Сверхновая звезда. Как взрываются звёзды

Мы уже видели, что, в отличие от Солнца и других стационарных звезд, у физических переменных звезд изменяются размеры, температура фотосферы, светимость. Среди различных видов нестационарных звезд особый интерес представляют новые и сверхновые звезды. На самом деле это не вновь появившиеся звезды, а ранее существовавшие, которые привлекли к себе внимание резким возрастанием блеска.

При вспышках новых звезд блеск возрастает в тысячи и миллионы раз за время от нескольких суток до нескольких месяцев. Известны звезды, которые повторно вспыхивали как новые. Согласно современным данным, новые звезды обычно входят в состав двойных систем, а вспышки одной из звезд происходят в результате обмена веществом между звездами, образующими двойную систему. Например, в системе “белый карлик – обычная звезда (малой светимости)” взрывы, вызывающие явление новой звезды, могут возникать при падении газа с обычной звезды на белый карлик.

Еще более грандиозны вспышки сверхновых звезд, блеск которых внезапно возрастает примерно на 19 m ! В максимуме блеска излучающая поверхность звезды приближается к наблюдателю со скоростью в несколько тысяч километров в секунду. Картина вспышки сверхновых звезд свидетельствует о том, что сверхновые – это взрывающиеся звезды.

При взрывах сверхновых в течение нескольких суток выделяется огромная энергия – порядка 10 41 Дж. Такие колоссальные взрывы происходят на заключительных этапах эволюции звезд, масса которых в несколько раз больше массы Солнца.

В максимуме блеска одна сверхновая звезда может светить ярче миллиарда звезд, подобных нашему Солнцу. При наиболее мощных взрывах некоторых сверхновых звезд может выбрасываться вещество со скоростью 5000 – 7000 км/с, масса которого достигает нескольких солнечных масс. Остатки оболочек, сброшенных сверхновыми звездами, видны долгое время как расширяющиеся газовые .

Обнаружены не только остатки оболочек сверхновых звезд, но и то, что осталось от центральной части некогда взорвавшейся звезды. Такими “звездными остатками” оказались удивительные источники радиоизлучения, которые получили названия пульсаров. Первые пульсары были открыты в 1967 г.

У некоторых пульсаров поразительно стабильна частота повторения импульсов радиоизлучения: импульсы повторяются через строго одинаковые промежутки времени, измеренные с точностью, превышающей 10 -9 с! Открытые пульсары находятся от нас на расстояниях, не превышающих сотни парсек. Предполагается, что пульсары – это быстровращающиеся сверхплотные звезды, радиусы которых около 10 км, а массы близки к массе Солнца. Такие звезды состоят из плотно упакованных нейтронов и называются нейтронными. Лишь часть времени своего существования нейтронные звезды проявляют себя как пульсары.

Вспышки сверхновых звезд относятся к редким явлениям. За последнее тысячелетие в нашей звездной системе наблюдалось всего лишь несколько вспышек сверхновых. Из них наиболее достоверно установлены следующие три: вспышка 1054 г. в созвездии Тельца, в 1572 г. – в созвездии Кассиопеи, в 1604 г. – в созвездии Змееносца. Первая из этих сверхновых описана как “звезда-гостья” китайскими и японскими астрономами, вторая – Тихо Браге, а третью наблюдал Иоганн Кеплер. Блеск сверхновых 1054 г. и 1572 г. превосходил блеск Венеры, и эти звезды были видны днем. Со времени изобретения телескопа (1609 г.) в нашей звездной системе не наблюдалось ни одной сверхновой звезды (возможно, что некоторые вспышки остались незамеченными). Когда же появилась возможность исследовать другие звездные системы, в них стали часто открывать новые и сверхновые звезды.

23 февраля 1987 г. сверхновая звезда вспыхнула в Большом Магеллановом Облаке (созвездие Золотой Рыбы) – самом большом спутнике нашей Галактики. Впервые после 1604 г. сверхновую звезду можно было видеть даже невооруженным глазом. До вспышки на месте сверхновой находилась звезда 12-й звездной величины. Максимального блеска 4 m звезда достигла в начале марта, а затем стала медленно угасать. Ученым, наблюдавшим сверхновую с помощью телескопов крупнейших наземных обсерваторий, орбитальной обсерватории “Астрон” и рентгеновских телескопов на модуле “Квант” орбитальной станции “Мир”, удалось впервые проследить весь процесс вспышки. Наблюдения проводились в разных диапазонах спектра, включая видимый оптический диапазон, ультрафиолетовый, рентгеновский и радиодиапазоны. В научной печати появлялись сенсационные сообщения о регистрации нейтринного и, возможно, гравитационного излучения от взорвавшейся звезды. Были уточнены и обогащены новыми результатами модели строения звезды в фазе, предшествующей взрыву.

Сверхновые звёзды - одно из самых грандиозных космических явлений. Коротко говоря, сверхновая - это настоящий взрыв звезды, когда большая часть её массы (а иногда и вся) разлетается со скоростью до 10 000 км/с, а остаток сжимается (коллапсирует) в сверхплотную нейтронную звезду или в чёрную дыру. Сверхновые играют важную роль в эволюции звёзд. Они являются финалом жизни звёзд массой более 8-10 солнечных, рождая нейтронные звёзды и чёрные дыры и обогащая межзвёздную среду тяжёлыми химическими элементами. Все элементы тяжелее железа образовались в результате взаимодействия ядер более лёгких элементов и элементарных частиц при взрывах массивных звёзд. Не здесь ли кроется разгадка извечной тяги человечества к звёздам? Ведь в мельчайшей клеточке живой материи есть атомы железа, синтезированные при гибели какой-нибудь массивной звезды. И в этом смысле люди сродни снеговику из сказки Андерсена: он испытывал странную любовь к жаркой печке, потому что каркасом ему послужила кочерга...

По наблюдаемым характеристикам сверхновые принято разделять на две большие группы - сверхновые 1-го и 2-го типа. В спектрах сверхновых 1-го типа нет линий водорода; зависимость их блеска от времени (так называемая кривая блеска) примерно одинакова у всех звёзд, как и светимость в максимуме блеска. Сверхновые 2-го типа, напротив, имеют богатый водородными линиями оптический спектр, формы их кривых блеска весьма разнообразны; блеск в максимуме сильно различается у разных сверхновых.

Учёные заметили, что в эллиптических галактиках (т. е. галактиках без спиральной структуры, с очень низким темпом звездообразования, состоящих в основном из маломассивных красных звёзд) вспыхивают только сверхновые 1-го типа. В спиральных же галактиках, к числу которых принадлежит и наша Галактика - Млечный Путь, встречаются оба типа сверхновых. При этом представители 2-го типа концентрируются к спиральным рукавам, где идёт активный процесс звездообразования и много молодых массивных звезд. Эти особенности наводят на мысль о различной природе двух типов сверхновых.

Сейчас надёжно установлено, что при взрыве любой сверхновой освобождается огромное количество энергии - порядка 10 46 Дж! Основная энергия взрыва уносится не фотонами, а нейтрино - быстрыми частицами с очень малой или вообще нулевой массой покоя. Нейтрино чрезвычайно слабо взаимодействуют с веществом, и для них недра звезды вполне прозрачны.

Законченной теории взрыва сверхновых с формированием компактного остатка и сбросом внешней оболочки пока не создано ввиду крайней сложности учёта всех протекающих при этом физических процессов. Однако все данные говорят о том, что сверхновые 2-го типа вспыхивают в результате коллапса ядер массивных звёзд. На разных этапах жизни звезды в ядре происходили термоядерные реакции, при которых сначала водород превращался в гелий, затем гелий в углерод и так далее до образования элементов «железного пика» - железа, кобальта и никеля. Атомные ядра этих элементов имеют максимальную энергию связи в расчёте на одну частицу. Ясно, что присоединение новых частиц к атомному ядру, например, железа будет требовать значительных затрат энергии, а потому термоядерное горение и «останавливается» на элементах железного пика.

Что же заставляет центральные части звезды терять устойчивость и коллапсировать, как только железное ядро станет достаточно массивным (около 1,5 массы Солнца)? В настоящее время известны два основных фактора, приводящих к потере устойчивости и коллапсу. Во-первых, это «развал» ядер железа на 13 альфа-частиц (ядер гелия) с поглощением фотонов - так называемая фотодиссоциация железа. Во-вторых, нейтронизация вещества - захват электронов протонами с образованием нейтронов. Оба процесса становятся возможными при больших плотностях (свыше 1 т/см 3), устанавливающихся в центре звёзды в конце эволюции, и оба они эффективно снижают «упругость» вещества, которая фактически и противостоит сдавливающему действию сил тяготения. Как следствие, ядро теряет устойчивость и сжимается. При этом в ходе нейтронизации вещества выделяется большое количество нейтрино, уносящих основную энергию, запасённую в коллапсирующем ядре.

В отличие от процесса катастрофического коллапса ядра, теоретически разработанного достаточно детально, сброс оболочки звезды (собственно взрыв) не так-то просто объяснить. Скорее всего, существенную роль в этом процессе играют нейтрино

Как свидетельствуют компьютерные расчёты, плотность вблизи ядра настолько высока, что даже слабо взаимодействующие с веществом нейтрино оказываются на какое-то время «запертыми» внешними слоями звезды. Но гравитационные силы притягивают оболочку к ядру, и складывается ситуация, похожая на ту, которая возникает при попытке налить более плотную жидкость, например воду, поверх менее плотной, скажем керосина или масла. (Из опыта хорошо известно, что лёгкая жидкость стремится «всплыть» из-под тяжёлой - здесь проявляется так называемая неустойчивость Рэлея-Тэйлора.) Этот механизм вызывает гигантские конвективные движения, и когда в конце концов импульс нейтрино передаётся внешней оболочке, она сбрасывается в окружающее пространство.

Возможно, именно нейтринные конвективные движения приводят к нарушению сферической симметрии взрыва сверхновой. Иными словами, появляется направление, вдоль которого преимущественно выбрасывается вещество, и тогда образующийся остаток получает импульс отдачи и начинает двигаться в пространстве по инерции со скоростью до 1000 км/с. Столь большие пространственные скорости отмечены у молодых нейтронных звёзд - радиопульсаров.

Описанная схематическая картина взрыва сверхновой 2-го типа позволяет понять основные наблюдательные особенности этого явления. А теоретические предсказания, основанные на данной модели (особенно касающиеся полной энергии и спектра нейтринной вспышки), оказались в полном согласии с зарегистрированным 23 февраля 1987 г. нейтринным импульсом, пришедшим от сверхновой в Большом Магеллановом Облаке.

Теперь несколько слов о сверхновых 1-го типа. Отсутствие свечения водорода в их спектрах говорит о том, что взрыв происходит в звёздах, лишённых водородной оболочки. Как сейчас полагают, это может быть взрыв белого карлика или результат коллапса звезды типа Вольфа -Райе (фактически это ядра массивных звёзд, богатые гелием, углеродом и кислородом).

Как может взорваться белый карлик? Ведь в этой очень плотной звезде не идут ядерные реакции, а силам гравитации противодействует давление плотного газа, состоящего из электронов и ионов (так называемый вырожденный электронный газ). Причина здесь та же, что и при коллапсе ядер массивных звёзд, - уменьшение упругости вещества звезды при повышении её плотности. Это опять-таки связано с «вдавливанием» электронов в протоны с образованием нейтронов, а также с некоторыми релятивистскими эффектами.

Почему же повышается плотность белого карлика? Это невозможно, если он одиночный. Но если белый карлик входит в состав достаточно тесной двойной системы, то под действием гравитационных сил газ с соседней звезды способен перетекать на белый карлик (так в случае новой звезды). При этом масса и плотность его будут постепенно возрастать, что в конечном счёте приведёт к коллапсу и взрыву.

Другой возможный вариант более экзотичен, но не менее реален – это столкновение двух белых карликов. Как такое может быть, ведь вероятность столкнуться двум белым карликам в пространстве ничтожна, поскольку ничтожно число звёзд в единице объёма – от силы несколько звёзд в 100 пк3. И здесь (в который раз!) «виноваты» двойные звёзды, но теперь уже состоящие из двух белых карликов.

Как следует из общей теории относительности Эйнштейна, любые две массы, обращающиеся по орбите вокруг друг друга, рано или поздно должны столкнуться из-за постоянного, хотя и весьма незначительного, уноса энергии из такой системы волнами тяготения - гравитационными волнами. Например, Земля и Солнце, живи последнее бесконечно долго, столкнулись бы вследствие этого эффекта, правда через колоссальное время, на много порядков превосходящее возраст Вселенной. Подсчитано, что в случае тесных двойных систем с массами звёзд около солнечной (2 10 30 кг) их слияние должно произойти за время меньше возраста Вселенной – примерно за 10 млрд. лет. Как показывают оценки, в типичной галактике такие события случаются раз в несколько сот лет. Гигантской энергии, освобождаемой при этом катастрофическом процессе вполне достаточно для объяснения явления сверхновой.

Кстати, примерное равенство масс белых карликов делает их слияния «похожими» друг на друга, а значит, сверхновые 1-го типа по своим характеристикам должны выглядеть одинаково не зависимо от того, когда и в какой галактике произошла вспышка. Поэтому видимая яркость сверхновых отражает расстояния до галактик, в которых они наблюдаются. Это свойство сверхновых 1-го типа в настоящее время используемся учёными для получения независимой оценки важнейшего космологического параметра - постоянной Хаббла, которая служит количественной мерой скорости расширения Вселенной. Мы рассказали лишь о наиболее мощных взрывах звёзд, происходящих во Вселенной и наблюдаемых в оптическом диапазоне. Поскольку в случае сверхновых звёзд основная энергия взрыва уносится нейтрино, а не светом, исследование неба методами нейтринной астрономии имеет интереснейшие перспективы. Оно позволит в будущем «заглянуть» в самое «пекло» сверхновой, скрытое огромными толщами непрозрачного для света вещества. Ещё более удивительные открытия сулит гравитационно-волновая астрономия, которая в недалёком будущем поведает нам о грандиозных явлениях слияния двойных белых карликов, нейтронных звёзд и чёрных дыр.


Сверхновая звезда – взрыв умирающих очень крупных звезд с огромным выбросом энергии, в триллион раз превышающая энергию Солнца. Сверхновая звезда может осветить всю галактику, а свет, посланный звездой, дойдет то края Вселенной.Если одна из таких звезд взорвется на расстоянии 10 световых лет от Земли, то Земля полностью сгорит от выбросов энергии и радиации.

Сверхновая звезда

Сверхновые звезды не только уничтожают, они так же восполняют необходимые элементы в космос: железо, золото, серебро и другие. Всё что мы знаем о Вселенной было создано из останков когда-то взорвавшейся сверхновой звезды. Сверхновая один из самых красивых и интересных объектов во Вселенной. Самые крупные взрывы во Вселенной оставляют после себя особые, самые странные останки во Вселенной:

Нейтронные звезды

Нейтронные очень опасные и странные тела. Когда гигантская звезда превращается в сверхновую, ее ядро сжимается до размера с земной мегаполис. Давление внутри ядра настолько велико, что даже атомы внутри начинают плавиться. Когда атомы настолько спрессованы, что между ними не остается никакого пространства накапливается колоссальная энергия и происходит мощнейший взрыв. После взрыва остается невероятно плотная Нейтронная звезда. Чайная ложка Нейтронной звезды будет весить 90 млн. тонн.

Пульсар – останки после взрыва сверхновой звезды. Тело которое схожее с массой и плотностью нейтронной звезды. Вращаясь с огромной скоростью, пульсары выпускают в космос радиационные вспышки из северного и южного полюсов. Скорость вращения может достигать 1000 оборотов в секунду.

Когда взрывается звезда в 30 раз больше нашего Солнца она создает звезду, которая называется Магнитаром. Магнитары создают мощные магнитные поля они еще более странные чем Нейтронные звезды и Пульсары. Магнитное поле Магнитара превышает земное в несколько тысяч раз.

Черные дыры

После гибели гиперновых звезд, звезд еще более крупнее чем суперзвезда, образуется самое загадочное и опасное место во Вселенной – черная дыра. После смерти такой звезды, черная дыра начинает поглощать ее останки. Материала для поглощения у черной дыры слишком много и она выбрасывает останки звезды обратно в космос, образуя 2 луча гамма излучений.

Что касается нашей , то Солнце, конечно, не обладает достаточной массой для того, чтобы стать черной дырой, пульсаром, магнитаром или даже нейронной звездой. По космическим меркам наша звезда очень мала для такого финала её жизни. Ученые говорят о том, что после истощения топлива наша звезда увеличится в размерах в несколько десятков раз, что позволит ей поглотить в себя планеты земной группы: Меркурий, Венеру, Землю и, возможно, Марс.

По расчетам астрономов, в 2022 году с Земли можно будет наблюдать ярчайший взрыв сверхновой звезды в созвездии Лебедя. Вспышка будет способна затмить сияние большинства звезд на небе! Взрыв сверхновой - редкое явление, но человечество будет наблюдать феномен не впервые. Чем же так увлекательно это явление?

УЖАСНЫЕ ЗНАМЕНИЯ ПРОШЛОГО

Так, 5000 лет назад жители Древнего Шумера были в ужасе - боги показали, что они разгневаны, явив знаменье. На небосводе засияло второе солнце, так что даже ночью было светло как днем! Пытаясь отвратить беду, шумеры приносили богатые жертвы и неустанно молились богам - и это возымело действие. Ан, бог неба, отвратил свой гнев - второе солнце стало меркнуть и скоро вообще исчезло с небосвода.

Так ученые реконструируют события, произошедшие более пяти тысяч лет назад, когда над Древним Шумером вспыхнула сверхновая звезда. О тех событиях стало известно из клинописной таблички, содержащей рассказ о «втором божестве-солнце», показавшемся в южной стороне неба. Астрономы нашли следы звездного катаклизма - от напугавшей шумеров сверхновой осталась туманность Паруса X.

По современным научным данным, ужас древних жителей Месопотамии был во многом оправдан - случись взрыв сверхновой несколько ближе к Солнечной системе, и все живое на поверхности нашей планеты было бы выжжено радиацией.

Так уже однажды случилось, когда 440 миллионов лет назад вспышка сверхновой звезды произошла в относительно близких к солнцу районах космоса. За тысячи световых лет от Земли огромная звезда превратилась в сверхновую, и нашу планету обожгло смертоносное излучение. Палеозойские монстры, которых постигло несчастье жить в то время, могли видеть, как ослепительное сияние, внезапно возникшее на небе, затмило солнце - и это было последнее, что они видели в своей жизни. За несколько секунд излучение сверхновой уничтожило озоновый слой планеты, а радиация убила жизнь на поверхность Земли. К счастью, поверхность материков нашей планеты была в ту эпоху почти лишена обитателей, а жизнь скрывалась в океанах. Толща воды защищала от излучения сверхновой, но все равно погибло более 60% морских животных!

Вспышка сверхновой звезды - один из самых грандиозных катаклизмов во Вселенной. Взрывающееся светило выделяет невероятное количество энергии - в течение короткого времени одна звезда излучает света больше, чем миллиарды звезд галактики.

ЭВОЛЮЦИЯ СВЕРХНОВЫХ

Далекие вспышки сверхновых звезд астрономы давно наблюдали в мощные телескопы. Первоначально это явление воспринималось как непонятный курьез, но в конце первой четверти XX столетия астрономы научились определять межгалактические расстояния. Тогда стало ясно, из какой невообразимой дали приходит на Землю свет сверхновых и какую невероятную силу имеют эти вспышки. Но какова природа этого феномена?

Звезды формируются из космических скоплений водорода. Такие облака газа занимают огромные пространства и могут иметь колоссальную массу, равную сотням солнечных масс. Когда такое облако оказывается достаточно плотным, начинают действовать гравитационные силы, вызывающие сжатие газа, которое вызывает сильный нагрев. По достижении определенного предела в нагретом и сжатом центре облака начинаются термоядерные реакции - так «зажигаются» звезды.

Вспыхнувшее светило имеет долгую жизнь: водород в недрах звезды превращается в гелий (а затем и в иные элементы таблицы Менделеева вплоть до железа) миллионы и даже миллиарды лет. При этом чем больше звезда, тем короче ее жизнь. Красные карлики (так называется класс малых звезд) имеют продолжительность жизни в триллион лет, в то время как звезды-гиганты могут «выгореть» за тысячные доли этого срока.

Звезда «живет», пока сохраняется «баланс сил» между силами гравитации, сжимающими ее, и термоядерными реакциями, которые излучают энергию и стремятся «растолкать» вещество. Если звезда достаточно велика (имеет массу более массы Солнца), наступает момент, когда термоядерные реакции в звезде слабеют («горючее» к тому времени оказывается выгоревшим) и силы гравитации оказываются сильнее. В этот момент сила, сжимающая ядро звезды становится столь сильной, что давление излучения больше не в состоянии удерживать вещество от сжатия. Происходит катастрофически быстрый коллапс - за несколько секунд объем ядра звезды падает в 100000 раз!

Стремительное сжатие звезды приводит к тому, что кинетическая энергия вещества переходит в тепло и температура поднимается до сотен миллиардов Кельвинов! Светимость гибнущей звезды при этом возрастает в несколько миллиардов раз - и «взрыв сверхновой» выжигает все в соседних областях космоса. В ядре гибнущей звезды электроны «вдавливаются» в протоны, так что внутри ядра остаются практически одни нейтроны.

ЖИЗНЬ ПОСЛЕ ВЗРЫВА

Поверхностные же слои звезды взрываются, причем в условиях гигантских температур и чудовищного давления идут реакции с образованием тяжелых элементов (вплоть до урана). И тем самым сверхновые выполняют свою великую (с точки зрения человечества) миссию - делают возможным появление во Вселенной жизни. «Почти все элементы, из которых состоим мы сами и наш мир, возникли благодаря взрывам сверхновых», - утверждают ученые. Все, что нас окружает: кальций у нас в костях, железо в эритроцитах, кремний в чипах наших компьютеров и медь в проводах, - все это вышло из адских топок взрывающихся сверхновых. Большинство химических элементов появились во Вселенной исключительно во время взрывов сверхновых звезд. А атомы тех немногих элементов (от гелия до железа), которые звезды синтезируют, находясь в «спокойном» состоянии, могут стать основой для появления планет лишь после того, как они при взрыве сверхновой были выброшены в межзвездное пространство. Поэтому и сам человек, и все вокруг него состоит из остатков взрывов древних сверхновых.

Оставшееся после взрыва ядро становится нейтронной звездой. Это удивительный космический объект малого объема, но чудовищной плотности. Диаметр обычной нейтронной звезды составляет 10-20 км, но при этом плотность вещества невероятна - 665 миллионов тонн на один кубический сантиметр! При такой плотности кусочек нейтрониума (вещества, из которого состоит такая звезда) размером со спичечную головку будет весить во много раз больше, чем пирамида Хеопса, а чайная ложка из нейтрониума будет иметь массу более миллиарда тонн. Нейтрониум также обладает невероятной прочностью: кусок нейтрониума (если бы таковой оказался в руках человечества) невозможно разбить на части никаким физическим воздействием - любой человеческий инструмент окажется абсолютно бесполезен. Попытка отрезать или оторвать кусок нейтрониума будет столь же безнадежна, как отпилить кусок металла воздухом.

БЕТЕЛЬГЕЙЗЕ — САМАЯ ОПАСНАЯ ЗВЕЗДА

Впрочем, не все сверхновые превращаются в нейтронные звезды. Когда масса звезды превосходит определенный предел (так называемый второй предел Чандрасекара), в процессе взрыва сверхновой остается слишком большая масса вещества и гравитационное давление не в состоянии сдерживать ни что. Процесс становится необратим - все вещество стягивается в одну точку, и образуется черная дыра - провал, безвозвратно поглощающий все, даже солнечный свет.

Может ли угрожать Земле вспышка сверхновой? Увы, ученые отвечают утвердительно. Звезда Бетельгейзе - близкий, по космическим меркам, сосед Солнечной системы, может взорваться в самом скором времени. По словам научного сотрудника Государственного астрономического института Сергея Попова, «Бетельгейзе действительно является одним из лучших кандидатов, и, безусловно, самым известным, в близкие (по времени) сверхновые. Эта массивная звезда находится на финальных стадиях своей эволюции и, вероятнее всего, вспыхнет как сверхновая, оставив после себя нейтронную звезду». Бетельгейзе - светило в двадцать раз тяжелее нашего Солнца и в сто тысяч раз ярче, расположенное примерно в полутысяче световых лет. Поскольку эта звезда достигла финальной стадии своей эволюции, то в ближайшее (по космическим меркам) время она имеет все шансы стать сверхновой. По расчетам ученых, этот катаклизм не должен быть опасен для Земли, но с одной оговоркой.

Дело в том, что излучение сверхновой при взрыве направлено неравномерно - направление излучения определяют магнитные полюса звезды. И если окажется, что один из полюсов Бетельгейзе направлен точно на Землю, то после взрыва сверхновой в нашу Землю вылетит смертоносный поток рентгеновского излучения, способный по меньшей мере уничтожить озоновый слой. К сожалению, на сегодня нет никаких известных астрономам признаков, которые позволили бы предсказать катаклизм и создать «систему раннего оповещения» о взрыве сверхновой. Впрочем, хоть Бетельгейзе и доживает свой срок, звездное время несоизмеримо с человеческим, и, скорее всего, до катастрофы тысячи, если не десятки тысяч лет. Можно надеяться, что за такой срок человечество создаст надежную защиту от вспышек сверхновой.

> Сверхновая звезда

Узнайте, что такое сверхновая звезда : описание взрыва и вспышки звезды, где рождаются сверхновые, эволюция и развитие, роль двойных звезд, фото и исследования.

Сверхновая – это, по сути, звездный взрыв и наиболее сильный, который можно наблюдать в космическом пространстве.

Где появляются сверхновые звезды?

Очень часто сверхновые можно заметить в других галактиках. Но в нашем Млечном Пути это редкое явление для наблюдения, потому что пылевые и газовые дымки перекрывают обзор. Последняя наблюдаемая сверхновая в была замечена Иоганном Кеплером в 1604 году. Телескоп Чандра смог отыскать лишь остатки от звезды, взорвавшейся больше века назад (последствия взрыва сверхновой).

Что приводит к сверхновой?

Сверхновая звезда рождается, когда в центре звезды происходят изменения. Есть два главных типа.

Первый – в двойных системах. Двойные звезды – объекты, связанные общим центром. Одна из них подворовывает вещество у второй и становится чересчур массивной. Но не способна уравновесить внутренние процессы и взрывается в сверхновой.

Второй – в момент смерти. Топливо имеет свойство заканчиваться. В итоге, часть массы начинает поступать в ядро, и оно становится таким тяжелым, что не выдерживает собственной гравитации. Происходит процесс расширения, и звезда взрывается. Солнце – одиночная звезда, но ей не пережить подобного, так как не хватает массы.

Почему исследователи интересуются сверхновыми звездами?

Сам процесс охватывает небольшой временной промежуток, но может очень многое поведать о Вселенной. Например, один из экземпляров подтвердил свойство Вселенной расширяться и то, что темпы увеличиваются.

Также выяснилось, что эти объекты влияют на момент распределения элементов в пространстве. При взрыве звезда выстреливает элементами и космическими обломками. Многие из них даже попадают на нашу планету. Посмотрите видео, в котором раскрываются особенности сверхновых звезд и их взрывов.

Наблюдения вспышек сверхновых

Астрофизик Сергей Блинников об открытии первой сверхновой звезды, остатках после вспышки и современных телескопах

Как их найти сверхновые звезды?

Для процесса поиска сверхновых звезд исследователи используют различные приборы. Некоторые нужны для наблюдения за видимым светом после взрыва. А другие отслеживают рентгеновские и гамма-лучи. Фото получают при помощи телескопов Хаббл и Чандра.

В июне 2012 года начал работать телескоп, фокусирующий свет в области высоких энергий электромагнитного спектра. Речь идет о миссии NuSTAR, которая ищет разрушившиеся звезды, черные дыры и остатки сверхновых. Ученые планируют узнать побольше о том, как они взрываются и создаются.

Измерение расстояний до небесных тел

Астроном Владимир Сурдин о цефеидах, вспышках сверхновых звезд и скорости расширения Вселенной:

Чем вы можете помочь в исследовании сверхновых звезд?

Для того, чтобы внести свою лепту, вам не нужно становиться ученым. В 2008 году сверхновую нашел обычный подросток. В 2011 году это повторила 10-летняя канадская девочка, рассматривавшая снимок ночного неба на своем компьютере. Очень часто снимки любителей вмещают множество интересных объектов. Немного практики и вы можете найти следующую сверхновую! А если говорить точнее, то у вас есть все шансы запечатлеть взрыв сверхновой звезды.