Сланцевый газ – плюсы и минусы добычи. Сланцевый газ - факты без эмоций

Сланцевый природный газ (англ. shale gas) - природный газ, добываемый из горючих сланцев и состоящий преимущественно из метана.

Горючий сланец - твердое полезное ископаемое органического происхождения. Сланцы в основном образовались 450 миллионов лет тому назад на дне моря из растительных и животных остатков.


Для добычи сланцевого газа используют горизонтальное бурение (англ. directional drilling), гидроразрыв пласта (англ. hydraulic fracturing, в том числе с применением пропантов). Аналогичная технология добычи применяется и для получения угольного метана.

При добыче нетрадиционного газа гидроразрыв пласта (ГРП) позволяет соединить поры плотных пород и обеспечить возможность высвобождения природного газа. Во время проведения гидроразрыва в скважину закачивается специальная смесь. Обычно она на 99% состоит из воды и песка (пропанта), и лишь на 1% - из дополнительных добавок.

Пропант (или проппант, от англ. propping agent - «расклинивающий агент») - гранулообразный материал, служащий для сохранения проницаемости трещин, получаемых в ходе ГРП. Представляет собой гранулы с типичным диаметром от 0,5 до 1,2 мм.

Среди дополнительных добавок могут быть, например, гелирующий агент, как правило, природного происхождения (более 50% от состава хим. реагентов), ингибитор коррозии (только при кислотных ГРП), понизители трения, стабилизаторы глин, химическое соединение, сшивающее линейные полимеры, ингибитор образования отложений, деэмульгатор, разжижитель, биоцид (химреагент для разрушения водных бактерий), загуститель.

Для того, чтобы не допустить утечки жидкости для ГРП из скважины в почву или подземные воды, крупные сервисные компании применяют различные способы изоляции пластов, такие как многоколонные конструкции скважин и использование сверхпрочных материалов в процессе цементирования.

Сланцевый газ содержится в небольших количествах (0,2 - 3,2 млрд куб. м на кв. км), поэтому для добычи значительных количеств такого газа требуется вскрытие больших площадей.

Первая коммерческая газовая скважина в сланцевых пластах была пробурена в США в 1821 году Уильямом Хартом (англ. William Hart) во Фредонии, Нью-Йорк, который считается в США «отцом природного газа». Инициаторами масштабного производства сланцевого газа в США являются Джордж Ф. Митчелл и Том Л. Уорд.

Масштабное промышленное производство сланцевого газа было начато компанией Devon Energy в США в начале 2000-х, которая на месторождении Barnett Shale в 2002 году пробурила впервые горизонтальную скважину. Благодаря резкому росту его добычи, названному в СМИ «газовой революцией», в 2009 году США стали мировым лидером добычи газа (745,3 млрд куб. м), причём более 40% приходилось на нетрадиционные источники (метан угольных пластов и сланцевый газ).


В первом полугодии 2010 года крупнейшие мировые топливные компании потратили $21 млрд на активы, которые связаны с добычей сланцевого газа. На тот момент некоторые комментаторы высказывали мнение, что ажиотаж вокруг сланцевого газа, именуемый сланцевой революцией, - результат рекламной кампании, вдохновлённой рядом энергетических компаний, вложивших значительные средства в проекты по добыче сланцевого газа и нуждающихся в притоке дополнительных сумм. Как бы то ни было, после появления сланцевого газа на мировом рынке цены на газ стали падать.

По сведениям директора Института проблем нефти и газа РАН академика Анатолия Дмитриевского, себестоимость добычи сланцевого газа в США на 2012 год - не менее 150 долларов за тысячу кубометров. По мнению большинства экспертов, себестоимость добычи сланцевого газа в таких странах, как Украина, Польша и Китай, будет в несколько раз выше, чем в США.

Себестоимость сланцевого газа выше, чем традиционного. Так, в России себестоимость природного газа со старых газовых месторождений, с учётом транспортных расходов, составляет около $50 за тыс. куб. м.

Ресурсы сланцевого газа в мире составляют 200 трлн куб. м. В настоящее время сланцевый газ является региональным фактором, который имеет значительное влияние только на рынок стран Северной Америки.

В числе факторов, положительно влияющих на перспективы добычи сланцевого газа: близость месторождений к рынкам сбыта; значительные запасы; заинтересованность властей ряда стран в снижении зависимости от импорта топливно-энергетических ресурсов. В то же время у сланцевого газа есть ряд недостатков, негативно влияющих на перспективы его добычи в мире. Среди таких недостатков: относительно высокая себестоимость; непригодность для транспортировки на большие расстояния; быстрая истощаемость месторождений; низкий уровень доказанных запасов в общей структуре запасов; значительные экологические риски при добыче.

По оценке IHS CERA, добыча сланцевого газа в мире к 2018 году может составить 180 млрд кубометров в год.

Комментарии: 0

    Дмитрий Грищенко

    О добыче сланцевой нефти и газа пишут много и часто. На лекции попробуем разобраться что же представляет из себя данная технология, какие экологические проблемы с ней связаны, а какие - лишь плод воображения журналистов и защитников природы.

    Может ли стремительный прогресс в области технологий, генетики и искусственного интеллекта привести нас к тому, что экономическое неравенство, столь широко распространенное в этом мире, закрепится на биологическом уровне? Этим вопросом задается историк и писатель Юваль Ной Харари.

    Владимир Мордкович

    Синтез Фишера - Тропша - это химический процесс, который является ключевой стадией самого современного способа получения синтетических топлив. Почему говорят именно «синтез» или «процесс» и избегают слова «реакция»? Именами ученых, в данном случае Франца Фишера и Ганса Тропша, называют обычно отдельные реакции. Дело в том, что как таковой реакции Фишера - Тропша нет. Это комплекс процессов. Только основных реакций в этом процессе три, а насчитывают их не менее одиннадцати. В целом синтез Фишера - Тропша - это превращение так называемого синтез-газа в смесь жидких углеводородов. Химик Владимир Мордкович о способах получения синтетического топлива, новых типах катализаторов и реакторе Фишера - Тропша.

    Александра Пошибаева

    Сегодня есть две основные гипотезы образования нефти: неорганическая (абиогенная) и органическая (биогенная, и ее также называют осадочно-миграционной). Сторонники неорганической концепции считают, что нефть образовалась из углерода и водорода по процессу Фишера - Тропша на больших глубинах, при огромных давлениях и температурах выше тысячи градусов. Нормальные алканы могут образоваться из углерода, водорода в присутствии катализаторов, однако в природе отсутствуют такие катализаторы. Помимо этого, в нефтях содержится огромное количество изопренанов, циклических углеводородов-биомаркеров, которые по процессу Фишера - Тропша образоваться не могут. О поиске новых месторождений нефти, неорганической теории ее происхождения и роли прокариот и эукариот в образовании углеводородов рассказывает химик Александра Пошибаева.

    Андрей Бычков

    Углеводороды сегодня являются энергетической основой нашей цивилизации. Но надолго ли хватит месторождений горючих ископаемых и что делать после их истощения? Как и других полезных ископаемых, нам придется разрабатывать сырье с меньшим содержанием полезного компонента. Как сделать нефть, из какого сырья? Будет ли это выгодно? Уже сегодня мы имеем много экспериментальных данных. В лекции будут обсуждены вопросы о процессах образования нефти в природе и показаны новые экспериментальные результаты. Обо всем этом вам расскажет Бычков Андрей Юрьевич, доктор геолого-минералогических наук, профессор РАН, профессор кафедры геохимии в МГУ.

    Королёв Ю. М.

    О том, как учёные пытаются разгадать тайну происхождения нефти, а точнее, нефтяных углеводородов, мы попросили рассказать Ю.М. Королёва - ведущего научного сотрудника Института нефтехимического синтеза им. А.В. Топчиева. Он более тридцати лет изучает рентгенографический фазовый состав ископаемых углеводородных минералов и их превращение под действием времени и температуры.

    Родкин М. В.

    Спор о биогенном (органическом) или абиогенном происхождении нефти особенно интересен для российского читателя. Во-первых, углеводородное сырьё - один из основных источников дохода в бюджете страны, а во-вторых, российские учёные - признанные лидеры многих направлений в этом старом, но всё ещё не закрытом научном споре.

    Изобретатель из Санкт-Петербурга Александр Семенов запатентовал боевую систему, которая позволяет экипажу танка использовать для стрельбы собственные экскременты. Автор проекта настаивает на том, что такая технология позволит решить как минимум две задачи: позволит утилизировать экскременты и одновременно понизит боевой дух противника. Сообщения об этом взбудоражили британскую прессу.

    В конце мая газета The Wall Street Journal опубликовала большой материал, посвященный перспективному американскому энергетическому оружию - рельсотрону. В материале газеты утверждалось, что, по мнению военных планировщиков, такое орудие, в случае необходимости, поможет США защитить Прибалтику от российской военной агрессии и поддержать союзников в противостоянии с Китаем в Южно-Китайском море. Военный эксперт Василий Сычев рассказывает, что такое рельсотрон и как быстро его можно принять на вооружение.

    В прошлом году газета The New York Times назвала Митио Каку одним из самых умных людей Нью-Йорка. Американский физик японского происхождения, провёл ряд исследований в области изучения чёрных дыр и ускорения расширения Вселенной. Известен как активный популяризатор науки. В активе учёного - несколько книг-бестселлеров, циклы передач на BBC и Discovery. Митио Каку - преподаватель с мировым именем: он профессор теоретической физики в нью-йоркском Сити-колледже, много путешествует по миру с лекциями. Недавно Митио Каку рассказал в интервью, каким он видит образование будущего.



Сланцевый газ – это одна из разновидностей природного газа. В его состав входит, в основном, метан, который является признаком ископаемого горючего вещества. Добывается он непосредственно из сланцевых пород, в месторождениях, где это возможно сделать с использованием обычного оборудования. Лидером по добыче и подготовке сланцевого газа к использованию считается США, которые сравнительно недавно начали эксплуатировать эти ресурсы в целях экономической и топливной независимости от других стран.

Как ни странно, но впервые наличие газа в сланцах было обнаружено еще в 1821 в недрах США. Открытие принадлежит Уильяму Харту, который во время исследований грунтов Нью-Йорка наткнулся на нечто неопознанное. Об открытии поговорили пару недель, после чего забыли, так как нефть добывать было проще – она сама выливалась ан поверхность земли, а сланцевый газ нужно было как-то извлекать с глубин.

Больше 160 лет вопрос добычи сланцевого газа оставался закрытым. Запасов легкой нефти хватало на все нужды человечества, да и технически было сложно представить себе добычу газа из сланцев. К началу 21 века началась активная разработка нефтяных месторождений, где нефть приходилось буквально вырывать из недр земли. Естественно, это значительно повлияло на развитие технологий, и теперь добыть газ из прочных сланцевых пород и подготовить его к использованию. К тому же, эксперты начали заявлять о том, что запасы нефти подходят к концу (хотя это не так).

В итоге, в начале 2000 года Том Уорд и Джордж Митчелл, разработали стратегию масштабной добычи природного газа из сланцев в США. Воплотить ее в жизнь взялась компания DevonEnergy, и начала она с месторождения Барнетт. Дело началось успешно, и нужно было продолжать развивать технологии, чтобы ускорить добычу и увеличить глубину добычи. В связи с этим, в 2002 году в техасском месторождении был использован уже другой метод бурения. Комбинация наклонно-направленной разработки с горизонтальными элементами стала инноваций в сфере газовой промышленности. Теперь появилось понятие «гидроразрыва пласта», благодаря чему добыча сланцевого газа увеличилась в несколько раз. В 2009 году в США прошла так называемая «газовая революция», и эта страна вышла в лидеры по добыче данного вида топлива – более 745 млрд. кубов.

Причиной такого скачка развития сланцевой добычи стало желание США стать топливно-независимой страной. Раньше, она считалась главным потребителем нефти, а теперь перестала нуждаться в дополнительных ресурсах. И хотя рентабельность добычи самого газа сейчас отрицательная, расходы покрываются разработкой нетрадиционных источников.

Всего за 6 месяцев 2010 года мировые компании вложили более 21 млрд. долларов активов в развитие технологий и добычи сланцевого газа. Изначально считалось, что сланцевая революция – не более чем рекламная уловка, маркетинговый ход компаний для пополнения активов. Но в 2011 году цены на газ в США стали активно падать, и вопрос правдивости разработок отпал сам собой.

В 2012 году добыча сланцевого газа стала окупаемой. Цены на рынке хоть и не изменились, но все равно были ниже себестоимости добычи и подготовки этого современного вида топлива. Но к концу 2012 года в связи с мировым экономическим кризисом этот рост приостановился, а некоторые крупные компании, которые работали в этой сфере, попросту закрылись. В 2014 году в США прошла полная реорганизация всего оборудования и изменена стратегия добычи, что привело к возрождению «сланцевой революции». Планируется, что к 2018 году газ станет отличным альтернативным топливом, который позволит нефти дать время на восстановление.

В современных СМИ и общественных дискуссиях сланцевый газ часто противопоставляется природному. В чем особенности обоих типов полезных ископаемых?

Факты о сланцевом газе

Сланцевый газ - это, так или иначе, природный газ, но добывается он особым способом - посредством извлечения из газоносных осадочных пород. Которые в земных недрах представлены главным образом горючими сланцами. По химическому составу является, как правило, метаном.

Сланцевый газ начал активно добываться сравнительно недавно - в 2000-х годах. Наибольших масштабов его извлечение достигло в США, которые стали мировым лидером по производству данного вида топлива. Однако себестоимость его добычи в большинстве случаев ощутимо выше, чем та, что характеризует извлечение из недр «обычного» природного газа. Как считают многие современные эксперты, наибольший процент извлекаемых запасов соответствующей разновидности «голубого топлива» находится как раз таки в Северной Америке. Этим и может быть обусловлен тот факт, что мировым лидером в добыче сланцевого газа стали США.

Сланцевый газ залегает на рассредоточенных месторождениях с относительно небольшими запасами - порядка 0,5-3 млрд куб. м/кв. км. Наиболее распространенные технологии добычи сланцевого газа - гидроразрыв пласта (считающийся крайне неэкологичным), иногда используется пропановый фрекинг (который может значительно увеличивать себестоимость добычи «голубого топлива» в соответствующей разновидности).

При добыче сланцевого газа в структуре скважин в большинстве случаев присутствуют горизонтальные участки. Консервация объектов газодобычи, как правило, осложнена. Общее количество скважин на месторождении сланцевого газа - порядка нескольких сотен. Ресурс одной скважины - около 1-2 лет.

Сланцевый газ во многих случаях требует последующей обработки в целях приведения к установленным промышленным и потребительским стандартам.

Факты об «обычном» природном газе

Традиционный природный газ - тот, что извлекается из особых газовых залежей либо отдельных участков нефтяных месторождений, так называемых газовых «шапок», иногда - из газогидратов. Как и сланцевая разновидность «голубого топлива», представлен в основном метаном, иногда - этаном, пропаном либо бутаном.

Традиционный природный газ залегает на глубине 1 км и более. Для того чтобы извлечь его, газодобывающие компании используют главным образом вертикальные скважины. Поступление природного газа на поверхность земли осуществляется за счет давления в пластах, в которых он залегает. Ресурс одной скважины в месторождениях соответствующей разновидности топлива - порядка 5-10 лет.

Наличие горизонтальных участков нехарактерно для структуры скважин, которые пробуриваются на месторождениях традиционного природного газа. Метод гидроразрыва пластов при добыче соответствующего вида топлива применяется редко. Общее количество скважин на одном месторождении традиционного газа обычно не превышает нескольких десятков.

Рассматриваемый вид «голубого топлива» требует, как правило, минимальной переработки в целях приведения к потребительским и промышленным стандартам.

Сравнение

Главное отличие сланцевого газа от природного - в специфике месторождений. «Голубое топливо» первого типа залегает в осадочных породах. Традиционный природный газ, в свою очередь, добывается из особых газоносных залежей, отдельных участков нефтяных месторождений, а также газогидратов. Данный фактор предопределяет прочие различия между рассматриваемыми разновидностями топлива. Такие как, в частности:

  • технология добычи;
  • ресурс скважины;
  • качество добытого газа;
  • себестоимость.

Изучив то, в чем разница между сланцевым и природным газом прослеживается принципиально, зафиксируем выводы в небольшой таблице.

Таблица

Сланцевый газ Природный газ
Что между ними общего?
Сланцевый газ - разновидность природного
Оба вида «голубого топлива» представлены главным образом метаном
В чем разница между ними?
Добывается из осадочных пород Добывается из газоносных залежей, газовых «шапок» нефтяных месторождений, газогидратов
Добыча предполагает бурение скважин с горизонтальными участками с применением гидроразрыва пласта (реже - пропанового фрекинга) Добыча по наиболее распространенной схеме предполагает бурение вертикальных скважин без гидроразрыва пласта
Добыча чаще всего предполагает бурение нескольких сотен скважин на одном месторождении Добыча предполагает бурение, как правило, нескольких десятков скважин на одном месторождении
Ресурс одной скважины - 1-2 года Ресурс одной скважины - 5-10 лет
Как правило, требует достаточно глубокой обработки после извлечения в целях приведения к потребительским стандартам Обычно требует минимальной обработки после извлечения
Характеризуется относительно высокой себестоимостью добычи Характеризуется относительно невысокой себестоимостью добычи

Многие люди ошибочно считают, что сланцевый газ является чуть ли не отдельным энергоносителем, но приставку «сланцевый» он получил лишь потому, что залегает в сланцевом слое осадочной породы, а по своему составу отличается от природного газа повышенным содержанием метана, углекислого газа, аммиака и сероводорода. Как же все-таки добывается этот источник топлива и чем технология его добычи отличается от традиционного газа?

Главное отличие - особенности его залегания. Традиционный газ добывается из пористых коллекторов, глубина залегания которых колеблется от 700 до 4000 метров. Из-за большого количества пор коллекторы имеют высокую проницаемость (около 25%) и голубое топливо легко выкачивать после того, как скважина будет пробурена.
Сланцевый газ в свою очередь залегает на глубине от 2500 до 5000 метров в породах с низкой пористостью (3–4%), поэтому его разведка обходится гораздо дороже, а технология добычи намного сложнее.

Краткий экскурс в историю

Впервые добывать газ из сланцевого слоя осадочной породы начали почти 200 лет назад. Это произошло в США в 1821 году. Этот вид топлива использовался и в СССР: после окончания Великой Отечественной Войны он добывался в Эстонии и поставлялся по газопроводу в Ленинград. Но вскоре советские власти, как и правительства многих других стран мира, поняли, что добыча и транспортировка сланцевого газа обходится значительно дороже традиционного природного, поэтому разработка месторождений была остановлена.
Вторую жизнь идея добычи сланцевого газа обрела в начале двухтысячных годов, когда стали активно применяться технологии горизонтального бурения и многостадийного гидроразрыва пласта, которые позволили значительно увеличить объемы добычи, снизив ее себестоимость.

Технология разведки

Поиск месторождений сланцевого газа требует гораздо больших затрат по сравнению с разработкой традиционного голубого топлива, а технология разведки пока далека от совершенства. Из-за большой глубины залегания многие традиционные методы исследования оказываются неэффективны.
Если смотреть упрощенно, разведка сланцевого газа происходит следующим образом:
в предполагаемом районе его залегания бурится скважина, в которой производится гидроразрыв;
полученный газ анализируется, и на основании результатов анализа определяются оборудование и технология, которые необходимо будет применять для его добычи;
продуктивность скважин определяется опытным путем, а не при помощи точных гидродинамических исследований, как при добыче обычного природного газа.

Мировая статистика запасов

Прогнозируемые запасы сланцевого газа составляют 760 триллионов кубометров, доказанные, по данным американского агентства EIA , - 187,5 триллионов кубометров. Для сравнения, мировые запасы газа, по мнению самого читаемого журнала в мире по нефтегазовой тематике Oil & Gas Journal , составляют чуть более 36 триллионов баррелей.
Крупнейшими месторождениями сланцевого газа обладают КРН - 19,3 % от мировых запасов, США - 13%, Аргентина - 11,7%, Мексика - 10,3%, ЮАР - 7,3%, Австралия - 6%, Канада - 5,9%. Эти оценки с течением времени могут кардинально измениться, ведь, как уже упоминалось, разведка запасов сланцевого газа только начинает развиваться и пока продуктивность скважин определяется только опытным путем.

Бурение и прокладка труб

Особенностью добычи сланцевого газа является технология горизонтального бурения. Ее суть заключается в том, что после того, как была пробурена одна вертикальная скважина до глубины залежей сланцевого газа, бур начинает идти горизонтально. Однако существует множество нюансов, которые необходимо соблюдать при бурении, например, необходимо следить, чтобы уровень наклона бура соответствовал углу наклона сланцевого пласта и т. д.
Добывающие компании вынуждены применять такую технологию, так как газ залегает на значительной глубине в изолированных карманах в очень небольших объемах. Срок эксплуатации скважин невелик - от 5 до 12 лет. Для справки, срок эксплуатации скважины природного газа - от 30 до 50 лет. На крупнейшем разрабатываемом месторождении СГ в мире - BarnettShale - количество скважин уже превысило 17 тысяч.
Горизонтальная длина скважины может достигать 12 километров (этот рекорд был установлен при бурении на Сахалине).
В пробуренную скважину устанавливаются стальные трубы в несколько слоев. В пространство между ними и почвой заливается цемент, чтобы изолировать газ и жидкости для гидроразрыва пласта от пластов почвы, в которых содержится вода.

Гидроразрыв

Поскольку сланцевый газ залегает в породе, имеющей низкую пористость, извлекать его традиционными методами невозможно. Именно поэтому для добычи сланцевого газа активно применяется технология гидравлического разрыва пласта (фрекинга). По трубам к залежам газа закачивается вода, химические реагенты (ингибаторы коррозии, загустители, кислоты, биоциды и множество других химических элементов, общее число которых может доходить до 90 наименований) и специальные гранулы диаметром 0,5–1,5 миллиметра, которые могут состоять из керамики, стали, пластика или песчинок. Вся эта смесь создает химическую реакцию, которая и приводит к гидроразрыву. В результате в породе, которая содержит газ, образуется множество мелких трещин, в которых застревают гранулы, чтобы трещины уже не могли сойтись. Затем вода откачивается назад (она фильтруется и повторно используется для нового ГРП), а сланцевый газ, благодаря перепаду давления, выкачивается через трубы на поверхность.

Жидкости для гидроразрыва

Основой жидкости для гидроразрыва является вода (98,5% от общего объема). Порядка 1% состава - «расклинивающий» трещины элемент (обычно им является песок). Оставшиеся 0,5% - химические соединения, воздействующие на водопроницаемость породы. Без них гидроразрыв просто невозможен.
В течение последних лет велось много споров о вреде для экологии жидкостей для ГРП. Поднятая шумиха привела к тому, что многие европейские страны (Франция, Болгария, Италия) запретили проводить на своей территории гидроразрывы, а в США законодатели вынудили компании, занимающиеся добычей сланцевого газа, публиковать информацию о составе жидкостей для ГРП.
Но технология гидроразрыва, а соответственно и жидкости для них, используются и при добыче обычного природного газа. Например, ее активно применяет компания «Роснефть» , производившая две тысячи гидроразрывов в год еще несколько лет назад.

Транспортировка и очистка

Доставлять сланцевый газ обычными способами до конечных потребителей невозможно, так как стандартные газопроводы рассчитаны на давление в 75 атмосфер. В сланцевом газе этот показатель гораздо ниже из-за повышенного содержания аммиака, сероводорода, азота и углекислого газа и при прокачке его через газопроводы для природного газа может произойти взрыв.
Существует два решения проблемы транспортировки: cтроить заводы по очистке, что позволит сделать состав сланцевого газа приближенным к природному и затем доставлять его по уже существующим газопроводам, или создавать отдельную инфраструктуру для транспортировки сланцевого газа.
Первый вариант требует значительных расходов и делает добычу сланцевого газа просто нерентабельной. А вот второй способ все более активно используется странами, добывающими сланцевое топливо. Причем все они предпочитает доставлять газ на небольшие расстояния потребителям, которые находятся недалеко от месторождения, что делает транспортировку сланцевого газа максимально дешевой.
Именно так поступают в США, где добытый газ транспортируется пока только по коротким локальным газопроводам низкого давления или закачивается в баллоны. Такой же политики придерживается и Китай, начавший строительство первого сланцевого газопровода в провинцию Юньнань, длина которого составляет всего 93 километра.Что касается транспортировки сланцевого газа на дальние расстояния, то при отсутствии разветвленной сети газопроводов наиболее перспективным способом на данный момент является его преобразование в специальных терминалах в сжиженный газ и отправка покупателям при помощи танкеров. По прибытии в пункт назначения продукт перекачивается в резервуары для хранения, а затем преобразуется обратно в газообразное состояние и доставляется по газопроводам конечным потребителям. В настоящий момент строительством подобных терминалов активно занимаются в США. Первый объект, через который будет производится экспорт топлива в страны Юго-Восточной Азии, планируется ввести в эксплуатацию уже в конце 2015 года. Ожидается, что все построенные к 2020 году терминалы позволят экспортировать 118 миллиардов кубометров сланцевого газа.

Главное ноу-хау современной добычи

Экологический вред от гидроразрыва можно свести к минимуму при помощи применения технологии пропанового фрекинга. От обычного гидроразрыва она отличается тем, что вместо воды и химикатов к местам залежей сланцевого газа закачивается пропан, который, в отличие от традиционных жидкостей для ГРП, не оседает в почве после гидроразрыва, а полностью испаряется, поэтому загрязнять землю или воду он никак не может.
Эта технология серьезно изменила отношение многих европейских стран, заботящихся о своей экологии, к проведению гидроразрывов. Британские власти уже сняли запрет на ГРП, другие страны ЕС только рассматривают эту возможность.
Правда, у пропанового фрекинга есть и существенный минус, перечеркивающий всю его хваленую экологичность. Применение этого метода обходится в полтора раза дороже обычного гидроразрыва. Поэтому использовать подобную технологию можно только на месторождениях, имеющих высокую рентабельность.

Что такое сланцы?

Сланцы представляют собой осадочные породы, прошедшие определенные стадии преобразования. Первым делом происходит накопление рыхлых осадков – как правило, в водоемах. Самыми мощными отложениями являются озерно-болотные и морские прибрежные. С течением времени осадки уплотняются (литогенез), потом происходит формирование породы (диагенез), далее порода преобразуется (катагенез). Заключительная стадия – метаморфизм. Таким образом из рыхлого песка образуется сначала песчаник, потом песчано-глинистый сланец и, наконец, гнейс.

литогенез -> диагенез -> катагенез -> метаморфизм

Все эти геологические подробности нужны для понимания условий, в которых появляется и хранится в природе сланцевый газ. Дело в том, что на финальной стадии – стадии метаморфизма – происходит не просто дальнейшее уплотнение породы и ее дегидратация (обезвоживание), но и образование в условиях высокой температуры и высокого давления новых минералов, таких, например, как калинит, хлорит, глауконит, с характерной для глинистых минералов плоской таблетчатой формой.

Если изначально в донных отложениях наряду с обломочной частью (песчинками кварца и полевого шпата) находится некоторое количество органики, то в определенных случаях эта органика концентрируется и производит пласты углей (один из видов так называемого керогена). Другие виды керогена становятся исходным материалом для формирования впоследствии нефти и газа. Под действием давления и температуры бурые угли преобразуются в так называемые тощие угли, выделяя при этом большое количество газа . Например, лабораторными исследованиями установлено, что при преобразовании 1 т угля буроугольной стадии выделяется 140 м 3 газа. Это очень большие объемы генерации, и потому в тех местах, где залегало большое количество концентрированной органики, сформировались высокогазоносные пласты , а газ из этих пластов, наряду со сланцевым, является ресурсом, добываемым из нетрадиционных источников.

Природные фильтры и перегородки

Однако в случае со сланцами геологи имеют дело с рассеянной органикой, преобразование которой приводит к выделению газа, но он так и остается в микротрещинах между минералами. Минералы эти, как уже говорилось, имеют плоскую таблетчатую форму и, что самое главное, практически непроницаемы для газа.

Традиционные газовые и нефтяные месторождения приурочены, как правило, к структурным ловушкам – антеклинальным структурам . По сути это складка породы, направленная вверх (противоположность такой складке, то есть впадина, называется синеклизой). Антеклинальная складка образует своего рода свод, под которым за счет силы гравитации происходит перераспределение фаз: вверху формируется некая газовая «шапка», ниже – нефтяная или газоконденсатная оторочка, еще ниже – газово-водяной контакт. Причем породы, слагающие структуры классических месторождений углеводородов, должны обладать хорошими фильтрационными характеристиками, с тем чтобы газ или микроскопические частички нефти могли за счет разности в плотности и весе подниматься к центральной части этой структуры, а вода – отжиматься вниз. Таким образом, частички нефти и пузырьки газа могут проходить сквозь породу большие расстояния и собираться с обширного пространства, формируя крупные залежи. Сланцевый же газ скапливаться в больших объемах не может– он заперт в микротрещинах между пластинками минералов с крайне низкими фильтрующими свойствами. Этим и объясняются все особенности и проблемы его добычи.

Как добраться к сланцевому газу?

Что если пробурить скважину в районе залегания газоносных сланцевых пластов? Газа из нее удастся получить совсем немного. В этом случае зона влияния скважины окажется равной нескольким сантиметрам – именно с этого крошечного пятачка под землей удастся собрать газ (для сравнения – зона влияния скважины в традиционном месторождении равна сотням метров). Непроницаемые сланцы держат свои углеводородные сокровища взаперти. Однако у сланцев есть свойство, которое так и называется – сланцеватость . Свойство это заключается в том, что все трещины ориентированы в определенных направлениях, и если пробурить горизонтальную скважину «в крест», то есть перпендикулярно трещинам, можно одновременно вскрыть гораздо больше полостей с газом.

Это правильное решение, но необходимого эффекта не дает и оно, ибо не гарантирует хорошей связи ствола скважины с большим количеством трещин. Поэтому бурение горизонтальной скважины обязательно дополняется гидроразрывом породы , причем гидроразрывом многостадийным. На первой стадии гидроразрывная жидкость подается в самую дальнюю, призабойную часть скважины. Затем участок трубы длиной 150–200 м перекрывается специальным клапаном в виде шарика, и следующий гидроразрыв производится уже ближе к устью скважины. Таким образом, если ствол скважины имеет длину 1000–1200 м, то на ее протяжении делается пять-семь гидроразрывов. Вместе с жидкостью в образовавшиеся полости поступает пропант, который не дает породе вновь сомкнуться. Пропант состоит из песка или керамических шариков, то есть по определению имеет хорошие фильтрующие свойства и не мешает газу проникать в ствол скважины.

Технологии прокладки горизонтальных скважин и гидроразрывов уже достаточно хорошо отработаны и используются в коммерческой добыче. И все же, по сравнению с добычей газа из традиционных источников извлечение сланцевого газа из недр несет с собой ряд экономических и экологических проблем.

Какие недостатки добычи сланцевого газа?

Если на начальном этапе скважина поставляет 200–500 тысяч кубометров в сутки, то через год это будет всего лишь 8–10 тысяч.

Сразу после вскрытия скважины давление выходящего из земли газа и его объемы (дебиты) весьма высоки. Однако поскольку емкость хранящих газ трещин все же невелика, то в течение года эти показатели падают на 70–75%. Например, если на начальном этапе скважина поставляет 200–500 тысяч кубометров в сутки, то через год это будет всего лишь 8–10 тысяч. Если учесть, что газ в основном добывается не просто так, про запас, а во исполнение контрактных обязательств перед потребителем, такое существенное падение объемов добычи придется компенсировать за счет добуривания новых скважин. При этом надо учитывать, что оборудование горизонтальной скважины для добычи сланцевого газа обходится примерно в полтора-два раза дороже, чем традиционная вертикальная. Отсюда первая серьезная проблема: добыча сланцевого газа имеет чрезвычайно экстенсивный характер , несет с собой большие затраты на создание все новых и новых скважин, а также занимает обширные территории, что делает использование этой технологии проблематичным для густонаселенных стран.

Поскольку по мере истощения скважины, имеющей зону влияния всего в несколько десятков метров (даже после гидроразрывов), давление в ее устье существенно падает, это создает и вторую серьезную экономическую проблему: газ с низким давлением нельзя подавать непосредственно в газотранспортную систему, где стандартное давление составляет 75 атм. Та же проблема, кстати, и с метаном из угольных пластов: давление на устье составляет всего 1,5 атм. Значит, «нетрадиционный» газ надо дополнительно сжимать, используя при этом так называемый отжимной компрессор, который очищает газ от пыли и влаги и дополнительно дожимает. Это дорогая машина с низким КПД, так что придется тратить на ее функционирование немалое количество добытого газа.

Теперь самое время вспомнить, что именно стало недавно поводом для «антисланцевой» инициативы ряда видных деятелей западного шоу-бизнеса, таких как Йоко Оно и Пол Маккартни. Всех этих людей обеспокоили возможные экологические последствия добычи сланцевого газа в богатом месторождениями штате Нью-Йорк. Чтобы бур не зажало горным давлением, при бурении используются промывочные жидкости , содержащие, ряд загрязняющих окружающую среду веществ. Авторы экологической инициативы опасаются, что по мере расширения добычи газа компоненты промывочных жидкостей попадут в водные горизонты, а далее в пищевую цепь.

Почему же, несмотря на все эти проблемы и сложности, сланцевый газ продолжают добывать, особенно в Северной Америке? Во-первых, здесь играет свою роль политика. В Соединенных Штатах правительством поставлена задача приобрести максимальную независимость от внешних поставок энергоносителей, и если еще пару лет назад Америка покупала газ у Канады, то совсем недавно даже отправила один газовоз на экспорт, подчеркивая тем самым свой новый статус экспортера. Во-вторых, чем выше цены на углеводороды, тем выше интерес к источникам их добычи даже при высокой себестоимости. И это как раз случай сланцевого газа.

Как же делается горизонтальная скважина?

Сначала забуривается вертикальный ствол, и на глубине происходит изменение его направления по определенному азимуту и под определенным углом. Бурение ведется не роторным способом (когда в скважине вращается вся сборная труба), а с помощью забойного двигателя, приводимого в действие подаваемой под давлением промывочной жидкостью. Двигатель вращает долото, а раздробленная долотом порода выносится наружу с помощью той же промывочной жидкости.

Искривления направления можно достичь, вставив в соединенные резьбой трубы изогнутый участок. Так происходит поворот скважины. Однако наиболее распространенный способ на сегодня – это изменение направления скважины с помощью специальных отклонителей, которые крепятся за забойным двигателем и управляются с поверхности.

При бурении горизонтальной скважины, как правило, существует система навигации. Оператор на поверхности в каждый момент времени может сказать, как у него идет ствол скважины, куда он отклоняется. Эта технология достаточно хорошо отработана. Максимальная длина горизонтальной скважины была достигнута на Сахалине – 12 км горизонтального ствола. Речь шла о разработке традиционного месторождения на шельфе, при этом рассматривались два варианта: бурить с платформы в Охотском море или начать бурение на суше, а потом искривить скважину и уйти на 12 км в сторону моря. Последнее решение было признано оптимальным.

Оборудованная скважина по добыче сланцевого газа в США.

Перспективы добычи сланцевого газа в мире

В США добыча сланцевого газа ведется достаточно активно. По данным американских компаний, себестоимость газа, добытого из сланцев, примерно в 1,3–1,5 раза выше, чем в случае с традиционными месторождениями. В США значительно больше половины всего добываемого газа происходит из нетрадиционных источников: угольных пластов, плотных песчаников и сланцев.

При нынешних ценах на энергоносители даже такая себестоимость делает сланцевый газ рентабельным, хотя циркулируют слухи о том, что компании намеренно занижают официальные цифры себестоимости.

В Европе говорить о серьезных перспективах этого сырья не приходится, за исключением разве что Польши, где есть серьезные месторождения газоносных сланцев и условия для их добычи. В соседних Германии и Франции с их густонаселенными территориями и строгим экологическим законодательством эту отрасль вряд ли будут развивать.

В России до сих пор серьезно сланцевым газом никто не занимался в связи с наличием богатых традиционных месторождений, однако Минэнерго предлагает начать разработку сланцев уже с 2014 года.

Управление энергетической информации Минэнерго США (EIA) оценивает украинские запасы сланцевого газа в 1,2 триллиона кубометров, что ставит Украину на четвертое место в Европе по объемам резервов этого типа после Польши, Франции и Норвегии. Геологическое агентство США оценивает запасы Украины в 1,5-2,5 триллиона кубометров. На сегодня конкурс на разработку Юзовского месторождения сланцевого газа выиграла компания Shell, а Олесского — Chevron.

Liana Ecosalinon по материалам Олега Макарова, popmech.ru

Описание цикла эксплуатации скважины для разведки и добычи газа и нефти в сланцах и уплотненных песчаниках от компании «Шелл»: