Генные мутации. Примеры генных мутаций

Все люди на планете являются носителями невероятно схожих геномов, но небольшое изменение в геноме может привести к удивительной способности, которой будет обладать «мутант».

Уровень холестерина всегда стабильный

Большинство людей не беспокоится о количестве употребляемой жирной пищи, яиц и другой еды, которая влечет за собой повышение уровня холестерина в крови. Некоторые люди могут употреблять все вредные продукты и ни о чем не беспокоиться. У таких людей «плохой холестерин» почти равен нулю.
У людей с такими показателями крови врожденная генетическая мутация, у них нет рабочей копии гена PCSK9, в данном случае отсутствие гена приносит пользу. Когда ученые нашли связь между геном и уровнем холестерина, а случилось это 10 лет назад, все фармацевтические компании стали разрабатывать средства, которые будут блокировать PCSK9 у «нормальных» людей. Препарат уже готов, сейчас ожидается одобрение от FDA. Во время испытаний препарата, уровень холестерина у людей снижался на 75%. Эти полезные мутации обнаружены только у нескольких афроамериканцев, этим людям также не свойственно развитие сердечно-сосудистых заболеваний, риск заболеть ими у них равняется 10%.

ВИЧ-устойчивые

Человечеству всегда приходилось бороться с вирусами, иногда новый вирус может унести жизни миллионов людей. Среди людей всегда встречаются представители, которые устойчивы к тому или иному виду вируса.
ВИЧ - один из самых страшных вирусов, но некоторым людям посчастливилось получить генетическую мутацию белка CCR5. Для того, чтобы ВИЧ проник в организм, ему нужно связаться с белком CCR5, так вот у некоторых «мутантов» этого белка нет, человек практически не может «подхватить» этот вирус.
Ученные склонны думать, что у представителей человечества с такой мутацией скорее развита устойчивость, чем абсолютная невосприимчивость. Были случаи, когда человек, не имеющий белка CCR5, умирал от СПИДа. ВИЧ - вирус, и он может постоянно немного видоизменяться, поэтому, скорее всего, ВИЧ нашел другой белок для проникновения в человеческий организм.

Не страшна малярия

Почти не чувствуют холод

Например, эскимосы, которые проживают в холодных условиях близких к экстремальным, смогли приспособиться. Действительно ли они приспособились или у них немного другая биология?
Жители в местах с холодным климатом отлично реагируют на низкую температуру, если сравнивать их реакцию, например, с жителем Москвы. Скорее всего, у эскимосов есть генетическое изменение, которое передается из поколения в поколение, потому что обычный человек не сможет так адаптироваться к низкой температуре, даже если проживет на крайнем Севере всю жизнь. Коренной сибиряк лучше переносит холод, чем обычный коренной житель мегаполиса в Центральной части России. Коренные австралийцы могут спать ночью на голой земле.

Покорившие высоту

Большая часть альпинистов никогда бы не попала на Эверест. Если бы им не помогли местные жители. Шерпы, чаще всего, идут впереди альпинистов и устанавливают лестницы, прикручивают веревки. Сомнений нет никаких, в том, что жителям Непала или Тибета прекрасно жить на высоте. Эти люди могут работать в условиях с большим атмосферным давлением и низкой концентрацией кислорода. Однако, что способствует этому?
Тибетцы проживают на высоте около 4000 метров, они привыкли дышать воздухом, в котором на 40% меньше кислорода. Много веков ушло на то, чтобы тела их приспособились к недостатку кислорода, теперь у тибетцев большие грудь и легкие. У равнинных жителей организм старается выработать больше эритроцитов, но у тибетцев происходит обратное явление. У шерпов также отличное кровоснабжение головного мозга, болезни, связанные с поднятием на высоту, они переносят намного легче.
Тибетцы, которые спустились с гор и стали жить на равнине, не теряют отличительные физиологические черты своего народа. Ученые смогли установить, что приспособленчество к высоте - это не только приобретенная возможность. У тибетцев присутствует генетическая адаптация, у них участок ДНК - EPAS1 претерпел изменение. Этот участок отвечает за кодирование регуляторного белка, а белок отвечает за поиск кислорода, а также регулирует производство эритроцитов.
У народа хань, равнинных родственников тибетцев, нет такого генетического приспособления. Две группы разделяет примерно 3000 лет, это говорит о том, что процесс адаптации случился около 100 поколений назад. Согласитесь, что для эволюции такой период можно считать очень коротким.

Устойчивые нервы и психика

Народ форе, который проживает в Папуа-Новой Гвинеи, смог пережить эпидемию куру в середине прошлого века. Эта эпидемия вызывала смертельное дегенеративное заболевание головного мозга, заражение происходило при каннибализме.
Куру - заболевание, которое связано с расстройством Крейтцфельда-Якоба, проявляющееся у людей, и губчатой энцефалопатией - бешенством крупного рогатого скота. Куру губительно влияет на мозг, в мозге появляются отверстия, начинаются нарушения интеллекта и памяти, изменения личности, а также судороги. Человек от этой болезни умирает в течение одного года. Болезнь редко наследуется, ею заражаются при употреблении в пищу зараженного животного или человека.
Антропологи были озадачены распространение куру среди племени, оказывается, что инфекция передавалась во время погребальных пиров, когда надо было съесть часть от умершего родственника. В ритуале участвуют женщины и дети, поэтому они болели чаще. Когда врачи запретили ритуал, в некоторых деревнях форе уже не осталось представителей женского пола.
Однако были и выжившие, у них ученые обнаружили ген - G127V, способный помогать организму бороться с иммунными заболеваниями головного мозга. Теперь ген распространен в народе форе.
Но не все, кто столкнулся с куру, умер от этого заболевания. У выживших оказались изменения в гене под названием G127V, которые делали их иммунными к заболеваниям мозга. Теперь этот ген широко распространился по форе и окружающим народ людям.

Удивительная кровь

Возможно, вам приходилось слышать об универсальной группе крови О-типа. Давайте разберемся, какие уникальные свойства есть у этого типа крови.
Сегодня в мире существует 4 группы крови, у каждой группы резус фактор может быть положительным или отрицательным, получаем восемь комбинаций. 4 группы: A, B, АВ и O, но есть группа крови, которая не попадет под систематизацию АВО. Такая кровь считается очень редкой, людям с такой группой крови сложно найти себе донора.
Самая редкая кровь - это кровь, у которой резус-фактор равен нулю. В крови нет антигенов в системе Rh, например, отрицательные резус-фактор - следствие отсутствия антигена Rh D. А вот нулевой резус-фактор - большая редкость. Сейчас на планете насчитывается не более 40 людей с такой кровью. Эта кровь уникальна тем, что она совместима с любой кровью, она универсальная. Переливание крови вызывает отторжение антигенов, которых у человека нет, а такая кровь не может вызвать отрицательного эффекта. Доноров этого вида крови всего 9 человек, к их помощи прибегаю только в экстренных случаях, врачи пытаются искать анонимных доноров. Которые обладают такой кровью.

Абсолютное зрение под водой

У большинства животных органы зрения приспособлены для хорошего зрения в одной среде. Глаз человека приспособлен для зрения в воздушной среде, а под водой он мы все видим размыто. Так происходит. Потому что у воды и человеческого глаза почти одинаковая плотность, это ограничивает количество света, преломленного в воде, который может улавливать глаз.
Есть группа людей, которые известны как мокен, они способны четко видеть на глубине до 22 метров. Восемь месяцев в году эти люди проводят на воде: в домах на сваях или в лодках. Твердая земля им требуется только для совершения покупок. Занимаются они собиранием морских ресурсов, они используют только традиционные методы. Они не пользуются никаким снаряжением для ловли водных обитателей. Дети мокены собирают морских огурцов и моллюсков со дна моря, такие задачи привели к тому, что дети учатся отличать моллюска от камня глубоко под водой. Дети мокены способны видеть под водой в 2 раза лучше, чем обычные дети. Однако такое умение может приобрести любой человек.

Невероятно плотные кости


Старение приводит к тому, что возникают проблемы с опорно-двигательным аппаратом, например, возникновение остеопороза. Кости начинают терять свою плотность и массу. Это приводит к хрупкости костей и частым переломам. Но у некоторых людей есть уникальный ген, именно в этом гене содержится «инструкция» к профилактике и лечению остеопороза.
Такой ген обнаружили у африканеров - южноафриканцев, которые имеют голландское происхождение. У таких людей костная ткань наращивается в течение всей жизни, к этому привела мутация в гене SOST, он отвечает за белок склеростин, который регулирует рост костей.
Если у африканера унаследовано 2 копии мутантного гена, то он становится носителем болезни склеростеоз. Эта болезни приводит к тому, что костная ткань начинает разрастаться, начинается гигантизм, возникает парез лица и наступает ранняя смерть.
В настоящий момент всеми преимуществами гена могут воспользоваться только гетерозиготные представители. Ученые постоянно занимаются изучением этой мутации, чтобы спасти человечество от остеопороза. Уже есть клинические испытания белка склеростина.

Отдохнуть чуть-чуть

Казалось ли вам когда-нибудь, что у некоторых людей как будто больше часов в сутках? Возможно, что дело обстоит именно так. Это не совсем обычные люди, им достаточно 5-6 часов сна для того, чтобы выспаться. Они не залеживаются в постели. Чтобы поспать на часок дольше. У этих людей есть редкая генетическая мутация DEC2, именно из-за нее человеку требуется меньше сна для восстановления сил организма.
Обычный человек почти сразу замечает негативные последствия недосыпания, которые могут стать причинами многих болезней: гипертонии, сердечным заболеваниям, заболеваниям нервной системы. Генетическое изменение достаточно редкое, количество носителей мутантного гена составляет около 1% от всего населения Земли.

Мутации на генном уровне являются молекулярными, не видимыми в световом микроскопе структурными изменениями ДНК. К ним относят любые трансформации дезоксирибонуклеиновой кислоты, вне зависимости от их влияния на жизнеспособность и локализации. Некоторые виды генных мутаций не оказывают никакого воздействия на функции и структуру соответствующего полипептида (белка). Однако большая часть таких трансформаций провоцирует синтез дефектного соединения, утратившего способность выполнять свои задачи. Далее рассмотрим генные и хромосомные мутации более подробно.

Характеристика трансформаций

Наиболее распространенными патологиями, которые провоцируют генные мутации человека, являются нейрофиброматоз, адрено-генитальный синдром, муковисцидоз, фенилкетонурия. В этот список можно также включить гемохроматоз, миопатии Дюшенна-Беккера и прочие. Это далеко не все примеры генных мутаций. Их клиническими признаками выступают обычно нарушения метаболизма (обменного процесса). Генные мутации могут состоять в:

  • Замене в кодоне основания. Такое явление именуют миссенс-мутацией. При этом в кодирующей части происходит замена нуклеотида, что, в свою очередь, приводит к смене аминокислоты в белке.
  • Изменении кодона таким образом, что приостанавливается считывание информации. Этот процесс называют нонсенсмутацией. При замене нуклеотида в данном случае происходит формирование стоп-кодона и прекращение трансляции.
  • Нарушении считывания, сдвиге рамки. Этот процесс именуют "фреймшифтом". При молекулярном изменении ДНК трансформируются триплеты в ходе трансляции полипептидной цепочки.

Классификация

В соответствии с типом молекулярной трансформации существуют следующие генные мутации:

  • Дупликация. В этом случае происходит повторное дублирование либо удвоение фрагмента ДНК от 1 нуклеотида до генов.
  • Делеция. В этом случае имеет место утрата фрагмента ДНК от нуклеотида до гена.
  • Инверсия. В этом случае отмечается поворот на 180 град. участка ДНК. Его размер может быть как в два нуклеотида, так и в целый фрагмент, состоящий из нескольких генов.
  • Инсерция. В этом случае происходит вставка участков ДНК от нуклеотида до гена.

Молекулярные трансформации, захватывающие от 1 до нескольких звеньев, рассматриваются как точечные изменения.

Отличительные черты

Генные мутации имеют ряд особенностей. В первую очередь следует отметить их способность переходить по наследству. Кроме того, мутации могут спровоцировать трансформацию генетических сведений. Некоторые из изменений могут быть отнесены к так называемым нейтральным. Такие генные мутации не провоцируют каких-либо нарушений в фенотипе. Так, благодаря врожденности кода одна и та же аминокислота может кодироваться двумя триплетами, имеющими отличия только по 1 основанию. Вместе с тем определенный ген может мутировать (трансформироваться) в несколько разных состояний. Именно такого рода изменения провоцируют большую часть наследственных патологий. Если приводить примеры генных мутаций, то можно обратиться к группам крови. Так, у элемента, контролирующего их системы АВ0, присутствует три аллеля: В, А и 0. Их сочетание определяют группы крови. Относящаяся к системе АВ0 считается классическим проявлением трансформации нормальных признаков у людей.

Геномные трансформации

Эти трансформации имеют свою классификацию. В категорию геномных мутаций относят изменения в плоидности не измененных структурно хромосом и анеуплоидии. Такие трансформации определяются специальными методами. Анеуплоидия представляет собой изменение (увеличение - трисомию, уменьшение - моносомию) количества хромосом диплоидного набора, некратное гаплоидному. При кратном увеличении числа говорят о полиплоидии. Они и большая часть анеуплоидий у людей считаются летальными изменениями. Среди наиболее распространенных геномных мутаций выделяют:

  • Моносомию. В этом случае присутствует только одна из 2 гомологичных хромосом. На фоне такой трансформации здоровое эмбриональное развитие невозможно по любой из аутосом. В качестве единственной совместимой с жизнью выступает моносомия по хромосоме Х. Она провоцирует синдром Шерешевского-Тернера.
  • Трисомия. В данном случае в кариотипе выявляется три гомологичных элемента. Примеры таких генных мутаций: синдромы Дауна, Эдвардса, Патау.

Провоцирующий фактор

Причиной, по которой развивается анеуплоидия, считается нерасхождение хромосом в процессе клеточного деления на фоне формирования половых клеток либо утрата элементов вследствие анафазного отставания, в то время как при движении к полюсу гомологичное звено может отстать от негомологичного. Понятие "нерасхождение" указывает на отсутствие разделения хроматид либо хромосом в митозе либо мейозе. Это нарушение может привести к мозаицизму. В этом случае одна клеточная линия будет нормальной, а другая - моносомной.

Нерасхождение при мейозе

Такое явление считается наиболее частым. Те хромосомы, которые должны в норме делиться при мейозе, остаются соединенными. В анафазе они отходят к одному клеточному полюсу. В результате формируется 2 гаметы. В одной из них присутствует добавочная хромосома, а в другой не достает элемента. В процессе оплодотворения нормальной клетки с лишним звеном развивается трисомия, гаметы с недостающим компонентом - моносомия. При формировании моносомной зиготы по какому-нибудь аутосомному элементу развитие прекращается на начальных этапах.

Хромосомные мутации

Эти трансформации представляют собой структурные изменения элементов. Как правило, они визуализируются в световой микроскоп. В хромосомные мутации обычно вовлекается от десятков до сотен генов. Это провоцирует изменения в нормальном диплоидном наборе. Как правило, такие аберрации не вызывают трансформации последовательности в ДНК. Однако при изменении количества генных копий развивается генетический дисбаланс из-за недостатка либо переизбытка материала. Существует две большие категории данных трансформаций. В частности, выделяют внутри- и межхромосомные мутации.

Влияние среды

Люди эволюционировали в качестве групп изолированных популяций. Они достаточно долго проживали в одинаковых условиях среды. Речь, в частности, идет о характере питания, климатогеографических характеристиках, культурных традициях, возбудителях патологий и прочем. Все это привело к закреплению специфических для каждой популяции сочетаний аллелей, являвшихся наиболее соответствующими для условий проживания. Однако вследствие интенсивного расширения ареала, миграций, переселения стали возникать ситуации, когда бывшие в одной среде полезные сочетания определенных генов в другой перестали обеспечивать нормальное функционирование ряда систем организма. В связи с этим часть наследственной изменчивости обуславливается неблагоприятным комплексом непатологических элементов. Таким образом, в качестве причины генных мутаций в данном случае выступают изменения внешней среды, условий проживания. Это, в свою очередь, стало основой для развития ряда наследственных заболеваний.

Естественный отбор

С течением времени эволюция протекала в более специфичных видах. Это также способствовало расширению наследственного разнообразия. Так, сохранялись те признаки, которые могли исчезать у животных, и наоборот, отметалось то, что оставалось у зверей. В ходе естественного отбора люди приобретали также и нежелательные признаки, которые имели прямое отношение к болезням. К примеру, у человека в процессе развития появились гены, способные определять чувствительность к полиомиелиту либо дифтерийному токсину. Став Homo sapiens, биологический вид людей в некотором роде "заплатил за свою разумность" накоплением и патологических трансформаций. Данное положение считается основой одной из базовых концепций учения о генных мутациях.

Издавна сложилось так, что людей, имеющих генетические мутации, считали монстрами и чудовищами. Ими пугали детей и старались всячески избегать. Сейчас мы знаем, что непривычный для нас внешний вид некоторых людей - это результат редких генетических заболеваний. К сожалению, учёные так и не научились с ними бороться. Предлагаем Вашему вниманию подборку из десяти самых необычных генетических мутаций, встречающихся у людей. К счастью, они довольно редки.

(Всего 10 фото)

Спонсор поста: Экстремальный туризм : Члены нашей команды - это профессиональные путешественники, исследователи и журналисты, которых объединяет между собой тяга к приключениям и страсть к путешествиям в новые, еще не изведанные уголки нашей планеты.

1. Прогерия.

Встречается у одного ребёнка из 8 000 000. Для этого заболевания характерны необратимые изменения кожи и внутренних органов, вызванные преждевременным старением организма. Средняя продолжительность жизни людей с таким заболеванием- 13 лет. Известен всего лишь один случай, когда пациент достиг возраста сорока пяти лет. Был зафиксирован в Японии.

2. Синдром Юнера Тана (СЮТ).

Люди с этим редким генетическим дефектом склонны к хождению на четвереньках, имеют примитивную речь и недостаточную мозговую деятельность. Синдром был открыт и изучен биологом Юнером Таном после знакомства с семьёй Улас в одном из турецких сёл. Про эту необычную семью был снят даже документальный фильм «Семья, ходящая на четвереньках». Хотя некоторые учёные склонны думать, что СЮТ никак не связан с работой генов.

3. Гипертрихоз.

Во времена средневековья людей с подобным генным дефектом, называли оборотнями или человекообезьянами. Для этого заболевания характерен избыточный рост волос на всём теле, включая лицо и уши. Первый случай гипертрихоза был зафиксирован в 16 веке.

4. Эпидермодисплазия верруциформная.

Одно из редчайших генных сбоев. Он делает своих обладателей очень чувствительных к широко распространённому вирусу папилломы человека (ВПЧ). У таких людей инфекция вызывает рост многочисленных кожных наростов, напоминающих по плотности древесину. О заболевании стало широко известно в 2007 году после того как в интернете появился видеоролик с 34-летним индонезийцем Деде Косварой. В 2008 году мужчина перенёс сложную операцию по удалению шести килограммов наростов с головы, рук, ног и туловища. На прооперированные части тела была пересажена новая кожа. Но, к сожалению, через некоторое время наросты появились вновь.

5. Тяжёлый комбинированный иммунодефицит.

У носителей этого заболевания иммунная система бездействует. О болезни заговорили после фильма «Мальчик в пластиковом пузыре», который появился на экранах в 1976 году. В нём рассказывается о маленьком мальчике-инвалиде Дэвиде Веттере, который вынужден жить в пластиковом пузыре. Так как любой контакт с внешним миром для малыша мог быть смертельным. В фильме всё заканчивается трогательным и красивым хэппи-эндом. Реальный же Дэвид Ветер умер в возрасте 13 лет после неудачной попытки врачей укрепить его иммунитет.

6. Синдром Лёша-Нихена – повышенный синтез мочевой кислоты.

При этом заболевании в кровь поступает слишком много мочевой кислоты. Это ведёт к появлению камней в почках и мочевом пузыре, а также к подагрическому артриту. Кроме этого меняется и поведение человека. У него наблюдаются непроизвольные судороги рук. Больные часто грызут пальцы и губы до крови и бьются головой об твёрдые предметы. Заболевание встречается только у младенцев мужского пола.

7. Эктродактилия.

Один из врождённых пороков развития, при котором полностью отсутствуют или недоразвиты пальцы кистей и/или стоп. Вызван сбоем в работе седьмой хромосомы. Часто спутником заболевания является полное отсутствие слуха.

8. Синдром Протея

Синдром Протея вызывает быстрый и непропорциональный рост костей и кожных покровов, вызванный мутацией в гене AKT1. Именно этот ген отвечает за правильный рост клеток. Из-за сбоя в его работе одни клетки стремительно быстро растут и делятся, а другие продолжают расти в нормальном темпе. Это приводит к аномальному внешнему виду. Заболевание проявляется не сразу после рождения, а лишь к полугодовалому возрасту.

9. Триметиламинурия.

Относится к самым редким генетическим заболеваниям. Нет даже статистических данных о его распространении. У страдающих от этого заболевания в организме накапливается триметиламин. Это вещество с резким неприятным запахом, напоминающим запах протухших рыбы и яиц, выделяется вместе с потом и создаёт вокруг больного неприятное зловонное амбре. Естественно, лица с таким генетическим сбоём избегают многолюдных мест и склонны к депрессиям.

10. Синдром Марфана.

Встречается у одного из двадцати тысяч людей. При этом заболевании нарушено развитие соединительной ткани. У носителей этого генного дефекта непропорционально длинные конечности и гипермобильные суставы. Также у больных наблюдается расстройства зрительной системы и искривление позвоночника.

Невероятные факты

По сравнению со многими другими видами, у всех людей очень схожие геномы .

Тем не менее, даже несущественные изменения в наших генах или окружающей среде могут способствовать развитию в человеке черт, которые сделают его уникальным.

Эти различия могут проявляться обычным образом, к примеру, через цвет волос, рост, или структуру лица, но порой человек или определённая группа людей развивают что-то такое, что отчётливо отличает его/их от остальных.

Генетические мутации

10. Люди, которые генетически не предрасположены к "передозировке" холестерином

В то время, как большинству из нас приходится беспокоиться о количестве потребляемой жареной пищи, и всего того, что входит в список продуктов, повышающих уровень холестерина, мало кто может есть всё и не беспокоиться об этом.

В действительности, независимо от того, что такие люди употребляют в пищу, их "плохой холестерин" (количество в крови липопротеинов низкой плотности, связанных с болезнями сердца) практически не существует.

Эти люди родились с генетической мутацией. В частности, у них отсутствует рабочая копия гена, известного как PCSK9, и хотя считается невезением родиться с отсутствующим геном, в данном случае, судя по всему, есть некоторые положительные побочные эффекты.

После того, как около 10 лет назад учёные обнаружили связь между отсутствием этого гена и холестерином, фармацевтические компании начали активно работать над созданием пилюли, которая бы смогла блокировать работу PCSK9 у обычного человека.

Работа над созданием данного препарата почти завершена. В ранних исследованиях, у пациентов, получавших его, наблюдалось снижение уровня холестерина на 75 процентов. До сих пор учёным удалось обнаружить эту врождённую мутацию у нескольких афро-американцев, их риск развития сердечно-сосудистых заболеваний на 90 процентов ниже по сравнению с обычным человеком.

Устойчивость к болезням

9. Устойчивость к ВИЧ

Разные вещи могут уничтожить человечество: астероид, ядерный взрыв или экстремальные изменения в климате. Но самая страшная угроза - это несколько типов супер-вирулентных вирусов. Если болезнь нападёт на человечество, то шанс на выживание получат лишь те немногие, иммунитет которых обладает супер-силой.

К счастью, нам известно, что действительно есть такие люди, которые устойчивы к определённым болезням. Возьмём, к примеру, ВИЧ. У некоторых людей есть генетическая мутация, которая отключает работу белка CCR5.

Вирус ВИЧ использует этот белок как дверь доступа в клетки человека. Если же у человека не работает этот белок, то ВИЧ не может проникнуть в клетки, и вероятность заразиться этим вирусом крайне мала.

Учёные говорят, что люди с этой мутацией скорее устойчивы к вирусу, чем обладают иммунитетом к нему, потому как несколько человек без этого белка даже умерли от СПИДа. По-видимому, некоторые необычные виды ВИЧ выяснили, как использовать другие белки CCR5, чтобы проникнуть в клетки. ВИЧ очень изобретателен, поэтому он настолько страшен.

Люди с двумя копиями дефектного гена максимально устойчивы к ВИЧ. В настоящее время, эта мутация присутствует у 1 процента людей кавказской национальности, и ещё реже её можно найти у представителей других этносов.

8. Устойчивость к малярии

Те, кто обладают высокой устойчивостью к развитию малярии, являются носителями другой смертельной болезни: серповидно-клеточной анемии. Безусловно, никому не хочется быть защищённым от малярии, но, при этом, умереть от болезни клеток крови.

Однако, существует одна ситуация, когда наличие гена серповидно-клеточной болезни окупается. Чтобы понять, как это работает, мы должны изучить основы обеих болезней.

Серповидно-клеточная анемия вызывает изменения в форме и составе красных кровяных телец, что затрудняет их проходимость через поток крови, вследствие чего они не получают достаточное количество кислорода.

Но вы можете обладать иммунитетом от малярии и без того, чтобы болеть анемией. Чтобы серповидно-клеточная малярия развилась, человек должен унаследовать две копии мутантного гена, по одному от каждого родителя.

Если человек является носителем только одного, то у него достаточно гемоглобина, чтобы противостоять малярии, в то же время полноценная анемия у него никогда не разовьётся.

Из-за своей способности бороться с малярией, эта мутация весьма географически избирательна, и распространена в основном в тех регионах мира, где о малярии знают не понаслышке. В таких районах носителями мутационного гена являются 10-40 процентов людей.

Мутации генов

7. Устойчивость к холоду

Эскимосы и другие группы населения, которые проживают в чрезвычайно холодных погодных условиях, приспособились к такому образу жизни. Эти люди просто научились выживать, или же они биологически устроены по-другому?

Жители холодных условий обладают отличными физиологическими реакциями на низкие температуры по сравнению с теми, кто живёт в более мягких условиях.

И судя по всему, в этих реакциях задействованы и генетические компоненты, потому что даже если человек переедет в более холодную среду обитания, и проживёт там несколько десятилетий, его организм всё равно никогда не достигнет того уровня адаптации, с которым живут местные жители.

К примеру, исследователи обнаружили, что коренные сибиряки гораздо лучше приспособлены к холодным условиям по сравнению с русскими, проживающими в той же общине, но не родившимися в этих условиях.

У людей, для которых холодных климат – родной, более высокий базальный уровень метаболизма (примерно на 50 процентов выше) , по сравнению с теми, кто привык к умеренному климату. Кроме того, они умеют хорошо поддерживать температуру тела, у них меньше потовых желез на теле и больше на лице.

В одном из исследований эксперты протестировали представителей различных рас, чтобы сравнить, как изменяется их температура кожи под воздействием холода. Выяснилось, что эскимосы способны удерживать максимально высокую температуру тела.

Эти типы приспособлений частично могут объяснить, почему коренные австралийцы могут спать на земле во время холодных ночей (без специальной одежды и крова над головой), и при этом не заболеть, а также, почему эскимосы могут жить большую часть своей жизни при отрицательных температурах.

Человеческое тело гораздо лучше воспринимает тепло, чем холод, поэтому удивительно, что люди умудряются жить на морозе, не говоря уже о том, чтобы прекрасно себя при этом чувствовать.

6. Хорошая приспособленность к высоким широтам

Большинство альпинистов, которые совершили восхождение на Эверест, не сделали бы этого без одного из местных гидов Шерпа. Удивительно, но шерпы зачастую идут впереди авантюристов, с целью установить веревки и лестницы для того, чтобы у других альпинистов была возможность покорить скалы.

Нет сомнений в том, что тибетцы и непальцы физически более приспособлены к жизни в таких условиях, но что именно позволяет им активно работать в бескислородных условиях, в то время как обычный человек должен бороться, чтобы выжить?

Тибетцы живут на высоте более 4000 метров и привыкли дышать воздухом, который содержит на 40 процентов меньше кислорода, чем воздух, в обычных условиях.

На протяжении веков их тела приспосабливались к этой среде, поэтому у них развились большие грудные клетки и большой мощности лёгкие, что позволяет им с каждым вдохом впускать в организм больше воздуха.

В отличие от жителей равнин, чьи тела вырабатывают больше красных кровяных телец, находясь в условиях пониженного содержания кислорода в воздухе, "высотные люди" эволюционировали, чтобы делать прямо противоположное: их организмы вырабатывают меньшее количество кровяных телец.

Всё потому, что увеличение количества красных кровяных телец в условиях пониженного содержания кислорода в течение короткого периода времени поможет человеку получить больше спасительного воздуха. Однако, с течением времени кровь густеет, что может привести к образованию кровяных сгустков и других смертельно опасных осложнений.

Кроме того, у шерпов кровоток в мозге лучше, и в целом они лучше восприимчивы к высотной болезни.

Даже если тибетцы переезжают жить на более низкие высоты, у них эти особенности остаются. Эксперты выявили, что многие из этих особенностей не просто фенотипические отклонения (то есть исчезающие на малых высотах), а полноценные генетические адаптации.

Одно конкретное генетическое изменение произошло в участке ДНК, известном как EPAS1, который кодирует регуляторный белок. Этот белок обнаруживает кислород и контролирует производство красных кровяных телец. Это и объясняет, почему тибетцы не производят больше красных кровяных телец, когда лишены достаточного количества кислорода.

Ханьцы, равнинные родственники тибетцев, не разделяют с ними эти генетические характеристики. Две группы были отделены друг от друга примерно 3000 лет назад. Это свидетельствует о том, что приспособления развились в течение около 100 поколений (относительно короткое время с точки зрения эволюции).

Редкие генетические мутации

5. Иммунитет к заболеваниям мозга

В случае, если нужна ещё одна причина, чтобы перестать есть себе подобных, вот она: каннибализм – это не самый здоровый выбор. Анализ жителей племени Форе в Папуа-Новой Гвинеи в середине 20 века показал нам, что они переживали эпидемию куру – дегенеративное и смертельное заболевание мозга, распространённое у тех, кто ест других людей.

Куру – это прионное заболевание, связанное с болезнью Крейтцфельдта-Якоба у людей и губчатой энцефалопатией (коровьим бешенством) у крупного рогатого скота. Как и все прионные заболевания, куру опустошает мозг, наполняя его губчатыми отверстиями .

У инфицированного человека ухудшается память и интеллект, его начинают одолевать судороги, а сама личность деградирует. Иногда люди могут жить с прионным заболеванием в течение многих лет, но в случае с куру, страдающие, как правило, умирают в течение года.

Важно отметить, что хоть и очень редко, но человек всё же может унаследовать прионную болезнь. Однако, чаще всего оно передаётся через поедание заражённого мяса человека или животного.

Изначально антропологи и врачи не знали, почему куру распространилось по всему племени Форе. В конце 1950-х годов, наконец, всё встало на свои места. Было обнаружено, что инфекция передаётся во время поглощения "погребального пирога" - употребление в пищу умершего родственника в знак уважения.

В людоедском ритуале в большинстве своём принимали участие женщины и маленькие дети. Следовательно, они и были основными пострадавшими. Незадолго до запрещения такой погребальной практики, в некоторых деревнях племени Форе практически не осталось молодых девушек.

Ткань мозга заражённого человека, белые отверстия – съеденные заболеванием частички

Однако, не все, кто болел куру, умер от неё. У оставшихся в живых были найдены изменения в гене под названием G127V, которые подарили им иммунитет к заболеванию мозга. Сегодня ген широко распространён среди людей Форе, а также у жителей племён, живущих в непосредственной близости.

Это удивительно, потому что куру появилась в регионе примерно в 1900 году. Этот инцидент является одним из самых сильных и самых последних примеров естественного отбора у человека.

Самая редкая кровь

4. Золотая кровь

Несмотря на то, что нам часто говорили, будто группа крови О является универсальной, подходящей всем, это не так. На самом деле, вся система – это более сложный механизм, чем многие из нас полагают.

Хотя большинство знают о существовании лишь восьми типов крови (А, В, АВ и О, каждая из которых может быть резус – положительной или резус – отрицательной), в настоящее время есть 35 известных систем групп крови, с миллионами вариаций в каждой системе.

Кровь, которая не попадает в систему АВО, крайне редко можно встретить, а человеку с такой группой очень проблематично найти донора, если вдруг он будет нуждаться в переливании.

На сегодняшний день самая необычная кровь – это "резус - ноль". Как следует из названия, она не содержит никаких антигенов в системе Rh. Это не тоже самое, что и отсутствие резус фактора, потому что кровь людей, которые не имеют Rh D антиген, называется "отрицательной" (А-, В-, АВ-, О-).

В этой крови нет абсолютно никакого Rh антигена. Это настолько необычная кровь, что на нашей планете существует чуть больше 40 людей, кровь которых "резус – ноль".

Генные мутации - изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена а на т. Причины - нарушения при удвоении (репликации) ДНК

Генные мутации представляют собой молекулярные, не видимые в световом микроскопе изменения структуры ДНК. К мутациям генов относятся любые изменения молекулярной структуры ДНК, независимо от их локализации и влияния на жизнеспособность. Некоторые мутации не оказывают никакого влияния на структуру и функцию соответствующего белка. Другая (большая) часть генных мутаций приводит к синтезу дефектного белка, не способного выполнять свойственную ему функцию. Именно генные мутации обусловливают развитие большинства наследственных форм патологии.

Наиболее частыми моногенными заболеваниями являются у человека являются: муковисцидоз, гемохроматоз, адрено-генитальный синдром, фенилкетонурия, нейрофиброматоз, миопатии Дюшенна-Беккера и ряд других заболеваний. Клинически они проявляются признаками нарушений обмена веществ (метаболизма) в организме. Мутация может заключаться:

1) в замене основания в кодоне, это так называемая миссенсмутация (от англ, mis - ложный, неправильный + лат. sensus - смысл) - замена нуклеотида в кодирующей части гена, приводящая к замене аминокислоты в полипептиде;

2) в таком изменении кодонов, которое приведет к остановке считывания информации, это так называемая нонсенсмутация (от лат. non - нет + sensus - смысл) — замена нуклеотида в кодирующей части гена, приводит к образованию кодона-терминатора (стоп-кодона) и прекращению трансляции;

3) нарушении считывания информации, сдвиге рамки считывания, называемом фреймшифтом (от англ. frame - рамка + shift: - сдвиг, перемещение), когда молекулярные изменения ДНК приводят к изменению триплетов в процессе трансляции полипептидной цепи.

Известны и другие типы генных мутаций. По типу молекулярных изменений выделяют:

делении (от лат. deletio - уничтожение), когда происходит утрата сегмента ДНК размером от одного нуклеотида до гена;

дупликации (от лат. duplicatio - удвоение), т.е. удвоение или повторное дублирование сегмента ДНК от одного нуклеотида до целых генов;

инверсии (от лат. inversio - перевертывание), т.е. поворот на 180° сегмента ДНК размерами от двух нукпеотидов до фрагмента, включающего несколько генов;

инсерции (от лат. insertio - прикрепление), т.е. вставка фрагментов ДНК размером от одного нуклеотида до целого гена.

Молекулярные изменения, затрагивающие от одного до нескольких нуклеотидов, рассматривают как точечную мутацию.

Принципиальным и отличительным для генной мутации является то, что она 1) приводит к изменению генетической информации, 2) может передаваться от поколения к поколению.

Определенная часть генных мутаций может быть отнесена к нейтральным мутациям, поскольку они не приводят к каким-либо изменениям фенотипа. Например, за счет вырожденности генетического кода одну и ту же аминокислоту могут кодировать два триплета, различающихся только по одному основанию. С другой стороны, один и тот же ген может изменяться (мутировать) в несколько различающихся состояний.

Например, ген, контролирующий группу крови системы АВ0. имеет три аллеля: 0, А и В, сочетания которых определяют 4 группы крови. Группа крови системы АВ0 является классическим примером генетической изменчивости нормальных признаков человека.

Именно генные мутации обусловливают развитие большинства Ласледственных форм патологии. Болезни, обусловленные подобными мутациями, называют генными, или моногенными, болезнями, Т. е. заболеваниями, развитие которых детерминируется мутацией одного гена.

Геномные и хромосомные мутации

Геномные и хромосомные мутации являются причинами возникновения хромосомных болезней. К геномным мутациям относятся анеуплоидии и изменение плоидности структурно неизмененных хромосом. Выявляются цитогенетическими методами.

Анеуплоидия — изменение (уменьшение — моносомия, увеличение — трисомия) числа хромосом в диплоидном наборе, некратное гаплоидному (2n + 1, 2n - 1 и т.д.).

Полиплоидия — увеличение числа наборов хромосом, кратное гаплоидному (3n, 4n, 5n и т.д.).

У человека полиплоидия, а также большинство анеуплоидии являются летальными мутациями.

К наиболее частым геномным мутациям относятся:

трисомия — наличие трех гомологичных хромосом в кариотипе (например, по 21-й паре, при синдроме Дауна, по 18-й паре при синдроме Эдвардса, по 13-й паре при синдроме Патау; по половым хромосомам: XXX, ХХY, ХYY);

моносомия - наличие только одной из двух гомологичных хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона невозможно. Единственная моносомия у человека, совместимая с жизнью, - моносомия по Х-хромосоме - приводит (к синдрому Шерешевского-Тернера (45, Х0).

Причиной, приводящей к анеуплоидии, является нерасхождение хромосом во время клеточного деления при образовании половых клеток или утрата хромосом в результате анафазного отставания, когда во время движения к полюсу одна из гомологичных хромосом может отстать от всех других негомологичных хромосом. Термин «нерасхождение» означает отсутствие разделения хромосом или хроматид в мейозе или митозе. Утрата хромосом может приводить к мозаицизму, при котором имеется одна эуплоидная (нормальная) клеточная линия, а другая — моносомная .

Нерасхождение хромосом наиболее часто наблюдается во время мейоза. Хромосомы, которые в норме должны делиться во время мейоза, остаются соединенными вместе и в анафазе отходят к одному полюсу клетки. Таким образом, возникают две гаметы, одна из которых имеет добавочную хромосому, а другая не имеет этой хромосомы. При оплодотворении гаметы с нормальным набором хромосом гаметой с лишней хромосомой возникает трисомия (т. е. в клетке присутствует три гомологичные хромосомы), при оплодотворении гаметой без одной хромосомы возникает зигота с моносомией. Если моносомая зигота образуется по какой-либо аутосомной (не половой) хромосоме, то развитие организма прекращается на самых ранних стадиях развития.

Хромосомные мутации - это структурные изменения отдельных хромосом, как правило, видимые в световом микроскопе. В хромосомную мутацию вовлекается большое число (от десятков до нескольких сотен) генов, что приводит к изменению нормального диплоидного набора. Несмотря на то что хромосомные аберрации, как правило, не изменяют последовательность ДНК в специфических генах, изменение числа копий генов в геноме приводит к генетическому дисбалансу вследствие недостатка или избытка генетического материала. Различают две большие группы хромосомных мутаций: внутрихромосомные и межхромосомные.

Внутрихромосомные мутации — это аберрации в пределах одной хромосомы. К ним относятся:

делеции (от лат. deletio — уничтожение) - утрата одного из участков хромосомы, внутреннего или терминального. Это может обусловить нарушение эмбриогенеза и формирование множественных аномалий развития (например, деления в регионе короткого плеча 5-й хромосомы, обозначаемая как 5р-, приводит к недоразвитию гортани, порокам сердца, отставанию умственного развития). Этот симптомокомплекс известен как синдром «кошачьего крика», поскольку у больных детей из-за аномалии гортани плач напоминает кошачье мяуканье;

инверсии (от лат. inversio — перевертывание). В результате двух точек разрывов хромосомы образовавшийся фрагмент встраивается на прежнее место после поворота на 180°. В результате нарушается только порядок расположения генов;

дупликации (от лат duplicatio — удвоение) — удвоение (или умножение) какого-либо участка хромосомы (например, трисомия по одному из коротких плеч 9-й хромосомы обуслошшвает множественные пороки, включая микроцефалию, задержку физического, психического и интеллектуального развития).

Схемы наиболее частых хромосомных аберраций:
Делении: 1 - концевая; 2 - интерстициальная. Инверсии: 1 - перицентрическая (с захватом центромеры); 2 - парацентрическая (в пределах одного плеча хромосомы)

Межхромосомные мутации, или мутации перестройки — обмен фрагментами между негомологичными хромосомами. Такие мутации получили название транслокации (от лат. tгаns — за, через + locus — место). Это:

Реципрокная транслокация, когда две хромосомы обмениваются своими фрагментами;

Нереципрокная транслокация, когда фрагмент одной хромосомы транспортируется на другую;

- «центрическое» слияние (робертсоновская транслокация) - соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч.

При поперечном разрыве хроматид через центромеры «сестринские» хроматиды становятся «зеркальными» плечами двух разных хромосом, содержащих одинаковые наборы генов. Такие хромосомы называют изохромосомами. Как внутрихромосомные (делеции, инверсии и дупликации), так и межхромосомные (транслокации) аберрации и изохромосомы связаны с физическими изменениями структуры хромосом, в том числе с механическими разломами.

Наследственная патология как результат наследственной изменчивости

Наличие общих видовых признаков позволяет объединять всех людей на земле в единый вид Homo sapiens. Тем не менее мы без труда, одним взглядом выделяем лицо знакомого нам человека в толпе незнакомых людей. Чрезвычайное разнообразие людей — как внутри групповое (например, разнообразие в пределах этноса), так и межгрупповое — обусловлено генетическим их отличием. В настоящее время считается, что вся внутривидовая изменчивость обусловлена различными генотипами, возникающими и поддерживаемыми естественным отбором.

Известно, что гаплоидный геном человека содержит 3,3х10 9 пар нуклеотидных остатков, что теоретически позволяет иметь до 6-10 млн генов. Вместе с тем данные современных исследований свидетельствуют, что в геноме человека содержится примерно 30-40 тыс. генов. Около трети всех генов имеют более чем один аллель, т. е. являются полиморфными.

Концепция наследственного полиморфизма была сформулирована Э. Фордом в 1940 г. для объяснения существования в популяции двух или более различающихся форм, когда частота наиболее редкой из них не может быть объяснена только мутационными событиями. Поскольку мутация гена является редким событием (1х10 6), частоту мутантного аллеля, составляющую более 1%, можно объяснить только его постепенным накоплением в популяции за счет селективных преимуществ носителей данной мутации.

Многочисленность расщепляющихся локусов, многочисленность аллелей в каждом из них наряду с явлением рекомбинации создает неисчерпаемое генетическое разнообразие человека. Расчеты свидетельствуют, что за всю историю человечества на земном шаре не было, нет и в обозримом будущем не встретится генетического повторения, т.е. каждый рожденный человек является уникальным явлением во Вселенной. Неповторимость генетической конституции во многом определяет особенности развития заболевания у каждого конкретного человека.

Человечество эволюционировало как группы изолированных популяций, длительное время проживающих в одних и тех же условиях окружающей среды, включая климатогеографические характеристики, характер питания, возбудителей болезней, культурные традиции и т.д. Это привело к закреплению в популяции специфических для каждой из них сочетаний нормальных аллелей, наиболее адекватных условиям среды. В связи с постепенным расширением ареала обитания, интенсивными миграциями, переселением народов возникают ситуации, когда полезные в определенных условиях сочетания конкретных нормальных генов в других условиях не обеспечивают оптимальное функционирование некоторых систем организма. Это приводит к тому, что часть наследственной изменчивости, обусловленная неблагоприятным сочетанием непатологических генов человека, становится основой развития так называемым болезней с наследственным предрасположением.

Кроме того, у человека как социального существа естественный отбор со временем протекал во все более специфических формах, что также расширяло наследственное разнообразие. Сохранялось то, что могло отметаться у животных, или, наоборот, терялось то, что животные сохраняли. Так, полноценное обеспечение потребностей в витамине С привело в процессе эволюции к утере гена L-гулонодактоноксидазы, катализирующей синтез аскорбиновой кислоты. В процессе эволюции человечество приобретало и нежелательные признаки, имеющие прямое отношение к патологии. Например, у человека в процессе эволюции появились гены, определяющие чувствительность к дифтерийному токсину или к вирусу полиомиелита.

Таким образом, у человека, как и у любого другого биологического вида, нет резкой грани между наследственной изменчивостью, ведущей к нормальным вариациям признаков, и наследственной изменчивостью, обусловливающей возникновение наследственных болезней. Человек, став биологическим видом Homo sapiens, как бы заплатил за «разумность» своего вида накоплением патологических мутаций. Это положение лежит в основе одной из главных концепций медицинской генетики об эволюционном накоплении патологических мутации в популяциях человека.

Наследственная изменчивость популяций человека, как поддерживаемая, так и уменьшаемая естественным отбором, формирует так называемый генетический груз.

Некоторые патологические мутации могут в течение исторически длительного времени сохраняться и распространяться в популяциях, обусловливая гак называемый сегрегационный генетический груз; другие патологические мутации возникают в каждом поколении как результат новых изменений наследственной структуры, создавая мутационный груз.

Отрицательный эффект генетического груза проявляется повышенной летальностью (гибель гамет, зигот, эмбрионов и детей), снижением фертильности (уменьшенное воспроизводство потомства), уменьшением продолжительности жизни, социальной дизадаптацией и инвалидизацией, а также обусловливает повышенную необходимость в медицинской помощи.

Английский генетик Дж.Ходдейн был первым, кто привлек внимание исследователей к существованию генетического груза, хотя сам термин был предложен Г. Меллером еще в конце 40-х гг. Смысл понятия «генетический груз» связан с высокой степенью генетической изменчивости, необходимой биологическому виду для того, чтобы иметь возможность приспосабливаться к изменяющимся условиям среды.