при стандартных условиях: давлении р 0 =101325Па и температуре Т 0 =0К или Т 0 =298,15К (25 0 С). При создании таблиц полных энтальпий веществ за начало отсчета энтальпий также было принято их стандартное состояние при температуре Т 0 =0К или Т 0 =298,15К.

У веществ , являющихся чистыми химическими элементами в наиболее устойчивом фазовом состоянии при р 0 =101325Па и температуре начала отсчета энтальпий Т 0 , принимают значение энтальпий, равное нулю : . (Например, для веществ в газообразном состоянии: О 2 , N 2 , H 2 , Cl 2 , F 2 и др., для С (графит) и металлов (твердые кристаллы)).


Для химических соединений (СО 2 , Н 2 О и др.) и для веществ, которые, являясь чистыми химическими элементами, не находятся в наиболее устойчивом состоянии (O, N и др.) энтальпия при р 0 =101325Па и Т 0 не равна нулю : .

Энтальпия химических соединений при р 0 и Т 0 полагается равной тепловому эффекту образования их из чистых химических элементов при этих параметрах, т.е. . Так, при Т 0 =0К: и при Т 0 =298,15К: .

Энтальпия любого вещества при температуре Т будет равна количеству теплоты, которое необходимо подвести в изобарном процессе, чтобы из чистых химических элементов при температуре Т 0 получить данное вещество и нагреть его от температуры Т 0 до температуры Т , т.е. формула для расчета энтальпии любого вещества имеет вид:

, или при более компактной записи имеем:

,

где верхний индекс «о» означает, что вещество находится в стандартном состоянии при р 0 =101325Па; - энтальпия образования вещества при температуре Т 0 из чистых химических элементов; = – избыточная энтальпия, связанная с теплоемкостью вещества, - полная энтальпия, учитывающая энтальпию образования вещества.

Для Т 0 = 0:

,

Для Т = 298,15 К:

Схема расчета энтальпии при температуре Т может быть представлена в виде.

Задача 1. Рассчитайте стандартную энтальпию и стандартную энтропию химической реакции. Определите в каком направлении при 298°К (прямом или обратном) будет протекать реакция Fe 2 O 3 (к) +3H 2 =2Fe(к) +3H 2 O(г). Рассчитайте температуру, при которой равновероятны оба направления реакции.

ΔHр-ции = Σ∆H 0 прод – Σ∆H 0 исх. Используя справочные данные стандартных энтальпий веществ, находим:

ΔHр-ции = (2·ΔH 0 Fe+3·ΔH 0 H 2 O)- (ΔH 0 Fe 2 O 3 +3·ΔH 0 H 2) = 2·0 + 3·(- 241,82) – (-822,16) - 3·0 = 96,7 кДж.

ΔSр-ции=ΣS 0 прод – ΣS 0 исх. Используя справочные данные стандартных энтропий веществ, находим:

ΔSр-ции = (2·S 0 Fe + 3·S 0 H2O) - (S 0 Fe 2 O 3 + 3·S 0 H 2) = 2·27,15 + 3·188,7 – 89,96 - 3·131 = 137,44 Дж/K = 0,13744 кДж/K.

ΔG = ΔH – TΔS= 96,7 – 298 ·0,13744 = 55,75 кДж.

При Т=298°К, ΔG > 0 – реакция не идет самопроизвольно, т.е. реакция будет протекать в обратном направлении.

ΔH – TΔS = 0, тогда ΔH = TΔS и T= ΔH/ΔS= 96,7/0,13744 = 703,58 K.

При Т=703,58К реакция будет идти равновероятно как в прямом так и в обратном направлении.

Задача 2. Вычислите энергию Гиббса и определите возможность протекания реакции при температурах 1000 и 3000 К. Cr 2 O 3 (т) + 3C (т) = 2Cr (т) + 3CO (г).

Вычисления энергии Гиббса проводим согласно выражению:

Используя справочные данные стандартных энтальпий веществ, находим:

ΔHр-ции = (2·ΔH 0 Cr + 3·ΔH 0 CO) - (ΔH 0 Cr 2 O 3 + 3·ΔH 0 C) = 2·0 + 3·(- 110,6) – (-1141) - 3·0 = 809,2 кДж.

Аналогично, используя справочные данные стандартных энтропий веществ, находим:

ΔSр-ции= (2·S 0 Cr + 3·S 0 CO) - (S 0 Cr 2 O 3 +3·S 0 C)=23,6+3·197,7– 81,2 - 3·5,7 = 542 Дж/K = 0,542 кДж/К.

Найдем энергию Гиббса при 1000 К:

ΔG 1000 = ΔH – TΔS= 809,2 – 1000 · 0,542 = 267,2 кДж

ΔG1000 >

Найдем энергию Гиббса при 3000 К:

ΔG 3000 = ΔH – TΔS = 809,2 – 3000 · 0,542 = - 816,8 кДж

ΔG3000 ˂0, следовательно, реакция протекает самопроизвольно.

Задача 3. Чем можно объяснить, что при стандартных условиях, невозможна экзотермическая реакция: СО 2 (г)+Н 2 (г) ↔ СО (г)+Н 2 О (ж)? Рассчитайте ΔG данной реакции. При каких температурах данная реакция становится самопроизвольной?

Рассчитаем ΔG данной реакции:

ΔG = ΔH – TΔS

Для этого сначала определим ΔH и ΔS реакции:

ΔHр-ции = Σ∆H 0 прод – Σ∆H 0 исх и ΔSр-ции=ΣS 0 прод – ΣS 0 исх.

Используя справочные данные стандартных энтальпий и энтропий веществ, находим:

ΔHр-ции= (ΔH 0 H 2 O(ж) + ΔH 0 CO) - (ΔH 0 CО 2 + ΔH 0 Н 2) =-110,5 + (-285,8) – (393,5) - 0 = -2,8 кДж.

ΔSр-ции= S 0 H 2 O(ж) + S 0 CO - S 0 CО 2 - S 0 Н 2 = 197,5 + 70,1 - 213,7 - 130,52 = -76,6 Дж/K =0,0766 кДж/K.

Найдем энергию Гиббса при стандартных условиях

ΔGр-ции= ΔH – TΔS= -2,8 + 298 · 0,0766=20 кДж

ΔG> 0, следовательно, реакция самопроизвольно не идет.

Найдем, при каких температурах данная реакция становится самопроизвольной: T = ΔH/ΔS = -2,8/(-0,0766) = 36,6 К.

Задача 4. Рассчитав на основании табличных данных ΔG и ΔS, определите тепловой эффект реакции: 2NO (г) +Cl 2 (г) ↔ 2NOCl(г). С чем будет более интенсивно взаимодействовать газообразный хлористый водород (в расчете на 1 моль): с алюминием или с оловом? Ответ дайте, рассчитав ΔG 0 обеих реакций. Продуктами реакций являются твердая соль и газообразный водород.

Рассчитаем ΔG 0 для реакции взаимодействия газообразного хлористого водорода (в расчете на 1 моль) с алюминием:

2Al(т) + 6HCl (г) = 2AlCl 3 (т) + 3H 2

ΔG 0 р-ции = ΣΔG 0 прод - ΣΔG 0 исх

ΔG 0 р-ции 1 =(2·ΔG 0 AlCl 3 +3·ΔG 0 H 2) - (2·ΔG 0 Al + 6·ΔG 0 HCl)

ΔG 0 р-ции 1 = 2· (-636,8) + 3·0- 2·0- 6·(-95,27) = -701,98 кДж

В реакции принимает участие 2 моль Al, тогда ΔGр-ции 1 1 моля Al равно ΔG 0 р-ции 1 = -701,98 / 2 = -350,99 кДж.

Рассчитаем ΔG 0 для реакции взаимодействия газообразного хлористого водорода (в расчете на 1 моль) с оловом:

Sn(т) + 2HCl (г) = SnCl 2 (т) + H 2

ΔG 0 р-ции 2 =(ΔG 0 SnCl2(т) + ΔG 0 H2) - (ΔG 0 Sn + ΔG 0 HCl)

ΔG 0 р-ции 2 = -288,4 + 0- 0- 2·(-95,27) = -97,86 кДж/моль

Обе реакции имеют ΔG0˂0, поэтому они протекают самопроизвольно в прямом направлении, но более интенсивно взаимодействовать газообразный хлористый водород будет с алюминием, т.к ΔG 0 р-ции 1 ˂ ΔG 0 р-ции 2

Задача 5. Не прибегая к вычислениям, определите, какие знаки (>0, <0, ≈0) имеют ΔG, ΔH и ΔS для протекающей в прямом направлении реакции: 4НBr (г) + O 2 (г) ↔2H 2 O(г) +2Br 2 (г).

При постоянных температуре и давлении изменение энергии Гиббса связано с энтальпией и энтропией выражением:

ΔG = ΔH – TΔS.

Энтропия – мера беспорядочности системы. Значение энтропии тем больше, чем больше беспорядок в системе (больше газообразных веществ). В данной реакции количество молей газов в правой части равно 5, а в левой 4, значит энтропия системы уменьшается ΔS˂0.

По условию задачи реакция протекает в прямом направлении, следовательно, ΔG˂0.

В обычных условиях TΔS ˂˂ ΔH , поэтому в данном случае ΔH˂0 – реакция экзотермическая.

Здесь вы найдете примеры задач на вычисление таких термодинамических параметров как энтальпия, энтропия, . Определение возможности самопроизвольного протекания процесса, а также составление термохимических уравнений.

Задачи к разделу Основы термодинамики с решениями

Задача 1. Рассчитайте стандартную энтальпию и стандартную энтропию химической реакции. Определите в каком направлении при 298 °К (прямом или обратном) будет протекать реакция. Рассчитайте температуру, при которой равновероятны оба направления реакции.
Fe 2 O 3 (к) + 3H 2 = 2Fe (к) + 3H 2 O (г)

Δ H р-ции = ΣH 0 кон ΣH 0 исх кДж/моль

Используя справочные данные стандартных энтальпий веществ, находим:

Δ H р-ции = 2·Δ H 0 Fe +3·Δ H 0 H2 O — Δ H 0 Fe2 O3 — 3·Δ H 0 H2 = 2·0 + 3·(- 241,82) – (-822,16) — 3·0 = 96,7 кДж/моль

Δ S р-ции S 0 кон – Σ S 0 исх Дж/(моль·K)

Используя справочные данные стандартных энтропий веществ, находим:

Δ S р-ции = 2·Δ S 0 Fe + 3·Δ S 0 H2 O — Δ S 0 Fe2 O3 — 3·Δ S 0 H2 = 2·27,15 + 3·188,7 – 89,96 — 3·131 = 137,44 Дж/(моль·K)

ΔG = Δ H TΔS = 96,7 – 298 ·137,44 /1000 = 55,75 кДж/моль

При Т=298°К, ΔG > 0 – реакция не идет самопроизвольно, т.е. реакция будет протекать в обратном направлении.

ΔG = Δ H TΔS = 0, тогда

T = — (ΔG – Δ H ) / ΔS = — (0-96,7)/0,137 = 705,83 K

При Т = 705,83 К реакция будет идти равновероятно как в прямом так и в обратном направлении.

Задача 2. Вычислите энергию Гиббса и определите возможность протекания реакции при температурах 1000 и 3000 К.

Уравнение реакции сгорания жидкого сероуглерода следующее:

CS 2 (ж) + 3O 2 = СО 2 + 2SO 2

Тепловой эффект реакции вычислим подставляя справочные данные стандартных энтальпий веществ в выражение:

Δ H р-ции = ΣH 0 кон ΣH 0 исх кДж/моль

Δ H р-ции = Δ H 0 SO2 + Δ H 0 CO2 — Δ H 0 CS2 — 3·Δ H 0 O2 = 2·(-296,9) + 3·(- 393,5) – 87 — 3·0 = -1075,1 кДж/моль

Т.е. при сгорании 1 моля сероуглерода выделяется 1075,1 кДж тепла

а при сгорании x молей сероуглерода выделяется 700 кДж тепла

Найдем х:

x = 700·1/1075,1 = 0,65 моль

Итак, если в результате реакции выделится 700 кДж тепла, то в реакцию вступят 0,65 моль CS 2

Задача 4. Вычислите тепловой эффект реакции восстановления оксида железа (II) водородом, исходя из следующих термохимических уравнений:
1. FeO (к) + CO (г) = Fe (к) + CО 2 (г); ΔH 1 = -18,20 кДж;
2. СO (г) + 1/2O 2 (г) = СO 2 (г) ΔН 2 = -283,0 кДж;
3. H 2 (г) + ½ O 2 (г) = H 2 O (г) ΔН 3 = -241,83 кДж.

Реакция восстановления оксида железа (II) водородом имеет следующий вид:

4. FeO (к) + H 2 (г) = Fe (к) + H 2 O (г)

Чтобы вычислить тепловой эффект реакции необходимо применить , т.е. реакцию 4. можно получить, если сложить реакции 1. и 2. и вычесть реакцию 1.:

Δ H р-ции = Δ H 1 + Δ H 3 Δ H 2 = -18,2 – 241,3 + 283 = 23 кДж

Таким образом, тепловой эффект реакции восстановления оксида железа (II) водородом равен

Δ H р-ции = 23 кДж

Задача 5. Реакция горения бензола выражается термохимическим уравнением:
С 6 Н 6(ж) + 7½ О 2(г) = 6СО 2(г) + 3Н 2 О (г) – 3135,6 кДж.
Вычислите теплоту образования жидкого бензола. Определите теплотворную способность жидкого бензола при условии, что стандартные условия совпадают с нормальными.

Тепловой эффект реакции равен:

Δ H р-ции = ΣH 0 кон ΣH 0 исх кДж/моль

В нашем случае Δ H р-ции = – 3135,6 кДж, найдем теплоту образования жидкого бензола:

Δ H р-ции = Δ H 0 С O2 + 3·Δ H 0 H2 O — Δ H 0 C6 H6 – 7,5·Δ H 0 O2

H 0 C6 H6 = Δ H р-ции — 3·(-241,84) + 6·(- 393,51) – 7,5·0 = — 3135,6 — 3·(-241,84) + 6·(- 393,51) – 7,5·0 = — 49,02 кДж/моль

Δ H 0 C6 H6 = 49,02 кДж/моль

Теплотворная способность жидкого бензола вычисляется по формуле:

Q Т = Δ H р-ции · 1000 / М

М(бензола) = 78 г/моль

Q Т = – 3135,6· 1000 / 78 = — 4,02·10 4 кДж/кг

Теплотворная способность жидкого бензола Q Т = — 4,02·10 4 кДж/кг

Задача 6. Реакция окисления этилового спирта выражается уравнением:
С 2 Н 5 ОН (ж) + 3,0 О 2(г) = 2СО 2(г) + 3Н 2 О (ж) .
Определить теплоту образования С 2 Н 5 ОН (ж) , зная ΔН х.р. = — 1366,87 кДж. Напишите термохимическое уравнение. Определите мольную теплоту парообразования С 2 Н 5 ОН (ж) → С 2 Н 5 ОН (г) , если известна теплота образования С 2 Н 5 ОН (г) , равная –235,31 кДж·моль -1 .

Исходя из приведенных данных, запишем термохимическое уравнение :

С 2 Н 5 ОН (ж) + 3О 2(г) = 2СО 2(г) + 3Н 2 О (ж) + 1366,87 кДж

Тепловой эффект реакции равен:

Δ H р-ции = ΣH 0 кон ΣH 0 исх кДж/моль

В нашем случае Δ H р-ции = – 1366,87 кДж.

Используя справочные данные теплот образования веществ , найдем теплоту образования С 2 Н 5 ОН (ж) :

Δ H р-ции = Δ H 0 С O2 + 3·Δ H 0 H2 O — Δ H 0 C2 H5 OH(ж) – 3·Δ H 0 O2

– 1366,87 =2·(-393,51)+ 3·(-285,84)— Δ H 0 C2 H5 OH – 3·0

Δ H 0 C2 H5 OH(ж) = -277,36 кДж/моль

Δ H 0 C2 H5 OH(г) = Δ H 0 C2 H5 OH(ж) + Δ H 0 парообразования

Δ H 0 парообразования = Δ H 0 C2 H5 OH(г) — Δ H 0 C2 H5 OH(ж)

Δ H 0 парообразования = — 235,31 + 277,36 = 42,36 кДж/моль

Мы определили, что теплота образования С 2 Н 5 ОН (ж) равна

Δ H 0 C2 H5 OH(ж) = -277,36 кДж/моль

и мольная теплота парообразования С 2 Н 5 ОН (ж) → С 2 Н 5 ОН (г) равна

Δ H 0 парообразования = 42,36 кДж/моль

Задача 7. Чем можно объяснить, что при стандартных условиях, невозможна экзотермическая реакция:
СО 2 (г) +Н 2 (г) ↔ СО (г) +Н 2 О (ж) ?
Рассчитайте ΔG данной реакции. При каких температурах данная реакция становится самопроизвольной?

Рассчитаем ΔG данной реакции:

ΔG = Δ H TΔS

Для этого сначала определим Δ H и ΔS реакции:

Δ H р-ции = ΣH 0 кон ΣH 0 исх кДж/моль

Используя справочные данные стандартных энтальпий веществ, находим:

Δ H р-ции = Δ H 0 H2 O(ж) + Δ H 0 CO — Δ H 0 CО2 — Δ H 0 Н2 = -110,5 + (-285,8) – (393,5) — 0 = -2,8 кДж/моль

Δ S р-ции S 0 кон – Σ S 0 исх Дж/(моль·K)

Аналогично, используя справочные данные стандартных энтропий веществ, находим:

Δ S р-ции = Δ S 0 H2 O(ж) + Δ S 0 CO — Δ S 0 CО2 — Δ S 0 Н2 = 197,5 + 70,1 — 213,7 — 130,52 = -76,6 Дж/(моль·K)

Найдем энергию Гиббса при стандартных условиях

ΔG р-ции = Δ H TΔS = -2,8 + 298 · 76,6 /1000 = 20 кДж/моль> 0,

следовательно, реакция самопроизвольно не идет .

Найдем при каких температурах данная реакция становится самопроизвольной .

В состоянии равновесия ΔG р-ции = 0 , тогда

T = Δ H / ΔS = -2,8/(-76,6·1000) = 36,6 К

Задача 8. Рассчитав на основании табличных данных ΔG и ΔS, определите тепловой эффект реакции:
2 NO (г) + Cl 2 (г) ↔ 2 NOCl (г).

При постоянных температуре и давлении, изменение энергии Гиббса

ΔG = Δ H TΔS

На основании табличных данных рассчитаем ΔG и ΔS

ΔG 0 р-ции = Σ ΔG 0 прод — Σ ΔG 0 исх

ΔG р-ции = 2·ΔG 0 NOCl (г) ΔG 0 NO (г) ΔG 0 Cl 2(г)

ΔG р-ции = 2· 66,37 — 89,69 – 0 = — 40,64 кДж/моль

ΔG р-ции < 0 , значит реакция самопроизвольна.

Δ S р-ции S 0 кон – Σ S 0 исх Дж/(моль·K)

Δ S р-ции = ΔS 0 NOCl (г) ΔS 0 NO (г) ΔS 0 Cl 2(г)

Δ S р-ции = 261,6 — 210,62 – 223,0 = -121,04 Дж/(моль·K)

Найдем Δ H :

Δ H = ΔG + TΔS

Δ H = — 40,64 + 298 · (-121,04/1000) = — 76,7 кДж/моль

Тепловой эффект реакции Δ H = — 76,7 кДж/моль

Задача 9. С чем будет более интенсивно взаимодействовать газообразный хлористый водород (в расчете на 1 моль): с алюминием или с оловом? Ответ дайте, рассчитав ΔG 0 обеих реакций. Продуктами реакций являются твердая соль и газообразный водород.

Рассчитаем ΔG 0 для реакции взаимодействия газообразного хлористого водорода (в расчете на 1 моль) с алюминием

2Al(т) + 6HCl (г) = 2AlCl 3 (т) + 3H 2

ΔG 0 р-ции = Σ ΔG 0 прод — Σ ΔG 0 исх кДж/моль

ΔG 0 р-ции1 = 2·ΔG 0 AlCl 3 (т) + 3·ΔG 0 H 2 ΔG 0 Al (т) — 6· ΔG 0 HCl (г)

ΔG 0 р-ции1 = 2· (-636,8) + 3·02·0— 6· (-95,27) = -701,98 кДж/моль

В реакции принимает участие 2 моль Al(т), тогда ΔG р-ции1 1 моля Al(т) равно

ΔG 0 р-ции 1 = -701,98 / 2 = -350,99 кДж/моль

Рассчитаем ΔG 0 для реакции взаимодействия газообразного хлористого водорода (в расчете на 1 моль) с оловом:

Sn(т) + 2HCl (г) = SnCl 2 (т) + H 2

ΔG 0 р-ции2 =ΔG 0 SnCl 2 (т) + ΔG 0 H 2 ΔG 0 Sn (т) — 2· ΔG 0 HCl (г)

ΔG 0 р-ции 2 = -288,4 + 0- 0- 2·(-95,27) = -97,86 кДж/моль

Обе реакции имеют ΔG 0 <0 , поэтому они протекают самопроизвольно в прямом направлении, но более интенсивно взаимодействовать газообразный хлористый водород будет с алюминием, т.к

ΔG 0 р-ции 1 ˂ ΔG 0 р-ции 2

Задача 10. Не прибегая к вычислениям, определите, какие знаки (>0, <0, ≅0) имеют ΔG, ΔH и ΔS для протекающей в прямом направлении реакции:
4 НBr (г) + O 2(г) ↔ 2 H 2 O (г) + 2 Br 2 (г)
Как повлияет повышение температуры на направленность химической реакции?

При постоянных температуре и давлении изменение энергии Гиббса связано с энтальпией и энтропией выражением:

ΔG = Δ H TΔS