Функции катехоламинов. Изменения концентрации гормонов в крови

Лишь очень небольшая часть адреналина (менее 5%) выделяется с мочой. Катехоламины быстро

Рис. 49.2. Схема биосинтеза катехоламинов. ТГ-тирозингидроксилаза; ДД-ДОФА-декарбоксилаза; ФNMT - фенилтганоламин-ГМ-метилтрансфераза; ДБГ-дофамин-Р-гидроксилаза; АТР-аденозинтрифосфат. Биосинтез катехоламинов происходит в цитоплазме и в различных гранулах клеток мозгового слоя надпочечников. В одних гранулах содержится адреналин (А), в других-норадреналин (НА), а в некоторых - оба гормона. При стимуляции все содержимое гранул высвобождается во внеклеточную жидкость (ВКЖ).

метаболизируются под действием катехол-О-метилтрансферазы и моноаминоксидазы с образованием неактивных О-метилированных и дезаминированных продуктов (рис. 49.3). Большинство катехоламинов служат субстратами для обоих названных ферментов, причем реакции эти могут происходить в любой последовательности.

Катехол-О-метилтрансфераза (КОМТ) - цитозольный фермент, обнаруживаемый во многих тканях. Он катализирует присоединение метильной группы обычно по третьему положению (метаположение) бензольного кольца различных катехоламинов. Реакция требует присутствия двухвалентного катиона и S-аденозилметионина в качестве донора метильной группы. В результате этой реакции в зависимости от использованного субстрата образуются гомованилиновая кислота, норметанефрин и метанефрин.

Моноаминоксидаза (МАО) - оксидоредуктаза, дезаминирующая моноамины. Она обнаружена во многих тканях, но в наибольших концентрациях - в печени, желудке, почках и кишечнике. Описаны по крайней мере два изофермента МАО: МАО-А нервной ткани, дезаминирующая серотонин, адреналин и норадреналин, и МАО-В других (не нервных) тканей, наиболее активная в отношении -фенилэтиламина и бензиламина. Дофамин и тирамин метаболизируются обеими формами. Интенсивно исследуется вопрос о связи между аффективными расстройствами и повышением или понижением активности этих изоферментов. Ингибиторы МАО нашли применение при лечении гипертонии и депрессии, однако способность этих соединений вступать в опасные для организма реакции с содержащимися в пище и лекарственных препаратах симпатомиметическими аминами снижает их ценность.

О-Метоксилированные производные подвергаются дальнейшей модификации путем образования конъюгатов с глюкуроновой или серной кислотой.

Катехоламины образуют множество метаболитов. Два класса таких метаболитов используются в диагностике, поскольку присутствуют в моче в легко измеримых количествах. Метанефрины представляют собой метоксипроизводные адреналина и норадреналина; О-метилированным дезаминированным продуктом адреналина и норадреналина является З-метокси-4-гндроксиминдальная кислота (называемая также ванилилминдальной кислотой, ВМК) (рис. 49.3). При феохромоцитоме концентрация матанефринов или ВМК в моче оказывается повышенной более чем у 95% больных. Диагностические тесты, основанные на определении этих матаболитов, отличаются высокой точностью, особенно когда их используют в сочетании с определением катехоламинов в моче или плазме.

Синтез катехоламинов происходит в цитоплазме и гранулах клеток мозгового слоя надпочечников (рис. 11-22). В гранулах происходит также запасание катехоламинов.

Катехоламины поступают в гранулы путём АТФ-зависимого транспорта и хранятся в них в комплексе с АТФ в соотношении 4:1 (гормон-АТФ). Разные гранулы содержат разные катехоламины: некоторые только адреналин, другие - норадреналин, третьи - оба гормона.

Секреция гормонов из гранул происходит путём экзоцитоза. Катехоламины и АТФ освобождаются из гранул в том же соотношении, в каком они сохраняются в гранулах. В отличие от симпатических нервов, клетки мозгового слоя надпочечников лишены механизма обратного захвата выделившихся катехоламинов.

В плазме крови катехоламины образуют непрочный комплекс с альбумином. Адреналин транспортируется в основном к печени и скелетным мышцам. Норадреналин образуется в основном в органах, иннервируемых симпатическими нервами (80% от общего количества). Норадреналин лишь в незначительных количествах достигает периферических тканей. Т 1/2 катехоламинов - 10-30 с. Основная часть катехоламинов быстро метаболизируется в различных тканях при участии специфических ферментов (см. раздел 9). Лишь небольшая часть адреналина (~ 5%) выделяется с мочой.

2. Механизм действия и биологические функции катехоламинов

Катехоламины действуют на клетки-мишени через рецепторы, локализованные в плазматической мембране. Выделяют 2 главных класса таких рецепторов: α-адренергические и β-адренергические. Все рецепторы катехоламинов - гликопротеины, которые являются продуктами разных генов, различаются сродством к агонистам и антагонистам и передают сигналы в клетки с помощью разных вторичных посредников. Это определяет характер их влияния на метаболизм клеток-мишеней.

Рис. 11-22. Синтез и секреция катехоламинов. Биосинтез катехоламинов происходит в цитоплазме и гранулах клеток мозгового слоя надпочечников. В одних гранулах содержится адреналин, в других норадреналин, а в некоторых - оба гормона. При стимуляции содержимое гранул высвобождается во внеклеточную жидкость. А - адреналин; НА - норадреналин.

Адреналин взаимодействует как с α-, так и с β-рецепторами; норадреналин в физиологических концентрациях главным образом взаимодействует с α-рецепторами.

Взаимодействие гормона с β-рецепторами активирует аденилатциклазу, тогда как связывание с α 2 -рецептором её ингибирует. При взаимодействии гормона с α 1 -рецептором происходит активация фосфолипазы С и стимулируется инозитолфосфатный путь передачи сигнала (см. раздел 5).

Биологические эффекты адреналина и норадреналина затрагивают практически все функции организма и рассматриваются в соответствующих разделах. Общее во всех этих эффектах заключается в стимуляции процессов, необходимых для противостояния организма чрезвычайным ситуациям.

3. Патология мозгового вещества надпочечников

Основная патология мозгового вещества надпочечников - феохромоцитома, опухоль, образованная хромаффинными клетками и продуцирующая катехоламины. Клинически феохромоцитома проявляется повторяющимися приступами головной боли, сердцебиения, потливости, повышением АД и сопровождается характерными изменениями метаболизма (см. разделы 7,8).

Ж. Гормоны поджелудочной железы и желудочно-кишечного тракта ТРАКТА

Поджелудочная железа выполняет в организме две важнейшие функции: экзокринную и эндокринную. Экзокринная функция обеспечивает синтез и секрецию ферментов и ионов, необходимых для процессов пищеварения. Эндокринную функцию выполняют клетки островкового аппарата поджелудочной железы, которые секретируют гормоны, участвующие в регуляции многих процессов в организме.

В островковой части поджелудочной железы (островки Лангерханса) выделяют 4 типа клеток, секретирующих разные гормоны: А- (или α-) клетки секретируют глюкагон, В- (или β-) - инсулин, D- (или δ-) - соматостатин, F-клетки секретируют панкреатический полипептид.

поиск специалиста или услуги: Аборты Акушер Аллерголог Анализы Андролог БРТ Ведение беременности Вызов врача на дом Гастроэнтеролог Гематолог Генная диагностика Гепатолог Гинеколог Гирудотерапевт Гомеопат Дерматолог Детский врач Диагностика организма Диетолог Диспансеризация Дневной стационар Забор анализов на дому Забор биоматериала Иглорефлексотерапевт Иммунолог Инфекционист Кардиолог Кинезитерапевт Косметолог Логопед Маммолог Мануальный терапевт Массажист Медицинские книжки Медицинские справки Миколог МРТ Нарколог Невролог Нейрофизиолог Нейрохирург Нетрадиционная медицина Нефролог Онколог Ортопед Остеопат Отоларинголог, ЛОР Офтальмолог, Окулист Очищение организма Паразитолог Педиатр Перевозка больных Пластический хирург Прививки, вакцинация Проктолог Профосмотры Процедурный кабинет Психиатр Психолог Психотерапевт Пульмонолог Реабилитолог Реаниматолог Ревматолог Рентген Репродуктолог Рефлексотерапевт Сексолог Скорая помощь Справка для ГИБДД Срочные исследования Стационар Стоматолог Суррогатное материнство Терапевт Травматолог Травмпункт Трихолог УЗДГ УЗИ Уролог Физиотерапевт Флеболог Флюорография Функциональная диагностика Хирург ЭКГ ЭКО Эндокринолог Эпиляция

Поиск по станции метро Москвы: Авиамоторная Автозаводская Академическая Александровский сад Алексеевская Алтуфьево Аннино Арбатская Аэропорт Бабушкинская Багратионовская Баррикадная Бауманская Беговая Белорусская Беляево Бибирево Библиотека имени Ленина Битцевский парк Борисово Боровицкая Ботанический сад Братиславская Бульвар Адмирала Ушакова Бульвар Дмитрия Донского Бунинская аллея Варшавская ВДНХ Владыкино Водный стадион Войковская Волгоградский проспект Волжская Волоколамская Воробьёвы горы Выставочный центр Выхино Деловой центр Динамо Дмитровская Добрынинская Домодедовская Достоевская Дубровка Зябликово Измайловская Калужская Кантемировская Каховская Каширская Киевская Китай-город Кожуховская Коломенская Комсомольская Коньково Красногвардейская Краснопресненская Красносельская Красные ворота Крестьянская застава Кропоткинская Крылатское Кузнецкий мост Кузьминки Кунцевская Курская Кутузовская Ленинский проспект Лубянка Люблино Марксистская Марьина роща Марьино Маяковская Медведково Международная Менделеевская Митино Молодёжная Мякинино Нагатинская Нагорная Нахимовский проспект Новогиреево Новокузнецкая Новослободская Новые Черёмушки Октябрьская Октябрьское поле



06.02.2013


Катехоламины и нейромедиаторный обмен

Катехоламины - это физиологически активные вещества, которые являются медиаторами (норадреналин, дофамин, серотонин) и гормонами (адреналин, норадреналин). Основные регуляторные функции катехоламинов осуществляются через мозговое вещество надпочечников и специализированные адренергические нейроны.

Все высшие формы поведения человека связаны с жизнедеятельностью нервных клеток, синтезирующих катехоламины. Нейроны используют катехоламины в качестве нейромедиаторов (посредников), осуществляющих передачу нервного импульса.

Обмен катехоламинов в организме является ключевым звеном, как в умственной, так и в физической работоспособности, как в скорости мышления, так и в его качестве. Творческие способности: способность к абстрактному и художественному мышлению, к анализу и синтезу напрямую зависят от катехоламинового обмена. От активности синтеза и выделения катехоламинов зависят такие сложные процессы, как запоминание и воспроизведение информации, агрессивная реакция, настроение, эмоциональность, уровень общего энергетического потенциала, сексуальное поведение и т.д. Чем больше количество синтезируемых и выделяемых катехоламинов, тем выше настроение, работоспособность, общий уровень активности, скорость мышления. Катехоламины оказывают мобилизующее действие на энергетические резервы нервных клеток. Они активизируют окислительно-восстановительные процессы в организме, «запускают» сгорание источников энергии - в первую очередь углеводов, затем жиров и белков.

Самый высокий уровень катехоламинов (на единицу массы тела) у детей. Дети отличаются от взрослых прежде всего очень высокой эмоциональностью и подвижностью, способностью к быстрому переключению мышления. У детей хорошая память, высокая обучаемость и работоспособность.

С возрастом синтез катехоламинов как в центральной нервной системе, так и на периферии замедляется, что, вероятно, связано со старением клеточных мембран, общим снижением синтеза белков в организме. В результате снижения уровня катехоламинов в организме скорость мыслительных процессов уменьшается, ухудшается настроение, усиливается депрессия.

Катехоламины прямо или косвенно повышают активность эндокринных желез, стимулируют гипоталамус и гипофиз. При любой напряженной работе, особенно физической, содержание в крови катехоламинов увеличивается. Это приспособительная реакция организма к нагрузке любого рода. И чем более выражена реакция, тем лучше организм приспосабливается, тем быстрее достигается состояние тренированности. При интенсивной физической работе повышение температуры тела, учащение сердцебиения и др. вызвано выделением в кровь большого количества катехоламинов.

В настоящее время известны следующие катехоламины:
- адреналин
- норадреналин
- дофамин
- серотонин

Среди катехоламинов нейромедиаторами мозга являются:
- норадреналин
- серотонин
- дофамин

Адреналин - гормон, вырабатываемый надпочечниками. Его называют «гормоном страха» из-за того, что при испуге, ввиду сильного выброса адреналина в кровь, сердце часто начинает биться. Выброс адреналина происходит при любом сильном волнении или большой физической нагрузке. Адреналин повышает проницаемость клеточных мембран для глюкозы, усиливает распад углеводов (гликогена) и жиров, вызывает сужение сосудов органов брюшной полости, кожи и слизистых оболочек; в меньшей степени сужает сосуды скелетной мускулатуры. Артериальное давление под действием адреналина повышается. Если человек испуган или взволнован, то его выносливость резко повышается. Адреналин - активный допинг человеческого организма. Чем больше в надпочечниках резервы адреналина, тем выше физическая и умственная работоспособность.

Норадреналин - представляет собой катехоламин, который продуцируют преимущественно клетки мозгового вещества надпочечников и симпатической нервной системы. Его секреция и выброс в кровь усиливаются при стрессе, кровотечениях, тяжелой физической работе и других ситуациях, требующих быстрой перестройки организма. Так как норадреналин оказывает сильное сосудосуживающее действие, его выброс в кровь играет ключевую роль в регуляции скорости и объема кровотока. В отличие от адреналина, норадреналин называют «гормоном ярости», т.к. в результате выброса в кровь норадреналина всегда возникает реакция агрессии, значительно увеличивается мышечная сила. Если от адреналина лицо человека бледнеет, то от норадреналина - краснеет.

Дофамин - один из медиаторов возбуждения в синапсах центральной нервной системы. Дофамин синтезируется в специализированных нейронах мозга, ответственных за регуляцию его важнейших функций. В биосинтезе дофамин является предшественником норадреналина. Он вызывает повышение сердечного выброса, оказывает сосудорасширяющее действие, улучшает кровоток и др. Стимулируя распад гликогена и подавляя утилизацию глюкозы тканями, дофамин вызывает повышение концентрации глюкозы в крови. Он участвует в регуляции образования гормона роста, в торможении секреции пролактина. Недостаточный синтез дофамина обусловливает нарушение двигательной функции - синдромПаркинсона. Резкое повышение экскреции дофамина и его метаболитов с мочой наблюдается при гормонально-активных опухолях. При гиповитаминозе витамина В6 в тканях головного мозга увеличивается содержание дофамина, появляются его метаболиты, которые отсутствуют в норме.

Серотонин - катехоламин, содержащийся, главным образом, в тромбоцитах. При этом около 90% этого вещества синтезируется и хранится в специальных клетках желудочно-кишечного тракта, откуда серотонин поступает в кровь и депонируется тромбоцитами. Серотонин вызывает агрегацию тромбоцитов, оказывает существенное влияние на синтез биологически активных веществ в гипоталамусе, воздействует на функционирование желез внутренней секреции.

В клинической практике определение уровня серотонина в крови наиболее информативно при злокачественных новообразованиях желудка, кишечника и легких, при которых данный показатель превышает норму в 5-10 раз. При этом в моче выявляется повышенное содержание продуктов метаболизма серотонина. После радикального оперативного лечения опухоли происходит полная нормализация этих показателей, в связи с чем, исследование в динамике уровня серотонина в крови и в суточной моче позволяет оценить эффективность проведенной терапии и выявить рецидивы или метастазирование. Другими возможными причинами увеличения концентрации серотонина в крови и в моче являются рак щитовидной железы, острая кишечная непроходимость, острый инфаркт миокарда и др.

Снижение уровня серотонина наблюдается при лейкозах, гиповитаминозе В6, синдроме Дауна и др.

Современные лаборатории предлогают комплекс исследований по выявлению нарушений катехоламинового обмена.

При исследовании катехоламинов информативным является не только определение их уровня в плазме крови, но и экскреция с мочой. Однако необходимо отметить, что каждый из методов имеет свои недостатки. Так, в крови происходит достаточно быстрая элиминация катехоламинов, и достоверные результаты можно получить, если взятие крови для данного исследования производиться в момент четких клинических проявлений (гипертонический криз и др.), что на практике не всегда осуществимо.

Определение катехоламинов в моче может быть недостаточно информативно, если у пациента наблюдается нарушении функции почек. Поэтому наиболее оптимальный вариант: исследование адреналина и норадреналина в крови с одновременным определением их экскреции в моче.

Определяют концентрацию в плазме крови и в моче не только вышеперечисленные катехоламины, но и их метаболиты:

VМА (ваниллилминдальная кислота) - основной метаболит адреналина и норадреналина;
- НVА (гомованиллиновая кислота) - основной метаболит дофамина;
- 5-НIАА (5-гидроксииндолуксусная кислота) - основной метаболит серотонина.

Выявление уровня катехоламинов в динамике позволяет не только диагностировать такие заболевания как феохромоцитома (злокачественная опухоль надпочечников), необластома, синдром Паркинсона, установить причины артериальной гипертензии и гипотензии, недостаточности кровообращения, нарушения ритма сердца, стенокардии, инфаркта миокарда, но и осуществлять контроль за эффективностью проводимой терапии.

Сильные стрессы, психические нагрузки снижают содержание катехоламинов в центральной нервной системе. С помощью клинико-диагностических методов можно проводить контроль за эффективностью лечения антидепрессантами и нейролептиками при психической депрессии.

Во время сильных стрессов (в том числе и при больших физических нагрузках) происходит массированный выброс катехоламинов из депо. Иногда такой выброс достигает таких степеней, что депо катехоламинов истощается, и нервная клетка сама уже не может восполнить их дефицит. Нет ничего хуже истощения запасов катехоламинов в центральной нервной системе («истощение нервной системы»), т.е. истощение катехоламиновых депо в нервных клетках. В этом случае на человека обрушивается множество различных болезней. Он быстро стареет, т.к. без достаточного содержания в организме катехоламинов не происходит самообновления клеточных структур.

Восстановление резервов центральной нервной системы без рациональной лекарственной терапии невозможно. Есть несколько способов восстановления резервов катехоламинов в нервных клетках:

1. Введение малых доз катехоламинов;

2. Введение в организм предшественников катехоламинов;

3. Введение препаратов, усиливающих синтез катехоламинов в центральной нервной системе.

Почти все известные в настоящее время катехоламины причислены к допингам. Допингами считаются не только такие вещества, как адреналин, парадреналин и дофамин. К допингам причислены амфетамины, значительно повышающие выносливость и использующиеся особенно широко в тех видах спорта, где необходимы выносливость, быстрота реакции и т.п.; эфедрин, хорошо сжигающий жировую ткань, но при этом не затрагивающий мышечную, и другие катехоламины.

Современная фармакология достигла очень многого, с ее помощью мы можем вмешиваться как в синтез отдельных катехоламинов, так и в активность всей симпатико-адреналовой системы в целом. Повышая активность катехоламиновых систем, мы можем добиваться такого повышения спортивной работоспособности, о котором раньше можно было только мечтать. Некоторые катехоламины в малых дозах обладают анаболическим эффектом, способствуя наращиванию мышечной массы и силы.

Клинико-диагностическая лаборатория «ДиаЛаб» предлагает спортсменам и лицам, серьезно занимающимся спортом, провести мониторинг катехоламинового обмена с целью правильного распределения тренировочных нагрузок и предотвращения истощения катехоламиновых резервов.

в продолжение темы статьи:
тематические метки:

Гормоны надпочечников адреналин и норадреналин под общим названием катехоламины представляют собой производные аминокислоты тирозина.

Роль адреналина является гормональной, норадреналин преимущественно является нейромедиатором.

Синтез

Осуществляется в клетках мозгового слоя надпочечников (80% всего адреналина), синтез норадреналина (80%) происходит также в нервных синапсах.

Реакции синтеза катехоламинов

Регуляция синтеза и секреции

Активируют : стимуляция чревного нерва, стресс.

Уменьшают : гормоны щитовидной железы.

Механизм действия

Механизм действия гормонов разный в зависимости от рецептора. Степень активности рецептора может изменяться в зависимости от концентрации соответствующего лиганда.

Например, в жировой ткани при низких концентрациях адреналина более активны α 2 -адренорецепторы, при повышенных концентрациях (стресс) – стимулируются β 1 -, β 2 -, β 3 -адренорецепторы.

Адренорецепторы расположены на пре- и постсинаптических мембранах, на клеточной мембране вне синапса. Их типы неравномерно распределены по разным органам. При этом орган может иметь либо рецепторы только одного типа, либо нескольких типов.
Конечный адренергический эффект зависит

  • от преобладания типа рецепторов в органе/ткани,
  • от преобладания типа рецепторов на конкретной клетке,
  • от концентрации гормона в крови,
  • от состояния симпатической нервной системы.

Кальций-фосфолипидный механизм

  • при возбуждении α 1 -адренорецепторов .

Аденилатциклазный механизм

  • при задействовании α 2 -адренорецепторов аденилатциклаза ингибируется,
  • при задействовании β 1 - и β 2 -адренорецепторов аденилатциклаза активируется.

Мишени и эффекты

α1-Адренорецепторы

При возбуждении α1-адренорецепторов происходит:

1. Активация гликогенолиза и глюконеогенеза в печени.
2. Сокращение гладких мышц

  • мочеточников и сфинтера мочевого пузыря,
  • предстательной железы и беременной матки,
  • радиальной мышцы радужной оболочки,
  • поднимающих волос,
  • капсулы селезенки.

3. Расслабление гладких мышц ЖКТ и сокращение его сфинктеров,

α2-Адренорецепторы

При возбуждении α2-адренорецепторов происходит:

  • снижение липолиза в результате уменьшения стимуляции ТАГ-липазы,
  • подавление секреции инсулина и секреции ренина ,
  • спазм кровеносных сосудов в разных областях тела,
  • расслабление гладких мышц кишечника,
  • стимуляция агрегации тромбоцитов.

β 1-Адренорецепторы

Возбуждение β1-адренорецепторов (есть во всех тканях) проявляется в основном:

  • активация липолиза ,
  • расслабление гладких мышц трахеи и бронхов,
  • расслабление гладких мышц ЖКТ,
  • увеличение силы и частоты сокращений миокарда (ино - и хронотропный эффект).

β 2-Адренорецепторы

Возбуждение β2-адренорецепторов (есть во всех тканях) проявляется главным образом:

1. Стимуляция

  • гликогенолиза и глюконеогенеза в печени,
  • гликогенолиза в скелетных мышцах,

2. Усиление секреции

  • инсулина,
  • тиреоидных гормонов.

3. Расслабление гладких мышц

  • трахеи и бронхов,
  • желудочно-кишечного тракта,
  • беременной и небеременной матки,
  • кровеносных сосудов в разных областях тела,
  • мочеполовой системы,
  • капсулы селезенки,

4. Усиление сократительной активности скелетных мышц (тремор ),

5. Подавление выхода гистамина из тучных клеток.

В целом катехоламины отвечают за биохимические реакции адаптации к острому стрессу , эволюционно связанному с мышечной активностью – "борьба или бегство" :

  • усиление продукции жирных кислот в жировой ткани для работы мышц,
  • мобилизация глюкозы из печени для повышения устойчивости ЦНС,
  • поддержание энергетических потребностей работающих мышц за счет поступающей глюкозы и жирных кислот,
  • снижение анаболических процессов через уменьшение секреции инсулина.

Адаптация также прослеживается в физиологических реакциях:

    мозг – усиление кровотока и стимуляция обмена глюкозы,

    мышцы – усиление сократимости,

    сердечно-сосудистая система – увеличение силы и частоты сокращений миокарда, увеличение артериального давления,

    легкие – расширение бронхов, улучшение вентиляции и потребления кислорода,

    кожа – снижение кровотока,

  • ЖКТ и почки – снижение деятельности органов, не помогающих задаче срочного выживания.

Патология

Гиперфункция

Опухоль мозгового вещества надпочечников феохромоцитома . Ее диагностируют только после проявления гипертензии и лечат удалением опухоли.

Все высшие формы поведения человека связаны с нормальной жизнедеятельностью катехоламинергических клеток – нервных клеток, синтезирующих катехоламины и использующих их в качестве медиатора. От активности синтеза и выделения катехоламинов зависят такие сложные процессы, как запоминание и воспроизведение информации, сексуальное поведение, агрессивность и поисковая реакция, уровень настроения и активность в жизненной борьбе, скорость мышления, эмоциональность, уровень общего энергетического потенциала и т.д. Чем активнее идет синтез и выделение катехоламинов в количественном отношении, тем выше настроение, общий уровень активности, сексуальность, скорость мышления, да и просто работоспособность.

Самый высокий уровень катехоламинов (на единицу массы тела) у детей. Дети отличаются от взрослых прежде всего очень высокой эмоциональностью и подвижностью, способность к быстрому переключению мышления с одного объекта на другой. У детей исключительно хорошая память, всегда хорошее настроение, высокая обучаемость и колоссальная работоспособность.

С возрастом синтез катехоламинов как в центральной нервной системе, так и на периферии замедляется. Тому есть разные причины: это и старение клеточных мембран, и исчерпание генетических резервов, и общее снижение синтеза белка в организме. В результате снижения скорость мыслительных процессов, уменьшается эмоциональность, снижается настроение. С возрастом все эти явления усугубляются: снижается эмоциональность, настроение, нередки случаи депрессии. Причина этого в одном – в возрастном снижении синтеза катехоламинов в организме. Почему работоспособность напрямую зависит от количества в нервных клетках катехоламинов?

Катехоламины оказывают мобилизующее действие на энергетические резервы нервных клеток. Они активизируют окислительно-восстановительные процессы в организме, "запускают" сгорание источников энергии – в первую очередь углеводов, затем жиров и аминокислот.

Катехоламины повышают чувствительность клеточных мембран к половым гормонам и соматотропину. Не обладая собственно анаболическим действием, они усиливают белковый синтез за счет повышения чувствительности клеток к анаболическим факторам. Катехоламины прямо или косвенно повышают активность самих эндокринных желез, стимулируют гипоталамус и гипофиз. При любой напряженной работе, особенно физической, содержание в крови катехоламинов увеличивается. Это приспособительная реакция организма к нагрузке любого рода. И чем более выражена реакция, тем лучше организм приспосабливается, тем быстрее достигается состояние тренированности. При интенсивной физической работе учащение сердцебиения, повышение температуры тела (субъективно ощущается как жар в теле и испарина) – все это вызвано не чем иным, как выделением в кровь большого количества катехоламинов.

Основные виды катехоламинов в организме представлены тремя соединениями:

1. Адреналин;

2. Норадреналин;

3. Дофамин.

Адреналин , вещество, вырабатываемое надпочечниками. Его часто называют, "гормоном страха" из-за того, что при испуге сердце часто начинает биться ввиду сильного выброса в кровь адреналина. Это, однако, не совсем так. Выброс адреналина происходит при любом сильном волнении или большой физической нагрузке. Адреналин повышает проницаемость клеточных мембран для глюкозы, усиливает распад гликогена и жиров. Если человек испуган или взволнован, то его выносливость резко повышается. Адреналин – активный допинг человеческого организма. Чем больше в надпочечниках резервы адреналина, тем выше физическая и умственная работоспособность.

В отличие от адреналина, норадреналин называют гормоном ярости, т.к. в результате выброса в кровь норадреналина всегда возникает реакция агрессии. От адреналина лицо человека бледнеет, от норадреналина краснеет. Гай Юлий Цезарь отбирал в свое войско только тех воинов, лицо которых краснело в бою. Это говорило о повышенной агрессивности таких солдат. Если адреналин повышает, в основном, выносливость, то норадреналин значительно увеличивает мышечную силу.

Высокое содержание в нервной системе дофамина усиливает все сексуальные рефлексы и повышает чувствительность клеток к половым гормонам, что способствует высокому анаболизму. Самым высоким содержанием дофамина в ЦНС отличаются подростки. Их настроение носит на себе налет эйфории, а поведение отличается выраженной гиперсексуальностью. Любые тренировки, даже неправильные с методической точки зрения, в подростковом возрасте дают хороший анаболический эффект. Возрастное падение содержания дофамина вызывает возрастную депрессию (снижение настроения), падение сексуальной активности (у мужчин) и замедление скорости анаболических реакций.

Катехоламины реализуют энергетический потенциал организма. Если энергетические резервы организма истощены, то выброс катехоламинов приводит к еще большему истощению и даже к гибели.

Реализация энергетического потенциала организма происходит в первую очередь за счет распада гликогеновых депо печени и во вторую очередь за счет гликогена мышц. Распад гликогена в мышцах приводит к значительному увеличению мышечной силы, а мобилизация гликогенного фонда печени увеличивает краткосрочную выносливость. Дальнейший выброс катехоламинов усиливает выброс в кровь жирных кислот из подкожно-жировых депо, а жирные кислоты являются практическим "неисчерпаемым" источником энергии в организме.

Катехоламины увеличивают нервно-мышечную проводимость, повышают быстроту реакции и скорость мышления.

Даже поверхностное знакомство с обменом катехоламинов в организме помогает нам сделать вывод, что катехоламины являются ключевым звеном как в умственной, так и в физической работоспособности, как в скорости, так и в качестве мышления. Творческие способности, способность к абстрактному и художественному мышлению, к анализу и синтезу напрямую зависит от катехоламинового обмена.

Анализируя жизнь великих людей: политиков, ученых, музыкантов, художников и т.д., можно отметить удивительные особенности. Например, такое заболевание, как подагра, у них встречается почти в 200 раз чаще, чем среди обычных. Основной механизм подагры – это накопление в крови мочевой кислоты. Мочевая кислота обладает способностью стимулировать катехоламиновые рецепторы, повышая чувствительность клеток к катехоламинам. Подагрики поэтому обладают живостью характера и высокой подвижностью мышления.

Стимулирующее действие таких напитков, как чай и кофе, очень похоже на стимулирующее действие мочевой кислоты, т.к. эти напитки воздействуют на те же самые рецепторы, что и мочевая кислота. Алкалоиды чая и кофе "запускают" синтез особого фермента – аденилатциклазы. Аденилатциклаза приводит к накоплению в клетках ц-АМФ (циклического аденозинмонофосфата). Он изменяет механизм клетки, повышая ее чувствительность к катехоламинам. Беда лишь в том, что регулярный прием чая и кофе истощает резервы ц-АМФ в клетке и в конечном итоге истощает нервную систему. По этой причине рекомендовать чай и кофе в качестве спортивных стимуляторов нельзя. Среди людей с выдающимися способностями в десятки раз чаще, чем среди обычных, встречаются люди с повышенной функцией щитовидной железы. И это тоже неудивительно, ведь гормоны щитовидной железы резко симулируют синтез катехоламинов в организме и повышают чувствительность к ним клеток. Почти все великие люди обладают таким качеством, как гиперсексуальность. На это историки особенно часто обращают внимание. Половые гормоны способны замещать рецепторы катехоламинов и тем самым оказывать активизирующее воздействие на ЦНС.

Как видим, все в конечном итоге замыкается на катехоламинах: и подагра, и повышенная функция щитовидной железы и повышенная активность половых желез. У такого признанного гения, как Александр Сергеевич Пушкин, имело место сочетание всех трех вышеупомянутых факторов. Он страдал наследственной подагрой, с которой боролся ежедневными холодными ваннами со льдом. Из-за повышенной функции щитовидной железы он обладал чрезвычайно большой физической и интеллектуальной активностью и никогда не спал более 5-6 часов в сутки. Что же касается любовных похождений Александра Сергеевича, то они все известны и в комментариях не нуждаются.

Физическую активность катехоламины стимулируют в той же степени, как и интеллектуальную. Тот же А.С.Пушкин был прекрасным спортсменом: много плавал, фехтовал, занимался боксом и т.д.

Не только мочевая кислота, тиреоидные гормоны и половые железы активизируют синтез катехоламинов. Существует много заболеваний, да и просто наследственных факторов, в результате которых катехоламины продуцируются в повышенных количествах, но все эти факторы встречаются относительно редко.

Современная фармакология достигла очень многого, с ее помощью мы можем вмешиваться как в синтез отдельных катехоламинов, так и в активность всей симпатико-адреналовой системы1 в целом. Повышая активность катехоламиновых систем, мы можем добиваться такого повышения спортивной работоспособности, о котором раньше можно было только мечтать.

Почти все известные в настоящее время катехоламины причислены к допингам. Допингами считаются не только такие вещества, как адреналин, парадреналин и дофамин. К допингам причислены почти все симпатомиметические вещества2. Самые известные симпатомиметики – это амфетамины. Амфетамины значительно повышают выносливость и используются особенно широко в тех видах спорта, где необходимы как выносливость, так и быстрота реакции (например, в боксе).

Очень популярным допингом является также эфедрин – растительный алкалоид, получаемый эфедрой хвощевой. Эфедрин исключительно популярен среди культуристов, т.к. он очень хорошо сжигает жировую ткань, но при этом "не трогает" мышечную. Симпатомиметики вообще отличаются тем, что не обладая собственно анаболическим действием, они увеличивают посттренировочный выброс в кровь соматотропина и андрогенов, т.е. потенцируют физиологический эффект тренировки на организм.

Не подлежит сомнению, что любой симпатомиметик в больших сверхвысоких дозировках может быть вреден и способен вызвать истощение нервной системы.

Проблемы симпатомиметиков вообще не так проста, как кажется. Запретить их применение в спорте попросту невозможно хотя бы уже потому, что многие препараты держатся в крови всего несколько десятков минут, а уже вызванные ими физиологические эффекты длятся часами. Некоторые катехоламины, как это ни странно может показаться, на первый взгляд в малых дозах обладают анаболическим эффектом, способствуя наращиванию мышечной массы и силы.

Классическим катехоламином считается адреналин. В последнее время появился ряд научных работ, в которых доказано анаболическое и общеоздоровительное действие малых доз адреналина (1/10-1/20 от до, вызывающих стимуляцию). Если большие дозы адреналина (от 1 мл и выше) вызывают сердцебиение, подъем сахара в крови, повышение артериального давления и распад гликогена в гликогеновых депо, то можно дозы его действуют прямо противоположно. Замедляется пульс, снижается артериальное давление, падает сахар в крови и при длительном курсовом применении развивается отчетливый анаболический эффект. Естественно, что применение таких малых доз не дает никакого стимулирующего эффекта и ни о каком допинговом воздействии не может быть и речи.

Симпатомиметики бывают разные. У некоторых из них даже в относительно больших дозах стимулирующий эффект выражен слабо, а анаболическое действие достаточно сильно. В последние годы широкое распространение в спорте получил такой препарат, как кленбутерол. Это синтетический катехоламин, не имеющий аналогов в природе. Используется этот препарат для лечения бронхиальной астмы, а также при некоторых видах одышки, как легочного, так и сердечного происхождения. Как только кленбутерол вошел в медицинскую практику, его сразу же стали широко использовать в спорте и выяснилось, что помимо стимулирующего действия он обладает выраженным анаболическим эффектом, сравнимый с эффектом анаболических стероидов. Кленбутерол, к тому же, не вызывает выраженного сердцебиения, возбуждения ЦНС и подъема артериального давления подобно другим синтетическим катехоламинам.

Действие кленбутерола весьма своеобразно. Подобно малым дозам адреналина, небольшие дозы кленбутерола оказывают отчетливый общеукрепляющий и анаболический эффект. При этом проявляется отчетливое противовоспалительное и противоаллергическое действие препарата. Подобно некоторым другим катехоламинам кленбутерол улучшает половую функцию у мужчин и несколько повышает настроение. Тем не менее необходимо отметить, что медицинская комиссия МОК отнесла кленбутерол к допингам.

Как мы уже знаем, с возрастом содержание катехоламинов в ЦНС снижается как в силу генетических причин, так и в силу истощения запасов (депо) катехоламинов в нервных клетках. Каждая нервная клетка из катехоламинергических структур имеет определенный запас (депо) катехоламинов.

Во время сильных стрессов (в том числе и при больших физических нагрузках) происходит массированный выброс катехоламинов из депо. Иногда такой выброс достигает таких степеней, что депо катехоламинов истощается и нервная клетка сама уже не может восполнить их дефицит. Нет ничего хуже истощения запасов катехоламинов в ЦНС. Раньше в медицине бытовал такой термин, как "истощение нервной системы". Сейчас такое истощение называют "истощением симпатико-адреналовой системы" и подразумевается здесь истощение катехоламиновых депо в нервных клетках. Организм при таком истощении угасает буквально на глазах.

На человека обрушиваются все мыслимые и немыслимые болезни. Он быстро стареет. Такое быстрое угасание связано с тем, что в организме многое зависит от регуляторной роли катехоламинов. Даже самообновление клеточных мембран (субклеточный молекулярный уровень!) невозможно без достаточного содержания в организме катехоламинов. Под контролем адреналина и некоторых других веществ фосфолипидные молекулы постоянно "входят" и "выходят" из клеточных мембран, осуществляя их "текущий ремонт". От интенсивности и полноценности такого текущего ремонта зависит стабильность клеточных мембран и жизнеспособность клетки, ее устойчивость ко всем внешним (да и внутренним тоже) повреждающим факторам.

Выводы:

1.Сильные стрессы (в том числе и чрезмерные физические нагрузки) снижают содержание катехоламинов в ЦНС. Чтобы резервы катехоламинов ЦНС не истощились, необходимо правильно тренироваться (не перетренировываться1) и правильно восстанавливаться после нагрузок. Любые соревнования характеризуются максимальной мобилизацией катехоламиновых резервов и их истощением. Поэтому очень важно уметь это истощение предотвращать, восстановить потраченные резервы, иначе рано или поздно они истощатся окончательно, и тогда из спорта придется уходить.

2. Восстановление резервов ЦНС без рациональной лекарственной терапии невозможно. Отрицать это – значит лицемерить. Более того, современные тренировочные нагрузки большого спорта столь велики, что сами по себе являются серьезным истощающим фактором. Восстановительное лечение может потребовался не только в межсоревновательных периодах, но даже и в межтренировочных. Есть несколько способов восстановления резервов катехоламинов в нервных клетках:

1. Введение малых доз катехоламинов;

2. Введение в организм предшественников катехоламинов;

3. Препараты, усиливающие синтез катехоламинов в ЦНС;

4. Ноотропные средства;

5. Адаптогены;

1) Физиологические стимуляторы.

Введение малых доз катехоламинов

Введение малых доз катехоламинов (строго под наблюдением врача) способно восстановить истощенные резервы катехоламинов ЦНС и повысить работоспособность как общую, так и спортивную.

Логично было бы предположить, что введение катехоламинов в организм вызовет ответную реакцию – уменьшение синтеза катехоламинов самим организмом. Это называется реакцией по типу отрицательной обратной связи. Так оно и происходит, но только в том случае, если вводить катехоламины в больших дозах. Если использовать малые дозировки, то возникает ситуация прямо противоположная: реакция по типу положительной обратной связи. В ответ организм начинает вырабатывать собственные катехоламины в повышенных количествах. На сегодняшний день наиболее детально разработана методика введения в организм малых доз адреналина. Адреналин вводится 1 раз в день подкожно в дозах от 1/10 до 1/20 от среднетерапевтических. Подкожное введение адреналина позволяет добиться вполне ощутимого анаболического эффекта и, что немаловажно, снижает риск возникновения простудных заболеваний.

2) Введение в организм предшественников катехоламинов

Все катехоламины синтезируются в организме из аминокислоты – фенилаланина. В общем виде цепочку синтеза катехоламинов можно представить следующим образом: фенилаланин -› L1-ДОФА1 -› дофамин -› норадреналин -› адреналин.

Наиболее физиологичным является введение в организм аминокислоты фенилаланина в больших количествах, порядка нескольких граммов. Это мягко активизирует всю симпатико-адреналовую систему, увеличивая содержание в организме всех катехоламинов. Такие методики уже существуют, но они пока еще находятся на стадии экспериментальной проверки. Лечение большими дозами фенилаланина проходит сейчас апробацию в ряде ведущих клиник США как средство для борьбы с нервной депрессией.

На сегодняшний день наиболее детально разработана методика введения в организм такого предшественника катехоламинов, как L1– ДОФА. L1– ДОФА принимается внутрь в таблетках 1 раз в день по 0,5 г. Лечение L1– ДОФА применяется в ряде московских клиник как средство восстановления истощенной нервной системы. L1-ДОФА повышает посттренировочный выброс в кровь соматотропного гормона и с этой целью достаточно широко применяется в США.

3) Препараты, усиливающие синтез катехоламинов в ЦНС

Существует большой класс фармакологических соединений, т.н. антидепрессанты, которые используются для лечения нервных депрессий – расстройств, связанных с пониженным настроением. В спортивной практике применение антидепрессантов не распространено, т.к. собственно стимулирующим действием они не обладают. Антидепрессанты, однако, используются в тех случаях, когда нужно реабилитировать спортсмена, восстановить его после сильного истощения симпатико-адреналовой системы. Обычно это бывает после трудных и ответственных соревнований.

4) Ноотропные средства .

К ноотропным средствам относится целая группа препаратов, которая используется для улучшения умственных способностей. Отличительной особенностью ноотропов является то, что они нетоксичны, способны повышать как умственную, так и физическую работоспособность. Механизм действия ноотропов основан на их способности повышать энергетический потенциал нервных клеток. Самым слабым звеном в нервной клетке являются митохондрии – внутриклеточные образования, вырабатывающие для клетки энергию. В эволюционном плане это самые молодые образования, поэтому они чрезвычайно уязвимы и страдают от любого вредного воздействия в первую очередь. Но они также откликаются в первую очередь и на любое положительное воздействие. Энергетическое обеспечение – ключевое звено любого обмена.

На синтез катехоламинов как таковой ноотропы не влияют, однако их общее энергетизирующее действие так укрепляет нервные клетки, что увеличивается синтез всех нейромедиаторов, и катехоламинов в том числе.

Наиболее широко распространены в спортивной практике такие ноотропы, как пирацетам (ноотропил), оксибутират натрия (ГОМК), пикамилон, пиридитол (энцефабол). Помимо всего прочего, эти препараты обладают еще и определенным анаболическим действием, за исключением пиридитола. Пиридитол, однако, отличается от других ноотропных препаратов тем, что способен стимулировать непосредственно синтез катехоламинов в нервных клетках.

Применять строго под наблюдением врача.

5) Адаптогены

Это целая группа растений, нетоксична для организма, которые широко применяются как в медицине, так и в спорте для стимуляции работоспособности. К адаптогенам относятся такие растения, как женьшень, элеутерококк колючий, лимонник китайский, аралия маньчжурская, радиола розовая, заманиха высокая, стеркулия платанолистная, левзея сафлоровидная. Заслуживает внимания то, что тонизирующее действие адаптогенов достигается за счет повышения чувствительности нервных клеток к катехоламинам. Подобно кофеину, адаптогены воздействуют на аденилатциклазу клеточных мембран и способствуют накоплению внутриклеточного фонда ц-АМФ. Это и повышает чувствительность клеток к катехоламинам, ведь ц-АМФ – внутриклеточный посредник нейрамедиаторного сигнала. Однако, в отличие от кофеина, даже очень длительное введение адаптогенов не приводит к истощению внутриклеточного фонда ц-АМФ и поэтому их можно рекомендовать к длительному применению. В некоторых странах, таких, например, как Япония, адаптогены употребляются всем населением наравне с пищевыми продуктами от младенческого возраста до самой смерти без каких-либо вредных последствий.

6) Физиологические стимуляторы

В некоторых случаях усиление синтеза катехоламинов в ЦНС удается добиться физиологическими стимуляторами. Их количество очень велико и одно лишь перечисление таких способов воздействия заняло бы много места. Рассмотрим лишь самый банальный из них – обливание холодной водой.

С самых давних времен обливание холодной водой используется как средство для укрепления нервной системы и даже как средство лечения многих заболеваний. Каков механизм его воздействия? Исключительно рефлекторный. Резкое воздействие холодом вызывает сильный выброс в кровь адреналина и других катехоламинов. В данном случае цель массивного выброса в кровь катехоламинов – сузить кожные сосуды, чтобы холод не проник вглубь тела, к внутренним органам. По мере развития тренированности, выброс катехоламинов в ответ на воздействие холодом становится все сильнее и сильнее, благодаря увеличению резервных возможностей нервной системы.

С возрастом происходит снижение активности катехоламинергических структур головного мозга, что негативно сказывается на эндокринном балансе организма. В ЦНС начинается преобладание активности тех нервных структур, где нейромедиатором служит ацетилхолин – вещество антагонистическое по отношению к катехоламинам.

Катехоламины и ацетилхолин находятся как бы на двух разных чашах одних весов. Преобладание катехоламиновых структур подавляет ацетилхолиновые и, наоборот, преобладание ацетилхолиновых подавляет катехоламиновые. Нервные клетки, где нейромедиатором служит ацетилхолин в эволюционном плане являются более древними, чем те, где медиаторами служат катехоламины, поэтому они более устойчивы по отношению к старению организма.

С возрастом активность ацетилхолиновых структур головного мозга начинает преобладать. Старение катехоламиновых нервных центров приводит к растормаживанию ацетилхолиновых. Человек становится более спокойным, уравновешенным, малоподвижным. Старческое дрожание рук – это результат преобладания активности ацетилхолиновых структур над катехоламиновыми. Мышление становится замедленным. Даже относительно простые дела, которые в молодом возрасте делались шутя, становятся очень трудоемкими.

Беда еще и в том, что ацетилхолин вызывает избыточную активность коры надпочечников. Это приводит к повышенному содержанию в крови глюкокортикоидных гормонов. Их избыток оказывает сильный отрицательный эффект и причины этого следующие:

1. Глюкокортикоидные гормоны обладают сильным катаболическим действием. Усиливается распад белка в мышечной ткани и мышечный рост даже в результате самых интенсивных тренировок становится невозможным. Снижение белково-синтетических процессов еще больше замедляет синтез катехоламинов и все начинается сначала. Возникает замкнутый "порочный круг".

2. Самообновление белковых структур наиболее быстро протекает в тканях желудочно-кишечного тракта, поэтому катаболическое действие глюкокортикоидов в первую очередь отражается на желудке и кишечнике. Чаще всего возникают язвы желудка и 12-и перстной кишки. Реже – язвенная болезнь кишечника. Зная этот механизм, уже нетрудно догадаться, каким образом истощение нервной системы приводит к развитию язвенной болезни. Язвенная болезнь, в свою очередь, нарушает процесс всасывания аминокислот в кишечнике и уменьшает анаболизм.

3. Распад белка под действием глюкокортикоидов приводит к повышенному содержанию в крови глюкозы, которая образуется из распавшихся аминокислот, что приводит к возникновению возрастного сахарного диабета (диабет II типа).

4. Повышение содержания сахара в крови вызывает ответную реакцию – усиление выделения в кровь инсулина. Инсулин снижает содержание в крови сахара, в результате чего он преобразуется в жировую ткань. Развивается возрастной тип ожирения.

5. Возрастное ожирение вызывает повышенное содержание в крови свободных жирных кислот. Жир распадается на жирные кислоты и глицерин, которые поступают в кровь и затем вновь возвращаются в подкожножировые депо. Таким образом осуществляется в организме постоянный кругооборот жирных кислот и глицерина. Чем больше количества жира под кожей, тем больше в крови жирных кислот, их количество в крови прямо пропорционально количеству нейтрального жира в подкожном депо. Возрастное нарастание количества жирных кислот в крови блокирует Т-лимфоциты крови, вызывая нейтрализацию клеточного иммунитета, что приводит к развитию злокачественных опухолей.

Даже поверхностный взгляд на формирование возрастной патологии подводит нас к мысли о том, что ее можно и нужно лечить с помощью всего арсенала средств, повышающих содержание катехоламинов в ЦНС. Выбор таких средств в настощее время довольно широк. Применяя их, мы можем не только повысить общую и спортивную работоспособность, не только увеличить творческий потенциал человека, но и активно препятствовать развитию возрастных изменений, задерживать старение организма, продлять творческое долголетие.

________________________________________

1 Симпатико-адреналовая система – это система нейронов (нервных клеток), продуцирующих катехоламины, которых в настоящее время насчитываются десятки.

2 Симпатомиметиеские вещества (симпатомиметики) – соединения, способные стимулировать нервные клетки, вырабатывающие катехоламины.

1 Перетренированность как таковая – это и есть снижение содержания катехоламинов в ЦНС. Перетренированность – это самое настоящее заболевание, истощение ЦНС.

1 L1 – L1– диоксифенилаланин.

1 "Hooe" – мышление.